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Introduction
This report gather some notable results found in [SS12], giving also details on some

foundation results presented in [CMN+07]. The results covered in Section 2 are answers
given in [SS12] to questions of the article [CMN+07].

Graph parameters are studied a lot as they are a way to highlight a general structure
from a graph. In that sense, the chromatic number is studied a lot as it shows the
multipartitions. The chromatic number can be seen as the smallest number needed to
color a graph, with respecting the condition that two adjacent vertices must not have
the same color. But it can also be studied with the following protocol. We consider an
integer c and a graph G. We denote [c] = {1, . . . , n}. A referee gives to Alice and Bob
two vertices that are either the same one, or belong to one edge. Alice and Bob answer
two colors in [c] that should be the same if they were given the same vertex, and different
in the other case. The chromatic number coincide with the smallest c for which Alice
and Bob have a probability 1 winning strategy.
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This game gives a way to define the quantum chromatic number. We consider the
same game but this time Alice and Bob share an entangled state. The smallest c for which
they win with probability 1 is the quantum chromatic number. This parameter is a way
to see how different the quantum and the classical world are. Indeed it have been shown
that for a class of graphs, called the Hadamard graphs, the quantum chromatic number
is strictly smaller than the chromatic number: the article [DHKS06] gives a protocol that
provides a winning strategy for some Hadamard graphs (defined in 2). This kind of game
in which we have a separation between the quantum and the classical worlds are called
pseudo-telepathy games because the reader choose either to believe in entanglement or in
a form of telepathy between Alice and Bob. Therefore pseudo-telepathy games highlight
the entanglement phenomenom (see [GWT02] for more details).

Another interesting thing about the quantum chromatic number is that it is linked
to other graph parameters, as we will see in 2. Also, this graph parameter computation
is hard. Therefore this new parameter is another way to obtain information on NP-hard
problems.

1 Model and first properties
In this section, we present the formalization of the problem and give properties that

help to understand the quantum chromatic number.

1.1 The coloring game

In the coloring game, Alice and Bob play against a referee. The entry is a graph
G = (V,E) and Alice and Bob can agree on a strategy before playing. The referee
provides two vertices u and v to respectively Alice and Bob, with either u = v or uv ∈ E.
Alice and Bob have to answer respectively α and β in [c]. The winning conditions are
the following: if u = v they win iff α = β; if uv ∈ E they win if and only if α 6= β.
The classical chromatic number coincides with the smallest c for which Alice and Bob
can win with probability 1. Indeed, if a graph is c-colorable, a coloration of the graph
is a strategy to win with c colors. And any strategy with strictly less than χ(G) colors
cannot win with probability 1 since 2 vertices belonging to the same edge will have the
same color.

The quantum strategy uses an entangled state |ψ〉 of local dimension d (|ψ〉 ∈ Cd×d).
Alice and Bob both have, for each v ∈ V , a family of POVMs {Evα}α=1,...,c and
{Fvβ}β=1,...,c respectively. The idea is that, when u = v, if Alice measures α on her
part, then the probability that Bob measures β 6= α is 0, and vice versa. When uv ∈ E,
if Alice measures α on her part, then the probability that Bob measures α is 0. This
can be mathematically expressed with the following consistency conditions:

∀v ∈ V,∀α 6= β, 〈ψ|Evα ⊗ Fvβ|ψ〉 = 0 (1)
∀(u, v) ∈ E,∀α, 〈ψ|Euα ⊗ Fvα|ψ〉 = 0 (2)

If this conditions are fulfilled we have a quantum c-coloring of G.
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Definition 1. For all graphs G, the quantum chromatic number χq(G) is the minimum
number c such that there exists a quantum c-coloring coloring of G.

1.2 A more convenient model

This model can be narrowed by choosing certain types of POVMs and entangled states
that will only make the chromatic number smaller. That is the aim of following propo-
sition, first stated in [CMN+07].

Proposition 1. Without loss of generality the state |ψ〉 can be considered maximally
entangled in a winning strategy. And there exists an optimal solution where the POVM
elements are all projectors of the same rank r and for all v ∈ V , α ∈ [c], Ev,α = Fv,α.
And this choice can be made with |ψ〉 of dimension rc.
This being given, the consistency conditions become:

∀uv ∈ E,∀α ∈ [c], 〈Euα, Fvα〉 = 0 (3)

Proof idea. Here we give mostly the qualitative ideas behind the proof and some step
that make it easier to read.

