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1 Introduction
Cellular automaton (CA) is a model of computation that use a local evolution rule
to update iteratively a set of cells. Because of its connection with physics, the idea
of generalizing this model with quantum effects was present very early, even already
in the famous Feynman’s 1982 paper [3]. Since then, a lot of different approaches
have been tried to formalize the notion of quantum cellular automaton (QCA).

A one-dimensional classical cellular automaton consists in an infinite array of
cells which can take different value in a (finite) set of states. This array evolves
in time by successive applications of a local and shift-invariant function along all
the array. The natural extension proposed by Watrous [6] is to allow cells to be in
superposition of states, and the local function to be a unitary operator. Schumacher
and Werner pointed out in [5] that this approach leads to a non-physical model,
which means that the global evolution of the automata might not correspond to
a unitary transformation. This non-unitary transformation might even lead the
automaton to perform super-luminal signaling. The set of Watrous QCA is also not
closed under composition and inverse, which are properties we would like to have
for a "nice" computational model.

In order to rectify that, Schumacher and Werner proposed another model [5],
based on a broader point of view, imposing the global evolution to be unitary.
Using the mathematical notion of C∗-algebras [2] instead of Hilbert spaces, they
made what they call an axiomatic definition of a QCA, imposing restrictions on the
global evolution rather than on the local one (the constructive characterization, like
Watrous did). They also proved a very strong result on their QCAs: not only they
are reversible (they are by definition), but the inverse is also a QCA. This property
is called structural reversibility. This is done thanks to a structure theorem, showing
that all QCA have a very specific block-structure. It is a striking result because in
the classical case, it is totally false: there exist some bijective classical CA whose
inverse is not a valid CA.

The paper we are reviewing here ([1]) studies the particular case of QCA over
finite configurations. In this case, it is still very surprising that QCAs over finite (but
possibly unbounded) configurations are structurally reversible. The authors prove
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this theorem in an easier way than in [5], and then consider specific applications
of it. Thanks to the locality condition (without which the model allows faster-
than-light communication), the authors prove that a well-studied class of CA are
not physically reversible. They also show that this definition of QCA allow some
speedup in transmission of information in CAs. And finally they provide an example
proving that the current structure theorem of [5] is false for dimensions higher than
1.

This report is organized as follow. First we take a look at the definition of a QCA
in the finite configuration setting. We also sketch the proof of the main theorem of
the paper. Then we explain the examples of the paper and their implications. We
conclude with some remarks on this paper and what could be done to improve the
results.

2 Definition of QCA
In this section we introduce the notion of one-dimensional QCA and the main
theorem about them. In all this report Σ will denote a finite alphabet, which is
all basic states cells of the automaton can take. qΣwill denote q ∪ Σ with q /∈ Σ
denoting the empty cell.

Definition 1 (Finite configuration). A finite configuration c over qΣ is a function
c : Z→ qΣ such that there exist an interval I (possibly empty) for which

ci = c(i) =
{
w ∈ qΣ if i ∈ I
q if i /∈ I

.

The set of all finite configurations over qΣ will be denoted by Cf .

Because we are only interested in the finite case, we will use the term configura-
tion to designate a finite configuration.

These configurations are those a classical CA can take. In the quantum case
however, the automaton could be in a superposition of these classical configurations.

Definition 2 (Superposition of configuration). Let HCf
be the space of configurations

of a QCA. It is defined as follows. We associate a vector |c〉 to each configura-
tion c such that (|c〉)c∈Cf

is an orthonormal basis of HCf
. A superposition of

configurations is then a unit vector in HCf
.

Definition 3 (Unitary operator). A linear opeator G : HCf
→ HCf

is unitary if
and only if {G |c〉 | c ∈ Cf} is an orthonormal basis of HCf

.

Definition 4 (Shift-invariance). Let s be the shift operation such that s(c)i = ci+1.
Let σ be its linear extension to superposition of configurations. A linear operator G
is said to be shift-invariant if and only if Gσ = σG.

Definition 5 (Locality). A linear operator G is local (with radius 1
2) if and only

if for any ρ, ρ′ two states over HCf
and any i ∈ Z, we have:

ρ|i,i+1 = ρ′|i,i+1 =⇒ GρG∗|i,i+1 = Gρ′G∗|i,i+1
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The classical notion of locality expresses the fact that the state of a cell i at a
time t+ 1 depends only of the states of the cells i and i+ 1 at time t. This definition
of locality is not so restrictive even if it looks so. In order to increase the "radius of
dependency", one could group cells into bigger "supercells" and construct a QCA
simulating a larger one, but which is local with radius 1

2 .
We now have all the notions to define a one-dimensional QCA:

Definition 6 (one-dimensional QCA). A one-dimensional quantum cellular au-
tomaton (QCA) is an operator G : HCf

→ HCf
which is unitary, shift-invariant

and local.

Theorem 1. The inverse of a QCA exists, and is a QCA.

Proof idea. What is behind this theorem is a structure theorem, which provides a
block decomposition for all QCAs. From this block decomposition it is straightfor-
ward to get the reversed QCA.

We start by focusing on two specific cells, say 1 and 2. The global idea is that
for the cell 2 at time t, one could separate the information it will send to the cells 1
and 2 at time t+ 1.

Figure 1: Picture of the block decomposition.

Without the details, Figure 1 gives a picture of the decomposition. The role of
U is to separate the information that have to go to the left or right cell. Then V
applies the transformation itself using information given by the left and right cells
at time t. By shift-invariance, the construction made for a specific cell works for
the whole automata.

