
CR04 Report: Solving linear equations on a quantum computer

VU Thi Xuan

December 01, 2016

Abstract

In this report, we study a quantum algorithm for linear systems of equations due to the
original work by Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd [9].

1 Introduction

Polynomial system solving which is given as problem 1 is an important problem with a huge
application. It is crucial to have a efficient algorithm to solve this problem, especially when n
is big. Classical algorithms for systems of linear equations run in time O(nω), where ω is the
exponent of matrix multiplication. If instead of interesting in exact solutions for the systems of
linear equations, one is interested in approximate solutions, one of the best classical algorithms
is the conjugate gradient method [11]. In [11], when A is positive definite, the total run-time is
O(ns

√
κ log(1/ε)); if A is not positive definite, the total time is O(nsκ log(1/ε)). Hereafter, s and

κ are the sparselity and the condition number of the matrix A, respectively (see section 2 for more
details); and ε is the final error of the algorithm.

Problem 1 (Linear systems solving).
Input: a n× n matrix A, an vector ~b
Output: vector ~x satisfying A~x = ~b.

Quantum computers exploit quantum mechanical to perform computations in ways that clas-
sical computers cannot. For certain problems such as Shor’s factoring large numbers algorithm,
quantum algorithm provide exponential speedups over their classical counterpart. A natural
question is can we construct an efficient quantum algorithm for problem 1 which is exponentially
faster than what is possible with classical computation? Harrow, Hassidim and Lloyd [9] (HHL)
proposed a quantum algorithm for obtaining certain information about solution ~x for a linear
system A~x = ~b. The input of HHL algorithm is a Hermitian matrix A ∈ Cn×n, and a unit vector
~b. The authors also give the ways how to relax these conditions for A and ~b (see section 3.5).
HHL algorithm is a surprising quantum algorithm with the run-time is O (̃log(n)s2κ2/ε). The
greatest advantage of HHL algorithm comparing over the classical algorithms is when both κ and
1/ε are poly log(n). However, HHL algorithm has some limits. The first one is we have not an
efficient algorithm to present ~b as a quantum state |b〉 =

∑n
i=1 bi |i〉 in general (see the beginning

of section 3). Therefore, HHL algorithm is used as a subroutine in a larger quantum algorithm
of which some other component prepare |b〉. The other limit is one can read the values x1, ..., xn
from the quantum state |x〉 =

∑n
i=1 xi |i〉 in at least n times. For this reason, the application of

1

the algorithm is limited to cases where one is interested in expectation value ~x†M~x, where M is
some linear operator.

Extended modifications quantum algorithm for problem 1 have been applied to other important
problems such as solving linear differential equations [4], and machine learning [10].

The report is organized as follows. In the section 2, we recall some notations as well as some
properties to understand the paper. We present HHL algorithm in the section 3. In this section,
we make more precise details than the authors’s description in [9]. Next, we give the algorithm’s
complexity, the optimality of algorithm and some discussions which proposed by authors. The
report ends with conclusion in section 4. In this section, first we will summary the works provided
by authors in their paper [9]; second we give some subsequent works to improve HHL algorithm
without going in to details these works.

2 Preliminaries

In this section, we recall some definitions and some properties which are needed to understand
the paper. In their algorithm, the authors consider that the input matrix A is s-sparse.

Definition 1. A matrix is s-sparse if each row has at most s non-zero entries, and given a row
index, these entries can be computed in O(s).

Proposition 1. Let A be an n× n matrix. Let {λj}nj=1 be the eigenvalues of A; and {uj}nj=1 be
the eigenvectors of A. Then,

• the inverse matrix, A−1, has eigenvalues {λ−1
j }nj=1 corresponding to the same eigenvectors,

{uj}nj=1,

• the matrix eiAt has eigenvalues {eiλjt}nj=1 corresponding to the same eigenvectors, {uj}nj=1,
and

• in addition, if {uj}nj=1 are the eigenvectors normalized of A, then A =
n∑
j=1

λj |uj〉 〈uj | .

