
A report on �Algebraic E�ects, Linearity, and Quantum

Programming Languages�, by Sam Staton

Raphaël Monat

January 3, 2017

1 Introduction

Although quantum computers are not yet built, there has been a lot of work on quantum
computations, discovering interesting circuits such as the quantum Fourier transform. How-
ever, describing quantum Fourier transform, or even Shor's algorithm using circuits is quite
cumbersome, and quantum programming languages would be interesting to use. There has
been a lot of work on quantum programming languages in the last decade, such as [Sel04]. It
would be interesting to have a complete, formal theory describing the whole nature of quan-
tum computations. Another point made by the author is that using this formalization, one
can use general methods [AS13, KP12] to immediately get static analyses and normalization
by evaluation. Previous work [DKP07, CD08] introduced formalisms to reason on quantum
computations, but none of them were complete (although they had other interesting proper-
ties, such as interesting rewriting properties). Having a complete theory is really interesting,
as it describes quantum computations in a standalone way. In �Algebraic E�ects, Linear-
ity, and Quantum Programming Languages� [Sta15], Sam Staton presents a new framework
permitting to infer equality of quantum computations. This theory is complete. This work
is much more general, and presents algebraic theories with linear parameters (here, linear
means that a resource cannot be used more than once, so this is useful when working on
qubits), but its main application is quantum computation.

To avoid some complications, the author �rst presents a theory using continuation-passing
style rather than explicit control. This means that the result of a computation is transmit-
ted to the next computation. In the theory presented below, two di�erent kind of objects
will be handled: qubits, and computations. There are three quantum operators, described
intuitively as:

• new, taking one computation with one parameter in argument. Writing new(a.x)

means that a new qubit a is allocated and given to the computation x.

• applyU, taking as arguments n qubits and a computation having n parameters. applyU(~a,~b.x)

stands for: apply the unitary U to the qubit vector ~a, bind the result to ~b and give it
to the computation x.

1

• measure, taking as arguments a qubit, and two computations (without parameters).
measure(a, x, y) stands for: measure a = α |0〉 + β |1〉, choose to execute either com-
putation x (with probability |α|2) or computation y (with probability |β|2).

For example, t = new(a.applyHad(a, a.measure(a, x, y))) means: create a new qubit a,
and execute applyHad(a, a.measure(a, x, y)) (here, Had is the Hadamard matrix). Thus, t is
equivalent to executing either x or y with equal probability.

2 Main contributions of the paper

In this paper, the author de�nes the notion of algebraic theory with linear parameters. He
develops a theory of quantum computations, and shows that this theory is complete.

2.1 General framework

The general framework presented in this article is about algebraic theories with linear param-
eters. A theory is de�ned using a signature, rules to form terms and axioms. Informally, the
signature de�nes operations in the theory, these operations being used in the terms. Axioms
de�ne equality between terms. Using a theory, we can then establish other identities.

In this framework, we distinguish two kinds of variables:

• Computation variables (usually denoted x, y, ...), representing functions. These func-
tions can have arguments. If a function x has p arguments, we write x : p.

• Parameter variables (usually denoted a, b, ...). In the following, these variables denote
qubits.

Remark. In the following, a function may require arguments, but I tried to avoid the use of
the word parameter. The word parameter is only used to denote parameter variables, that
is, qubits.

De�nition 2.1. A signature is a set of operations. An operation O is de�ned by its arity
(p | m1 . . .mk). This means that operation O takes p parameter variables in argument, and
k computation variables in argument. The i-th computation argument has mi arguments
itself. This is written O : (p | m1 . . .mk).

Example 2.2. A simple example of operation is new: (0 | 1). As seen in the introduction, we
would like this operation to take no qubit, and give the newly created qubit to a computation.
This computation has thus only one argument.

Now that we have de�ned the operations available in our theory, we need to de�ne how
to form terms. Later, well-formed terms will represent quantum computations. To de�ne
this, we need a context of things that we supposed de�ned. Actually, we will use two
contexts, Γ for the computation variables, and ∆ for the parameter variables. Then, writing
Γ | ∆ ` t means that the term t is well-formed under the contexts Γ and ∆. There are

2

theory-independent inference rules to de�ne terms. The �rst rule de�nes that a computation
variable needs to have all its parameter to de�ned to be well formed. The second rule states
that parameter variables can be permuted in the context. The third rule states that an
operation-based term is well de�ned when its arity is respected. In a fashion similar to the
one of lambda-calculus, the notation b1 . . . bm1 .t1 binds variables b1 . . . bm1 to the computation
variable t1.