• If |ψ〉 is not full Schmidt, we restrict the POVMs to the support of |ψ〉. We still
have the consistency condition, and the entangled state has now full Schmidt rank.

• The main computation here lies on (which is a more general property on traces):

Tr(Evα TrB((I ⊗ Fvβ)|ψ〉〈ψ|)) = Tr((Evα ⊗ I)(I ⊗ Fvβ)|ψ〉〈ψ|)
= Tr((Evα ⊗ Fvβ)|ψ〉〈ψ|)
= 〈ψ|Evα ⊗ Fvβ|ψ〉
= 0

This gives that for all α, v and β 6= α 〈Evα,TrB(I ⊗ Fvβ|ψ〉〈ψ|) = 0. In other
words, once one of the two players has made a measurement, it lowers the degrees
of freedom of the other. And this is why Evα can be seen as a projector on all
the allowed values: this can only make the probability of winning higher. And
this leads to Ev,α = Fv,α: the winning strategy does not depend on the Schmidt
coefficients of |ψ〉. Therefore we can assume that |ψ〉 = 1√

d

∑d−1
i=0 |i〉|i〉.

• To make all the projectors of the same rank, we consider |ψ〉 to be maximally
entangled of dimension dc. Then the E′vα =

∑c−1
i=0 Ev,(α+i) mod c ⊗ |i〉〈i| all have

the same rank r = d and still verify the conditions.

• Condition (3) follows from a direct computation after considering the previous
points.

3



This justifies to consider the quantum chromatic number obtained when the rank of
the POVMs is given.

Definition 2. The rank-r quantum chromatic number χ(r)
q (G) of G is the minimum

number of colors c such that G has a quantum c-coloring with projectors of rank r and
a maximally entangled state of local dimension rc.

The bigger the entangled state, the more room for strategy Alice and Bob have.
Therefore when r > s, χ(r)

q (G) 6 χ(s)
q (G). Moreover we have:

χq(G) = inf
r
{χ(r)

q (G)}

Starting from now we mainly focus on the rank-1 chromatic number. We will see that
it is enough to observe a gap between the chromatic number and the quantum chromatic
number. As we will see, the rank-1 chromatic number is closely linked to another graph
parameter: the orthogonal representation parameter. Moreover it is quite powerful since
in many cases the rank-1 chromatic number is equal to the quantum chromatic number,
and studying it was enough to show the gap that can be obtained between classical and
quantum parameter (see [CMN+07]).

In this case the maximally entangled state has local dimension c and that the rank-
1 projectors for each vertex v can be seen as the outer product |avα〉〈avα|α∈[c] of an
orthonormal basis (|avα〉)α∈[c] . Now consider Uv a matrix with column vectors avα.
Alice measures v by performing U †v , and Bob measures w by performing U †w. But for the
rank-1 case, the consistency equation (3) becomes: ∀uv ∈ E,∀α ∈ [c], 〈auα, av,α〉 = 0 i.e.
the diagonal of U †vUw is null.

This leads to the definition of a matrix representation ( [CMN+07]) of a graph which
is a map Φ : V → Cc×c such that if uv ∈ E the diagonal of Φ(u)†Φ(v) is null.

1.3 Properties on the quantum chromatic number

A first question that arise is: does the quantum chromatic number behaves like a chro-
matic number in a graph?

Definition 3. Let G and H be two graphs.
A homomorphism ϕ from G to H is a vertex-mapping function that preserves edges i.e.
if uv ∈ V (G) then ϕ(u)ϕ(v) ∈ V (H). We write G→ H.

Proposition 2. If G→ H then χ
(r)
q (G) 6 χ(r)

q (H) and therefore χq(G) 6 χq(H).

This is just because the strategy on G for a vertex u is to apply the strategy on H
and answer the color of ϕ(u).

Proposition 3. Let G and H be two graphs.
For all r, s we have χ(rs)

q (G ∪H) 6 χ(r)
q (G)χ(s)

q (H).
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These two results show similarities in the behavior of the quantum chromatic number
and the chromatic number. But this does not mean that these two parameters are close
in value. And in fact the gap can be huge.