The condition number, κ, is a crucial parameter in their algorithm. The condition number
κ of the matrix A is the ratio between A’s largest and smallest eigenvalues. That is κ =
maxj |λj |/minj |λj |. A larger condition number means that A becomes closer to a matrix which
can not be inverted. Their algorithm will generally assume that κ−1 6 λj 6 1 for all j. The
matrices in which κ−1 6 λj 6 1 for all j is well-conditioned.

The authors prove their algorithm is optimal by two different points of view. The first one is
based on the complexity theory and the other one is based on oracles. To understand that, we
recall some results in quantum complexity class.

Definition 2 (BQP). A language L is in BQP if and only if there exists a polynomial-time uniform
family of quantum circuits {Qn}n∈N such that

• For all n ∈ N, Qn takes n qubits as input and outputs 1.

• For all x ∈ L, P(Q|x|(x) = 1) > 2
3 .

• For all x /∈ L, P(Q|x|(x) = 0) > 2
3 .

Theorem 1. P ⊆ BPP ⊆ BQP ⊆ PP ⊆ PSPACE.

We recommend [12] and [13] for the reader who wants to know more about quantum compu-
tational complexity.

2

3 Algorithm

We will, first, present the authors’s algorithm in section 3.1; in section 3.2, we will go into the
details of the algorithm. In section 3.3, we will give the complexity of the algorithm and the error
analysis. The optimality of this algorithm and some discussions will be given in section 3.4 and
section 3.5, respectively.

Given a Hermitian n×nmatrix A, and a unit vector~b, we would like to find ~x such that A~x = ~b.
We will later show that, in section 3.5, how the assumptions the authors made about A and ~b can
be relaxed. First, we need an efficient procedure to present ~b as a quantum state |b〉 =

∑n
i=1 bi |i〉.

However, for this step, the authors assume that there exists oracle to efficiently prepare state
|b〉. Equivalently, their algorithm is a subroutine in a larger quantum algorithm of which |b〉 is
already produced by some other components. As before, we have seen that we can always write
A−1 =

∑n
j=1 λ

−1
j |uj〉 〈uj |, where {λj}nj=1 are the eigenvalues and {uj}nj=1 are the eigenvectors

normalized of A, respectively. The main idea is if we can decompose |b〉 in the eigenbasis of A,
namely |b〉 =

∑n
j=i βj |uj〉, and we can find the corresponding eigenvalues λj , the solution can be

formally expressed as |x〉 = A−1 |b〉 = (
∑n

j=1 λ
−1
j |uj〉 〈uj |)(

∑n
j=i βj |uj〉) =

∑n
j=1 βjλ

−1
j |uj〉. Here,

we used the fact that 〈uj | |ui〉 = 1 if i = j, and 0 otherwise. To obtain the decomposition of |b〉 and
λj , the authors use techniques of Hamiltonian simulation to apply eiAt to |b〉 for a superposition
of different times t. The Hamiltonian evaluation is part of the well-known technique, phase
estimate algorithm. Next the authors perform the linear map taking |λj〉 to Cλ−1

j |λj〉, where C
is normalizing constant; and they uncompute the |λj〉. After all, we obtain |x〉 =

∑n
j=1 βjλ

−1
j |uj〉

up to normalization.
This procedure yields a quantum mechanical representation |x〉 =

∑n
i=1 xi |i〉 of desired vector

~x. The algorithm finds the solution |x〉 in time O(log(n)), yet, to read out all xi still require O(n)
times. The application of the algorithm is limited to cases where one is only interested in some
expectation value ~x†M~x, whereM is some linear operator. A detailed complexity analysis for this
algorithm which we will present in section 3.3 shows that the algorithm runs in O(log(n)κ2/ε),
where ε is the total error, which is given as a part of the input, to produce the output state |x〉.