Figure 2 gives a wider view of the decomposition, and with it, it is quite clear
what the reversed QCA is: just take the inverse of the matrices U and V and apply
them in the opposite order to get the time reversed. The resulting operator is again
a QCA since it is local and duplicated along all the cells.

3 Consequences and examples
Because it differs from the classical case, this theorem seems to raise several
paradoxes. In this section we discuss them with examples, and see some limits of
the theorem.
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Figure 2: Wider image of the two-layered block representation. Time goes upwards
and every (U, V ) lines represent a time-step.

3.1 Bijective CA ans superluminal communications

Definition 7 (XOR CA). We consider the alphabet Σ = {0, 1}. ∀x, y ∈ qΣ,
we define δ as: δ(qx) = x, δ(xq) = q and δ(xy) = x ⊕ y. Let F be the oper-
ator applying δ on a configuration: F : Cf → Cf and maps . . . ci−1cici+1 . . . to
. . . δ(ci−1ci)δ(cici+1) . . ..

The XOR CA is clearly local and shift-invariant. Because it is defined on
finite configurations, it is also bijective: the antecedent exists and can be uniquely
determined from the left border of the nonempty region. But it is not structurally
reversible: the antecedent could not be computed by a CA. Indeed, consider
c = . . . 000000000 . . .. c could be derived either from a large region of 0s or a large
region of 1s, and the only way to determine it is to look at its left border. But
because it can be arbitrarily far, a CA cannot separate the two cases in a constant
number of steps.

Now comes the apparent paradox: this CA could be linearly extended to an
equivalent QCA. Take for example F : HCf

→ HCf
such that

F (α |. . . 00 . . .〉+ β |. . . 10 . . .〉) = αF (|. . . 00 . . .〉) + βF (|. . . 10 . . .〉).

So, it would mean that there exists a block representation of the XOR CA. But if
you look more carefully at the quantized Ff , it turns out that even if it is unitary
and shift-invariant, it is not local. Consider the configurations

c± = 1/
√

2 |. . . qq〉 (|00 . . . 00〉 ± |11 . . . 11〉).

Then Fc± = |. . . qq00 . . . 00〉 |±〉 |qq . . .〉 with |±〉 = |0〉±|1〉√
2 . If i is the position of

the last non-empty cell, then Fc±|i = |±〉 〈±| does not depend only on c|i,i+1 but
rather on the global "phase" of c, that is, a possibly unbounded part of c. Another
way of seeing it is that the XOR QCA would allow faster-than-light communication.
Indeed, if Alice has the first non-empty cell and Bob the last one (i), then Alice

could change c+ to c− by just applying one phase gate Z =
(

1 0
0 −1

)
to her cell,

leading Bob’s cell to a change from |+〉 to |−〉, which is measurable since |+〉 and
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|−〉 are orthogonal. Which leads to instantaneous communication between Alice
and Bob.

More generally, a quantize version of a non-structurally reversible CA will not
be structurally reversible. Hence we have:

Proposition 1 (Class B is not locally quantizable). We call B the class of bijective
CA on finite configurations but not on infinite ones. Automata from this class do
not admit a local quantization. Hence these automata cannot be implemented by a
series of finite closed quantum systems.

3.2 Faster quantum signalling

Some classical CAs do not admit a two-layered block representation unless cells are
grouped into supercells. On example is the Toffoli CA (see Figure 3). It is clearly

Figure 3: The Toffoli CA.

shift-invariant and local of radius 1/2. But to find its block representation we need
to group cells. Indeed, b is switched depending on a and c. The Toffoli CA can be
seen as two consecutive Toffoli gates, as shown in Figure 3. But it is known that
these Toffoli gates cannot be obtained using two bits gates in classical reversible
computation. Hence any block representation needs more than two classical gates,
or two with cells grouping. So, in the classical setting, this CA is of radius 1/2,
has an inverse of radius 1/2, but does not have a two-layered block representation
without cell grouping.

Let F be the quantized version of the Toffoli CA. This time F is local, but again
against intuition, F is not of radius 1/2 but 3/2. It means anyway that quantizing
the Toffoli CA allows to have a faster communication than in the classical case.
Unlike the XOR CA, this speedup does not break the light speed limit.

3.3 Higher dimensions

Unfortunately for dimensions higher than 2 there are examples of CA that are
structurally reversible but that do not admit any two-layered bloc representation.
One example is the Kari CA [4]: the original proof works the same for the quantum
case. This leads to the following proposition:

Proposition 2 (No-go for higher dimensions). There exists some 2-dimensional
QCA who do not admit a two-layered block representation.
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This proposition does not mean that higer dimensional QCA are not all struc-
turally reversible, it just means that they can have different structure from the one
of the structure theorem, which hence fails to prove than any QCA is structurally
reversible for dimensions higher than 1.

4 Conclusion
This paper proves in the simpler setting of finite configurations the result from
[5]. This setting is still very expressive, and the finiteness of the configurations
reflects better the physical reality of CA implementations. Using this theorem, it
appears that some CA, like the XOR CA or the whole B class, are not physically
reversible: even their quantum extension cannot be structurally reversed with the
current definition of QCA.

The main limitation of this paper is that it treats only the one-dimensional case.
A very challenging but interesting direction would be to find an equivalent structure
theorem for higher-dimension QCAs. That would let us better understand how
QCA works more generally, in some more complex cases than the one dimensional
line. However, it is a very common fact that these kind of theories becomes very
much harder to understand in dimensions greater than 1. Another possible direction
follows from the remark in section 3.2: it could be interesting to study more
precisely when the communication speedup do appears, and how big it is exactly.
It is an interesting option since for CAs, communication speedup is synonymous of
computational speedup.
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