The following proposition is an interesting special case that is used in 2 to find
examples with strict inequalities between the different parameters.
Proposition 4. [CMN+07] Let G be a graph.
Then χ

(1)
q (G) = 3 if and only if χ(G) = 3.

2 Quantum chromatic number and orthogonal representa-
tion

2.1 The orthogonal representaion

The orthogonal representation provides a parameter that is closer to the quantum chro-
matic number that the classical chromatic number is.
Definition 4. Let G = (V,E) be a graph.
A c-dimensional orthogonal representation of G is a map ϕ : V → Cc such that for all
(v, w) ∈ E, 〈ϕ(v), ϕ(w)〉 = 0. The orthogonal rank of a graph G, denoted by ξ(G), is
defined as the minimum c such that there exists an orthogonal representation of G in
Cc.

The definition of the orthogonal representation echoes with the matrix representa-
tion, and we will see that they are somehow linked in the following part.

One can reciprocally define the orthogonal graph GS associated to a set S ⊆ Cc
as follows: the vertices are indexed by the vectors and two vertices are linked if their
associated vectors are orthogonal.

Theorem 5. [CMN+07] ω(G) 6 ξ(G) 6 χ(1)
q (G) 6 χ(G).

Proof. Let’s give some details of the proof of this theorem.

• The inequality ξ(G) 6 χ
(1)
q (G) comes from the fact that adjacent vectors have

orthogonal POVMs, so mapping a vertex to the first measurement element gives a
valid orthogonal representation.

• A clique of size k in a graph can only be associated to k pairwise orthogonal vectors
so dimension k is needed: ω(G) 6 ξ(G).

The results of [SS12], presented in the next session, give a broader view on these
inequalities by answering if some are strict, and give conditions of equality for one of
them. It focuses on ξ(G) 6 χ

(1)
q (G) 6 χ(G). However the whole property is interesting

since it shows the link between the quantum chromatic number and classical graph
parameters. And this gives a hint on the fact that studying quantum graph parameters
can be a manner to obtain results for classical parameters.
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2.2 Expressing rank-1 chromatic number in term of orthogonal repre-
sentation

Definition 5. Let G and H be two graph. We define the Cartesian product G�H as a
graph with the following sets: V (G�H) = V (G)×V (H); there is an edge between (u, i)
and (v, j) if, either u = v and ij ∈ E(H), or i = j and uv ∈ E(G).

The fact that the POVMs can be taken as projectors tends to show that there is a
link between the quantum chromatic number and the orthogonal representation.

Lemma 6. For all graphs G, χ(1)
q (G) = min{c : ξ(G�Kc) = c}.

Proof. The rank-1 chromatic associates to each vertex a family of pairwise orthogonal
vectors. But in the orthogonal representation, we want the vectors of two vertices forming
an edge to be different. That is why it seems natural to take the Cartesian product with
Kc: it is as splitting each vertex into a clique in which one color is associated to one
vertex. With this we can show that we can map a matrix representation of G in Cc×c
to an orthogonal representation of ξ(G�Kc) in Cc. The rest of the proof follows from
direct computation, using the mapping we have.

Theorem 7. For all graphs G,

χ(1)
q (G) = ξ(G)⇔ ξ(G�Kξ(G)) = ξ(G)

Proof. We have χ(1)
q (G) = ξ(G)⇔ min{c : ξ(G�Kc) = c} = ξ(G).

If min{c : ξ(G�Kc) = c} = ξ(G) then ξ(G�Kξ(G)) = ξ(G).
Now assume ξ(G�Kξ(G)) = ξ(G): then ξ(G) > min{c : ξ(G�Kc) = c} .
We have ξ(G�Kc) > max(ξ(G), ξ(Kc)) = max(ξ(G), c) since ξ(Kc) = c.
So ξ(G�Kc) > ξ(G), for all c. Therefore min{c : ξ(G�Kc) = c} > ξ(G).
We obtain min{c : ξ(G�Kc) = c} = ξ(G).

2.3 Kochen-Specker sets

In quantum theory, hidden variables are a way to say that the randomness observed
in quantum system can be explained deterministically, but is not because the models miss
some variables. In [KS75a], Kochen and Specker proove the Kochen-Specker theorem
using the effect of measurement on quantum variables. It states that there cannot exist
non-contextual hidden variable model for quantum theory (non-contexual meaning that
an observable is independent of the measurement context).