3.1 Algorithm

Based on the discussions we gave at the beginning of this section, we present here the algorithm.
We will give a more detailed description of the algorithm in the next subsection. During the
algorithm, the authors introduce parameters t0 = O(κ/ε) and C = O(1/κ). In section 3.3, we will
explain why t0 and C can be taken to be O(κ/ε) and O(1/κ), respectively. Let

|Ψ0〉 :=

√
2

T

T−1∑
τ=1

sin
π(τ + 1

2)

T
|τ〉

for some large T which to be chosen latter in section 3.2 as TH . The algorithm presented by the
authors can be summarized as:

1. Represent ~b as |b〉 =
∑n

i=1 bi |i〉.

2. Prepare |Ψ0〉 from |0〉 up to error εΨ.

3. Apply the conditional Hamiltonian evolution
∑T−1

τ=0 |τ〉 〈τ |⊗eiAt0/T on |Ψ0〉⊗ |b〉 up to error
εH .

3

4. Applying QFT † on the first register gives the state

n∑
j=1

T−1∑
k=0

αk|jβj |k〉 |uj〉 ,

where αk|j =
√

2
T

∑T−1
τ=0 e

i τ
T

(λjt0−2πk) sin
π(τ+ 1

2
)

T . Defining λ̃k := 2πk/t0, we can relabel |k〉
register to obtain

n∑
j=1

T−1∑
k=0

αk|jβj |λ̃k〉 |uj〉 .

5. Adding an ancilla qubit and performing a rotation onto the ancilla qubit yields

n∑
j=1

T−1∑
k=0

αk|jβj |λ̃k〉 |uj〉

(√
1− C2

λ̃2
k

|0〉+
C

λ̃k
|1〉

)
.

6. Applying the inverse of the phase estimate to uncompute the |λ̃k〉. If the phase estimation
makes no error, we would have αk|j = 1 if λ̃k = λj , and 0 otherwise. Assuming this, we
obtain

n∑
j=1

βj |uj〉

(√
1− C2

λj
|0〉+

C

λj
|1〉

)
.

7. Applying a measurement on the last qubit, when measured to be 1, we have the state√√√√√ 1
n∑
j=1

C2|βj |2|λj |2

n∑
j=1

βj
C

λj
|uj〉 .

which is the solution, |x〉 =
∑n

j=1 βjλ
−1
j |uj〉, of the system up to normalization.

If one is only interested in some expectation value ~xTM~x, where M is some linear operator,
taking a measurement M allows to compute 〈x|M |x〉.

3.2 Detailed description of the algorithm

In this subsection, we will present a detailed description for each step in the algorithm which is
given in the previous subsection.

Step 1: If bi and
∑i2

i=i1
|bi|2 are efficiently computable then we can use the procedure of [8] to

prepare |b〉 =
∑n

i=1 bi |i〉. Otherwise, the authors assume that their algorithm is a subroutine in a
larger quantum algorithm of which |b〉 is already produced by some other components.

Step 2: To prepare |Ψ0〉 up to error εΨ, the authors use [8].
Step 3: First, to simulate eiAt for some t > 0, the authors use the algorithm of [3]. If A is

s-sparse, t 6 t0 and the simulation error is 6 εH , then the time is

TH = O(log(n)(log∗(n))2s2t09
√

log(s2t0/εH)) = O (̃log(n)s2t0),

where the notation O (̃·) indicates that log∗(n) and 9
√

log(s2t0/εH) factors are omitted.

4

Second, by applying the conditional Hamiltonian evolution
∑T−1

τ=0 |τ〉 〈τ |⊗eiAt0/T on |Ψ0〉⊗|b〉
up to error εH , we obtain

(

T−1∑
τ=0

|τ〉 〈τ | ⊗ eiAt0/T)(|Ψ0〉 ⊗ |b〉) =

T−1∑
τ=0

|τ〉 〈τ | |Ψ0〉 ⊗ eiAt0/T |b〉 ,

=

T−1∑
τ=0

|τ〉 〈τ |
√

2

T

T−1∑
τ=1

sin
π(τ + 1

2)

T
|τ〉 ⊗ eiAt0/T |b〉 ,

=

T−1∑
τ=0

√
2

T
sin

π(τ + 1
2)

T
|τ〉 ⊗

n∑
j=1

e
iλjt0τ

T |uj〉 〈uj | |b〉 ,

=
T−1∑
τ=0

√
2

T
sin

π(τ + 1
2)

T
|τ〉 ⊗

n∑
j=1

e
iλjt0τ

T βj |uj〉 .