Γ, x : p,Γ′ | a1 . . . ap ` x(a1 . . . ap)

Γ | a1 . . . ap ` t
Γ | aσ(1) . . . aσ(p) ` t

σ is a permutation of {1, . . . , p}

Γ | ∆, b1 . . . bm1 ` t1 . . . Γ | ∆, b1 . . . bmk ` tk
Γ | ∆, a1 . . . ap ` O(a1, . . . , ap, b1 . . . bm1 .t1, . . . , b1 . . . bmk .tk)

O : (p | m1 . . .mk)

Example 2.3. Using operation new, and the rule to form operation-based terms, we get the
following rule:

Γ | ∆, a ` t
Γ | ∆ ` new(a.t)

There is a substitution rule not presented here. There are also weakening and contraction
rules in the computation context:

Γ | ∆ ` t
Γ,Γ′ | ∆ ` t

Γ,Γ′,Γ′ | ∆ ` t
Γ,Γ′ | ∆ ` t

The linearity, preventing a copy of qubits is expressed here by forbidding weakening and
contraction in the parameter context ∆, as well as the destruction of the arguments when
using an operation.

De�nition 2.4. An axiom is just a pair of terms in the same context, written Γ | ∆ ` t = u.

2.2 Constructing quantum computations terms

There are three kind of operations in the case of quantum computations:

1. new: (0 | 1)

2. measure: (1 | 0, 0)

3. for every 2n × 2n unitary matrix U, applyU: (n | n)

Example 2.5. We can show that if x and y are two functions taking no parameters, then
new(a.applyHad(a, b.measure(b, x, y))) is a well-formed term:

3

x : 0, y : 0 | − ` x x : 0, y : 0 | − ` y
x : 0, y : 0 | b ` measure(b, x, y)

x : 0, y : 0 | a ` applyHad(a, b.measure(b, x, y))

x : 0, y : 0 | − ` new(a.applyHad(a, b.measure(b, x, y)))

2.3 Axioms of our quantum theory

The author proposes the twelve following axioms:

Quantum not negates a measurement Let X =

(
0 1
1 0

)
be the quantum not gate.

Then:
applyX(a, a.measure(a, x, y)) = measure(a, y, x)

Quantum control and measurements Let D(U, V) be

(
U 0
0 V

)
:

measure(a, applyU(~b,~b.x(~b)), applyV(~b,~b.y(~b))) = applyD(U, V)((a,~b), (a,~b).measure(a, x(~b), y(~b)))

Discarding after a rotation We introduce a discarding operator: discardp(a1, . . . , ap, t)
measures qubits a1, . . . , ap and continues as t whatever the outcomes of the measurements
are. Let U be a 2n × 2n unitary:

applyU(~a,~a.discardn(~a, x)) = discardn(~a, x)

We can notice that when n = 0, this axioms means that the global phase of a qubit is
not important.

Allocation of qubit

new(a.measure(a, x, y)) = x

Unitary control of a new qubit

new(a.applyD(U, V)((a,~b), (a,~b).x(a,~b))) = applyU(~b,~b.new(a, x(a,~b)))

Applying swap unitary Let swap =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 be the unitary matrix swapping two

qubits.

applyswap((a, b), (a, b).x(a, b)) = x(b, a)

4

Applying identity Let I be the identity unitary.

applyI(~a,~a.x(~a)) = x(~a)

Applying a product of unitaries

applyUV(~a,~a.x(~a)) = applyU(~a,~a.applyV(~a,~a.x(~a)))

Applying a Kronecker product of unitaries

applyU⊗V((~a,~b), (~a,~b).x(~a,~b)) = applyU(~a,~a.applyV(~b,~b.x(~a,~b)))

Commutativity of measurements

measure(a, measure(b, u, v), measure(b, x, y)) = measure(b, measure(a, u, x), measure(a, v, y))

Commutativity of allocations

new(a.new(b.x(a, b))) = new(b.new(a.x(a, b)))

Commutativity of allocation and measurerement

new(a.measure(b, x(a), y(a))) = measure(b, new(a.x(a)), new(a.y(a)))

Remark. In the article, the author also presents the axioms as equality of circuits. This
presentation is more visual, but less formal.