Mathematically, the Kochen-Specker theorem is linked to the notion of Kochen-
Specker set.

Definition 6. A Kochen-Specker (KS) set S in Cn is a set such that there exists no
function f : Cn → {0, 1} that satisfies for all orthonormal bases b ⊆ S,

∑
u∈b f(u) = 1.

Lemma 8. [KS75b,Per91] There exists KS sets in C3.
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Theorem 9. There exists a graph such that ξ(G) < χ
(1)
q (G).

Proof. To show this a good example suffice. The idea here is that visualizing a quantum
chromatic number is harder than a chromatic number. So we want the computation of
the chromatic number of the graph to give enough information to state the strictness of
the inequality. To do so, the main results we need are Proposition 4 and Lemma 8.

We know that there exists a KS set S in C3. The orthogonal graph GS is such that
ξ(GS) = 3. Also, ξ(G) 6 χ

(1)
q (G), so to show that the inequality is strict it is enough

to show that χ(1)
q (GS) 6= 3 i.e. χ(GS) 6= 3. In GS an orthonormal basis forms a clique

since vector are pairwise orthogonal. Therefore any color appears only one time in the
subgraph induction by the orthonormal basis. So if the graph is three colorable, given a
color 0, the function f that has value 1 on v of color 0 and 0 otherwise contradicts the
fact that S is a KS set.

Definition 7. A weak Kochen-Specker set S in Cn is a set such that if there exists a
function f : Cn → {0, 1} that satisfies for all orthonormal bases b ⊆ S,

∑
u∈b f(u) = 1,

then there exists an orthogonal unit vector u, v ∈ S such that f(u) = f(v) = 1.

Theorem 10. Let G be a graph. Then χ
(1)
q (G) < χ(G) if and only if for all optimal

strategy for the quantum coloring game {|avα〉 : v ∈ V, α ∈ [c]} is a weak KS set.

Proof. The weak KS sets are a way to define a dependency between two different or-
thonormal basis (since at most one element in a base value 1). In term of coloring
this dependency means that there exists two basis with u and v in each base that are
neighbors (orthogonal unit vectors) but have the same color (f(u) = f(v) = 1).

This gives (⇒) as if χ(1)
q (G) = c and S = {|avα〉 : v ∈ V, α ∈ [c]} is not a KS

set so there exists a function f : Cn → {0, 1} that satisfies, for all orthonormal bases
b ⊆ S,

∑
u∈b f(u) = 1, and for all orthogonal unit vectors u, v ∈ S, f(u) 6= f(v). By

coloring v in color αiff(avα) we obtain a valid c-coloring (since |avα〉 and |avβ〉 are
orthogonal).

For (⇐), in the same way, a classic c-coloration defines a family projectors for each
vertex v: (|α+ i〉〈α+ i|)i∈[c] where α is the color of v. Then a function defined as in the
proof of Theorem 9 shows that our set is not weak KS.

Let’s show that this property allows us to define KS sets, thanks to Hadamard graphs.
A Hadamard graph GN is a graph whose set of vertices is {0, 1}N and set of edges is
the pair of vertices with Hamming distance less that N/2. Article [DHKS06] gives a
proof that for m > 3, χ(1)

q (G4m) < ξ(G4m). So the strategy induces a weak KS set. But
in [RW04], it is shown that a weak KS set of dimension d and size n induces a KS set of
same dimension and size O(n2d). So for m > 3, G4m induces a KS set.
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Conclusion
This article studied the relation of the quantum chromatic number with the chromatic
number and the minimum dimension of an orthogonal representation. It gave a necessary
and sufficient condition to have χ(1)

q (G) < χ(G) that stands on the KS sets. And thanks
to the result on Hadamard graphs, this leads to the construction of a KS set.

This is interesting to so a link between the chromatic number and KS sets, that are
used in a theorem about the physical possibilities of quantum computer science.

Some interesting questions arise from this article.

• The first thing is that we were able to express χ(1)
q (G) as a Cartesian product.

Now another question we can ask is if we can do the same for other rank chromatic
numbers, and if this brings more information.

• Another question asked in the article is to find a way to build a graph for which
χ

(1)
q (G) < χ(G) from any KS set. This would be an inverse result to the one

provide in the article.
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