Step 4: Applying the QFT † on the |τ〉 register yields√
2

T

T−1∑
τ=0

sin
π(τ + 1

2)

T

T−1∑
k=0

1√
T
e−

2πiτk
T |k〉 ⊗

n∑
j=1

e
iλjt0τ

T βj |uj〉 =
n∑
j=1

T−1∑
k=0

αk|jβj |k〉 |uj〉 ,

where αk|j =
∑T−1

τ=0

√
2
T e

iτ
T

(λht0−2πk) sin
π(τ+ 1

2
)

T . The authors give a bound |αk|j |2 6 64π2/δ2 when-
ever |k − λjt0/2π| > 1, where δ := λjt0 − 2πk. Defining λ̃k := 2πk/t0, we can relabel |k〉 register
to obtain

n∑
j=1

T−1∑
k=0

αk|jβj |λ̃k〉 |uj〉 .

Step 5: We use the state |λ̃k〉 to perform a rotation Ry(θj), where θj = 2 arcsin
(
C
λ̃k

)
, and

Ry(θ) :=

[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

]
with C = O(1/κ). After that, we add an ancilla qubit on which the

rotation Ry(θj) is performed, then the state becomes

n∑
j=1

T−1∑
k=0

αk|jβj |λ̃k〉 |uj〉

(√
1− C2

λ̃2
k

|0〉+
C

λ̃k
|1〉

)
.

Step 6 and Step 7: They are described as in the previous subsection.

3.3 Run-time and Error analysis

In this section, we give an analysis of the run-time and error probability of the algorithm.
First, let A be s-sparse, simulating eiAt [3] up to error is 6 εH for some t > 0 can be done in

time
TH = O(log(n)(log∗(n))2s2t09

√
log(s2t0/εH)) = O (̃log(n)s2t0).

Note that this is the only step where we require that A is sparse. Furthermore, using [8], we can
prepare |Ψ0〉 up to error εΨ in time poly log(TH/εΨ).

Next, we give the reasons why C and t0 can be taken to be O(κ) and O(κ/ε) respectively,
where ε is an error in the final state. The parameter C is a normalization constant chosen to ensure

5

rotations θj = 2 arcsin(C/λ̃k) are less than 2π, where λ̃k is an approximation for the eigenvalue
λj . Hence C 6 minj |λj | = O(1

k). For the parameter t0, the authors define U to be the ideal
version of the algorithm in which there is no error in any step. Let Ũ be a version of the algorithm
in which only the phase estimation makes error. Since εH and εΨ can be made negligible with
relatively few effort, it is sufficient to work with Ũ .

Theorem 2 (Error bound). The error is bounded as

‖Ũ − U‖ 6 O(κ/t0). (1)

From eq. (1), to guarantee that the error in the final state is 6 ε, we take t0 = O(κ/ε).
Now, we analyze the phase estimate. Since C = O(1/κ) and λ 6 1, then the probability of

measuring 1 at Step 7 is at least Ω(1/κ2). The authors use amplitude amplification technique [5]
to show that O(k) repetitions of the algorithm are sufficient to measure 1.

Finally, let us give the complexity for the algorithm. Let ε be the error at the final state. First,
the time to prepare |Ψ0〉 up to error εΨ is poly log(TH/εΨ). Second, the time to simulate eiAt for
some t 6 t0 = O(κ/ε) up to error εH isO (̃log(n)s2t0) = O (̃log(n)s2κ/ε), where the notationO (̃·)
indicates that log∗(n) and 9

√
log(s2t0/εH) factors are omitted. Notice that the phase estimation

is executed when we simulating the eiAt and the dominant source of error is phase estimation.
Furthermore, as we discussed, we need O(k) repetitions of the algorithm for measuring 1. Putting
everything together, the run-time is

O (̃κ× log(n)s2κ/ε) = O (̃log(n)s2κ2/ε),

where the notation O (̃·) indicates that log∗(n), 9
√

log(s2t0/εH) and poly log(TH/εΨ) factors are
omitted.

