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Abstract

This report aims at presenting the article Quantum State Tomography via Com-

pressed Sensing by David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker and
Jens Eisert [GLF+10]. As the article is a short letter – only four pages – it could
not spend a lot of time on bibliographical studies or physical interpretations. Hence I
focused on those two aspects to try and explain the article’s main ideas.

I first present shortly what is quantum state tomography. Then I explain the main
result of the article and where lies the novelty of their work. I briefly expose the other
results and I end up summarizing and suggesting further research directions.

1 Context and motivations

Quantum state tomography is the process of reconstructing the quantum state produced by a
quantum source by some measurements on systems coming from the source. The idea is that
by repeated measurements of the quantum system on a “good basis” one can approximate
the density matrix describing the system with small error.

Quantum state tomography has applications in quantum physics in order to under-
stand some quantum systems – for instance describing the entangled state of trapped ions
[HHR+05], as well as in quantum computation in order to determine the exact state of qubits
– for instance assuring an optical system performs a CNOT gate [OPW+03].

One of the main stake is to make this process tractable.

2 Main result

If we consider a n-qubit system it is represented by a density matrix of size d ⇥ d where
d = 2n. Then to recover perfectly this density matrix we would need to know at least d2

pieces of information, which can in practice be really slow – for instance it took hundreds
of thousands of measurements and weeks of postprocessing to get a maximum likelihood
estimate of a quantum state of 8 ions [HHR+05]. But if we suppose we have a matrix with
small rank r, most of those pieces of information are redundant. Since this is a very common
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case because pure states subject to some noise are well approximated by low-rank density
matrices, the article aims at improving the known methods in this particular case.

The method presented by the article is inspirated from compressed sensing but for re-
covering low-rank matrices rather than sparse vectors. It is called matrix completion and is
detailed in its more general setting in the article [Gro11]. The idea behind matrix comple-
tion is to use some pieces of information coming from random measurements in a well-suited
basis i.e. a basis where coe�cients countain non-trivial information, an idea formalized by
the notion of “incoherence to a basis”. Then we want to find the minimum rank matrix
satisfying the measurements. In order to do this e�ciently, the minimization over the rank
is replaced by a minimization over the trace norm1, yielding a convex optimization problem.
Justifications of this transformation can be found in [MP97] and [FHB01].

The framework of the article [GLF+10] consists in recovering the state of a spin based
qubit, which seems to be among the most popular implementations of qubits [KGS+07]. It
is then natural to take as a basis the one formed by the Pauli matrices, with the hope that it
would yield good results in term of incoherence. They indeed allow to access the expectation
of the observables “spin” along the di↵erent axes2.

More formally speaking, the problem is the following. Name {Wa, a 2 J1, d2K} the set of
Pauli matrices for n-particles. Draw m integers a1, a2, ... am at random in J1, d2K. Measure
the expectations of your unknown system ⇢ for the corresponding observables and solve the
following convex optimization problem:

Minimize k�ktr subject to
(
tr(�) = 1

tr(Wai�) = tr(Wai⇢) for i = 1..m

where k · ktr is the trace norm.

Then if we note r the rank of ⇢ and take m = cdrlog2d with c a parameter, ⇢ can be
uniquely determined with probability of failure exponentially small in c. The main stake of
the proof is to show that the unknown density matrix ⇢ is the global minimum of the prob-
lem, i.e. that for any deviation �, either ⇢ +� does not satisfy the constraint or its trace
norm is greater than ⇢’s one. It does so by using a classical method in convex optimization
problems: it constructs a strict subgradient which will serve as a dual certificate. Then the
bound on the failure of the completion matrix algoritm is computed from the probability of
failing to construct such a strict subgradient.

The complexity of the postprocessing is in O(d2) for classical implemetations.

1The trace norm or Schatten 1-norm or nuclear norm is the sum of the singular values
2To measure the expectation of an observable represented by a hermitian matrix A for a system repre-

sented by its density matrix ⇢ is getting the value hAi = tr(A⇢)
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3 Other results

Robustness to noise. There might be two sources of imprecision. The first one is that
due to some interferences with the exterior the unknown density matrix is not low rank but
only well-approximated by a low rank density matrix. It is a physical phenomenon known
as decoherence [Sch14]. The second is that measures are also approximations. To cope with
it, they relax their constraints and introduce a parameter error " depending on estimated
errors from both sources. Then the same method allows to approximate the state of the
unknown system with an error in O("

p
rd). The same failure rate holds up to adding a term

depending on the error parameter.