2.4 Two simple examples

We can show that a rotation of D(1, eiθ) does not a�ect measurement:

applyD(1, eiθ)(a, a.measure(a, x, y))

= measure(a, apply1(x), applyeiθ(y))

= measure(a, x, y)

We can also show that a circuit taking two qubits a and b, applying Hadamard matrices
to both qubits, then a controlled not, then two Hadamard matrices is the same as applying
a controlled not the other way around (although this is more a matrix computation). This

5

is usually called CNOT in the Hadamard basis.

applyHad⊗Had((a, b), (a, b).applyCNOT((a, b), (a, b).applyHad⊗Had((a, b), (a, b).x)))

= apply(Had⊗Had) CNOT (Had⊗Had)((a, b), (a, b).x)

= applyswap CNOT swap((a, b), (a, b).x)

= applyswap((a, b), (a, b).applyCNOT swap((a, b), (a, b).x))

= applyCNOT swap((b, a), (a, b).x)

= applyCNOT((b, a), (a, b).applyswap((a, b), (a, b).x))

= applyCNOT((b, a), (a, b).x)

2.5 Main result: completeness theorem

There are other axiomatizations of quantum computation [DKP07, CD08], but this one is
the �rst complete one. This means that every property of a quantum computation can be
proved in the theory presented in the last section. To prove this result, the author shows
an equivalence between its theory and C∗-algebras, which are a �well-established model of
quantum mechanics�. More precisely, the author exhibits a bijection between the terms of
his theory and completely positive unital maps using a lot of category theory. The real
advantage of this theory is that it does not require any knowledge of operator algebra to
work on quantum computations, but only the axioms stated above.

2.6 From well-formed terms to a programming language

The theory presented above completely represents quantum computations. However, the
result is always passed to a continuation and this is not really practical. We show how to
derive a small, functional, typed, quantum programming language from the theory presented
above. Programming language operators are underlined (measure), on the contrary to their
counterparts from the algebraic theory.

As [Sel04] mentions, there are di�erent kinds of quantum computations models, depend-
ing on if the control part of a quantum computation is classical or not. Here, the program-
ming language is similar to the one presented in [Sel04] and uses classical control.

The types of this programming language are de�ned as: A,B ::= qubit |I | A⊗B | 0 | A+
B (where + is the usual sum type, so that bool = I + I). The typing rules are as follows:

x : A ` x : A

Γ ` t : A⊗B ∆, x : A, y : B ` u : C

Γ,∆ ` let (x, y) = t in u : C

` new() : qubit

Γ ` t : qubit⊗n

Γ ` applyU(t) : qubit⊗n
Γ ` t : qubit

Γ ` measure(t) : bool

Then, the second axiom establishes a correspondence between the two following com-
mands:

6

• let (a′, x′) = applyD(U, V)(a, x) in (measure(a′), x′),

• if measure(a) = 0 then (0, applyU(x)) else (1, applyV(x)).

2.7 Extensions

By adding or removing at most one or two axioms, and changing the valuation of unitaries
from complex numbers to {0, 1}, the author shows that he can also obtain theories for
classical computations, classical local store, and QRAM.

3 Comments and conclusion

I found this article quite abstract and interesting to read, although (at least) the proofs
were using a lot of category theory. I hope that this report is more accessible than the
initial article. I read in [Sel04] that the semantics of a programming language with quantum
control were not understood yet, but I think it would be interesting to see what has been
done in this area, and if quantum control brings additional expressivity to the programming
language.

References

[AS13] Danel Ahman and Sam Staton. Normalization by evaluation and algebraic e�ects.
Electronic Notes in Theoretical Computer Science, 298:51�69, 2013.

[CD08] Bob Coecke and Ross Duncan. Interacting quantum observables. In ICALP 2008

Proceedings Part II, volume 5126 of Lecture Notes in Computer Science, pages
298�310. Springer, 2008.

[DKP07] Vincent Danos, Elham Kashe�, and Prakash Panangaden. The measurement cal-
culus. J. ACM, 54(2), 2007.

[KP12] Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for e�ect-dependent
optimisations. In John Field and Michael Hicks, editors, Proceedings of the 39th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 349�
360. ACM, 2012.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathematical Struc-

tures in Computer Science, 14(4):527�586, 2004.

[Sta15] Sam Staton. Algebraic e�ects, linearity, and quantum programming languages. In
Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2015, Mumbai, India, January 15-17, 2015, pages 395�406. ACM, 2015.

7

	Introduction
	Main contributions of the paper
	General framework
	Constructing quantum computations terms
	Axioms of our quantum theory
	Two simple examples
	Main result: completeness theorem
	From well-formed terms to a programming language
	Extensions

	Comments and conclusion