3.4 Optimality

Concerning optimality, there are two important questions, namely

• classical methods can be improved to reach the complexity of HHL algorithm when only in
a summary statistic of the solution, such as ~x†M~x, is required; and

• HHL algorithm could be improved.

The answer of the first question is no. The authors give a reduction from a general quantum
circuit to a matrix inversion problem to obtain that a classical poly(log n, κ, 1/ε)-time inversion
algorithm could simulate a poly(N)-gate quantum algorithm in poly(N)-time, where n = O(2Nκ).
Such a simulation is known to be impossible in the presence of oracles [12]. This reduction gives
the answer for the second question is negative too. An improvement to obtain the run-time in
polylogarithmic in κ would make BQP = PSPACE. On the other hand, improving the complexity
on poly log(1/ε) would imply that BQP includes PP.

The authors give their answers by two different points of view. The first one is based on
the complexity theory (theorem 3) and the other one is based on oracles (theorem 4). In the
framework of of the report, we present only the first point of view in the details, i.e., the one bases
on the complexity theory. We recall the matrix inversion problem here for convenient.

1. Input: An O(1)-sparse n× n matrix A. These non-zero entries in a row are returned via an
oracle or via a poly(log(n))-time algorithm.

6

2. Output: A bit whose value is 1 with probability 〈x|M |x〉 ± ε corresponds to measuring the
first qubit, where M = |0〉 〈0| ⊗ In/2 and |x〉 is a normalized state proportional to A−1 |0〉.

The assumptions that A is Hermitian and κ 6 λi 6 1 for all eigenvalues are needed. The
authors take ε to be a fixed constant. The algorithm is said to be relativizing if the matrix A is
specified by an oracle.

The authors also define the matrix inversion estimation problem, which is needed for the proof
of the third part of theorem 3, as follows. Input: A, b,M, ε, κ, s with ‖A‖ 6 1, ‖A−1‖ 6 κ, A
sparse, |b〉 = |0〉 and M = |0〉 〈0| ⊗ In/2; output a number that is within ε of 〈x|M |x〉 with
probability > 2/3, where |x〉 is the unit vector proportional to A−1 |b〉. Moreover, the matrix
inversion estimation problem can be solved by quantum computers in time O (̃log(n)κ2s2/ε3).

Theorem 3. 1. If the matrix inversion problem can be solved by a quantum algorithm in run-
time κ1−δ.poly(log(n)) for some δ > 0, then BQP = PSPACE.

2. If there is a classical algorithm with run-time poly(κ, log(n)) for the matrix inversion, then
BQP = BPP.

3. If there is a quantum algorithm for the matrix inversion estimation problem with run-time
poly(κ, log(n), log(1/ε)), then PP = BQP.

Proof. The important idea is to simulate a quantum circuit by a matrix inversion by using a re-
duction form a general quantum circuit to a matrix inversion problem. Let C be a quantum circuit
which we want to simulate uses N = log(n) qubits and T two-qubits gates, namely U1, ..., UT .
The initial state is |0〉⊗N and the answer is obtained by taking measurement in the first qubit of
the final state. The authors define a unitary matrix

U :=

T∑
t=1

(
|t+ 1〉 〈t| ⊗ Ut + |t+ T + 1〉 〈t+ T | ⊗ I + |t+ 2T + 1 mod 3T 〉 〈t+ 2T | ⊗ U †3T−t+1

)
.

We have chosen U such that for T + 1 6 t 6 2T , then U t |1〉 |ψ〉 = |t+ 1〉 ⊗ UT · · ·U1 |ψ〉. We
define a Hermitian matrix A := I − Ue−

1
T which has condition number κ(A) = O(T). We notice

that the inverting of A is A−1 =
∑

k>Uke−l/T . We take a measurement on the first register. If we
obtain T +1 6 t 6 2T , then we are left in with the second register UT · · ·U1 |ψ〉 which corresponds
to successful computation. This means the matrix inversion problem is BQP-complete.