Coping with unknown rank. So far we supposed we had a quantum system well approx-
imated by an unknown density matrix but of known low rank. Yet in realistic experiments
the rank may be unknown or we may want to certify that the rank is the one assumed. The
authors distinguish two cases. Either the quantum system is nearly pure, i.e. well approxi-
mated by a rank 1 density matrix. Then they can find a certificate for this assumption and
reconstruct the approching pure state without increasing the asymptotic number of measures
needed or the failure rate. Or the quantum state has approximatively low-rank but di↵erent
from 1. Then the authors advise to perform tomography with di↵erent values for m. If m
is larger than necessary the method recover the correct density matrix, if it is smaller the
method does not converge.

Hybrid approach. The authors also describe a variant of their method they call “the
hybrid approach”. The idea is to take the Pauli matrices according to a pattern instead of
completely random. It allows to solve the convex optimisation problem more e�ciently –
O(d) instead of O(d2) – but the theoritical guarantees are weaker. However this approach is
claimed to yield accurate results in practice.

Experiments. For their experiments the authors solve a slightly di↵erent optimzation
problem thanks to the singular value thresholding algorithm which is described in the article
[CCS08]. This modified problem introcuce a parameter ⌧ and when ⌧ is large enough the
two problems are equivalent. The figure 1 show the average fidelity and the trace distance
drawn in fonction of the number of measures performed for a noiy system of 8 quantum
particles approximated by a rank 3 matrix.The results are quite good – the methods recover
in reasonnable time the matrix with around 95% of fidelity even though only 10% of the
expansion coe�cients of the matrix are sampled. The hybrid approach yields less precise
results but do so faster.

4 Conclusion and further work

The article shows a refinement of quantum state tomography in the case where the unknown
state is fairly pure. The presented method is able to recover an unknown density matrix of
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dimension d and rank r in O(rdlog2d) measurements rather than O(d2). The postprocessing
is then in O(d2). Moreover the method is stable against the noise either in the state itself or
in the measurements. The acquired data also enable to certify the unknown state is indeed
close to pure. Besides this method, the article presents an alternative approach that has a
lesser postprocessing time and yields good experimental results even if the theoretical results
do not hold for it.

I think this article is relevant in its objective even if there are only few justifications
about the fact that states represented by low rank density matrices naturally arise in quan-
tum problems where tomography is needed and not only nearly pure states. The article
presents a new proof that is inspired from previous work but is more general, more compact
and yields tigher bounds. However the compactness of the proof makes it hard to follow
and the article does not give any physical interpretation which makes the underlying choices
di�cult to understand without a lot of research. Some of them are still not very clear
for me. For instance the constraints of the optimization problem enforce that the trace of
the solution is one but does not require the other properties of density matrices to be fulfilled.

The authors do not present further work. Below is a list of some possible extensions I
thought of:

• This work is limited to spin-based quantum system. One could investigate the other
possible implementations of qubits such as polarized photons to try to achieve similar
or better results. This work would consist in looking how well the matrix completion
algorithm works wfor some basis relevant to the given implementation.

• The method lies on the fact that the minimization of the trace norm is a good proxy
for the minimization of the rank. It can be linked with the fact that the trace norm is a
measure of the coherence of a state, see for instance [SXFL15]. It could be interesting
to investigate other coherence measures such as the ones presented in [BCP14].

• When coping with noise, the relaxation of the constraints lies on a error parameter
which depends on the bounds of approximations the noise introduces. It is then nec-
essary to have some ways to evaluate those bounds.

• When relaxing the constraints for the case when we only have a state well approximated
by a low rank matrix, the norm two over matrices is used. One could wonder what
would be the results if we were using another norm.
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Figure 1: Fidelity and trace distance in fonction of the number of measurements – Image
taken from the article [GLF+10]
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