1. By theorem 1, it suffices to show that PSPACE ⊆ BQP. Suppose there is a quantum
algorithm in run-time κ1−δ.poly(log(n)) to solve matrix inversion. Starting from some fix n0-
quibit T0-gate computation, it is possible to simulate any bigger circuits recursively. Moreover,
the run-time is polynomial in n0. Recall that the TQBF problem is PSPACE-complete. By
exhaustive enumeration over all variables, TQBF problem can be solved in time T 6 22N/18.
This implies that any problem in PSPACE can be solved in quantum polynomial time. Thus,
PSPACE ⊆ BQP.

2. By theorem 1, it suffices to show that BQP ⊆ BPP. We simulate a poly(n)-time, n-qubit
quantum computation as a κ = poly(N), n = 2N .poly(N) matrix inversion problem; and apply
the classical algorithm to obtain BQP ⊆ BPP.

3. By theorem 1, it suffices to show that PP ⊆ BQP. Given a SAT-formula ψ on n variables
z1, · · · , xN , counting the number of assignments that make the formula true is PP-complete. Given
such formula ψ, we can find a quantum circuit that builds the superposition of all 2N assignments

7

for variables to obtain the state∑
(x1,··· ,xN)∈{0,1}N

|x1, · · · , xN 〉 |ψ(x1, · · · , xN)〉 .

Taking the measurement on the last qubit, the probability of obtaining 1 is equal to the number
of satisfying truth assignments divided by 2N . By using matrix inversion estimation procedure,
we can estimate this probability to accuracy ε = 2−2N in time poly(log(1/ε)) = poly(log(22N)) =
poly(N). This implies that PP ⊆ BQP.

Theorem 4. 1. There is no relativizing quantum algorithm with run-time κ1−δ.poly log(n).

2. There is no relativizing classical algorithm for the matrix inversion problem with the run-time
nα2κβ unless 3α+ 4β > 1/2.

3. There is no relativizing quatum algorithm for the matrix inversion problem with run-time
nαpoly(κ)/εβ unless α+ β > 1.

To sum up, the part 2 of theorem 3 and the part 2 of theorem 4 give the answer for the first
question, that is, the HHL algorithm is really faster than what classical algorithms could achieve.
The part 1 of theorem 3 and the part 1 of theorem 4 give HHL algorithm is optimal in term κ.
Finally, the third parts of theorem 3 and theorem 4 prove that the HHL algorithm is optimal in
term 1/ε.

3.5 Discussions

The non-Hermitian case:

Suppose A ∈ Cn×n, we define a new matrix B ∈ C(2n)×(2n) as B :=

(
0 A
A† 0

)
. Since B is

Hermitian, then we can use the algorithm for solving B~y =

(
~b
0

)
to obtain ~y =

(
0
~x

)
. The

complexity to solve this general problem is O (̃log(2n)(2s)2κ2/ε) = O (̃log(n)s2κ2/ε).

The non-unit vector ~b case:

If the input vector ~b is not a unit vector, we define ~c =
~b
‖b‖ and the matrix B as B := A

‖b‖ . Then
we can use the algorithm for solving B~x = ~c with its complexity is O (̃log(n)s2κ2/ε).

The ill-conditioned case:

A matrix is said to be ill-conditioned if its condition number is very large. Practically, the
computation of its inverse, or its solution of a linear system of equations is prone to large numerical
errors. A matrix that is not invertible has condition number equal to infinity. To deal with this
problem, the authors invert only the part of |b〉 which is in well-conditioned part of the matrix
(the span of eigenspaces corresponds to the eigenvalues > 1/κ).

8

4 Conclusion

Summary:

The authors give a quantum algorithm (HHL algorithm) for linear systems of equations when the
input n× n matrix is s-sparse and well-conditioned. The solution is not exact as we only obtain
an approximation solution for this problem. In addition, this solution should be used to estimate
an expectation value 〈x|M |x〉 for some operator M since the time to read all n components,
xi, of |x〉 is O(n). The complexity of HHL algorithm is O (̃log(n)s2κ2/ε), where κ is condition
number matrix and ε is the total error in the output state |x〉. Specially, when κ and 1/ε equal
poly(log(n)), the algorithm achieves an exponential speedup compared to classical algorithms.
The complexity of the HHL algorithm in terms of κ and ε are proven to be optimal.

Subsequent works:

Ambainis [1] proposed a weakness of HHL algorithm. That is when the condition number κ is
taken into account, the run-time pf HHL algorithm is O(κ2 log(n)). Therefore, if κ = O(logc(n)),
the HHL algorithm stays exponential in run-tim. However, it is more common for a system to
have κ equals Θ(n) or Θ(nc). For this reason, in this work, they improve the dependence of HHL
algorithm on 1/κ, i.e., improve the run-time from O(κ2 log(n)) to O(κ log3(κ) log(n)) by using
variable-time quantum amplitude amplification.

Recently, Clader, Jacobs and Sprouse [7] (CJS) provided a quantum algorithm with run-time
O (̃κs7 log(n)/ε2) which is quadratically better in κ than in the HHL algorithm. As we discussed
above, the HHL algorithm assume that preparing the generic state |b〉 is done by other algorithms.
CJS provided a general method for efficient preparation of state |b〉. Moreover, they proposed
a deterministic version of the algorithm and a solution to read out all components, xi, of |x〉
efficiently.

Recent efforts in small-scale experimental implementation of quantum linear system algorithm
can be found in [2, 6].

9

References

[1] Andris Ambainis. Variable time amplitude amplification and quantum algorithms for linear
algebra problems. In Thomas Wilke Christoph Dürr, editor, STACS’12 (29th Symposium on
Theoretical Aspects of Computer Science), volume 14, pages 636–647, Paris, France, February
2012. LIPIcs.

[2] S. Barz, I. Kassal, M. Ringbauer, Y.O. Lipp, B. Dakic, A. Aspuru-Guzik, and P. Walther.
A two-qubit photonic quantum processor and its application to solving systems of linear
equations. Scientific Reports, 4, Jul 2015.

[3] D. W. Berry, G. Ahokas, R. Cleve, and B.C. Sanders. Efficient quantum algorithms for
simulating sparse hamiltonians. Comm. Math. Phys., 270(2):359–371, 2007.

[4] Dominic W Berry. High-order quantum algorithm for solving linear differential equations.
Journal of Physics A: Mathematical and Theoretical, 47(10):105301, 2014.

[5] B. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and
estimation. Contemporacy Mathematics Series Millenium Volume, AMS, New York, 2000.

[6] X.-D. Cai, C. Weedbrook, Z.-E. Su, M.-C. Chen, Mile Gu, M.-J. Zhu, Li Li, Nai-Le Liu,
Chao-Yang Lu, and Jian-Wei Pan. Experimental quantum computing to solve systems of
linear equations. Phys. Rev. Lett., 110:230501, Jun 2013.

[7] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. Publisher’s note: Preconditioned quantum
linear system algorithm [phys. rev. lett. 110 , 250504 (2013)]. Phys. Rev. Lett., 111:049903,
Jul 2013.

[8] L. Grover and T. Rudolph. Creating superpositions that correspond to efficiently integrable
probability distributions. July 2002.

[9] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations.
Phys. Rev. Lett., 103(150502), October 2009.

[10] S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum algorithms for supervised and unsuper-
vised machine learning. ArXiv e-prints, July 2013.

[11] Jonathan R Shewchuk. An introduction to the conjugate gradient method without the ago-
nizing pain. Technical report, Pittsburgh, PA, USA, 1994.

[12] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–
1483, October 1997.

[13] John Watrous. Quantum Computational Complexity, pages 7174–7201. Springer New York,
New York, NY, 2009.

10

