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Abstract

We propose a simple model to understand the economic factors that induce

aggregation of some businesses over small geographical regions. The model

incorporates price competition with neighboring stores, transportation costs

and the satisfaction probability of finding the desired product. We show that

aggregation is more likely for stores selling expensive products and/or stores

carrying only a fraction of the business variety. We illustrate our model with

empirical data collected in the city of Lyon.
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I. INTRODUCTION

A rather trivial observation is that some businesses tend to aggregate over small geo-

graphical regions. In some streets there are nothing but jewelers while other streets are

solely dedicated to electronic equipment. Indeed there are many examples of trades that

tend to ”cluster”: trendy clothes shops, art dealers, secondhand book stores, used cars deal-

ers, furniture stores, etc. On the other hand there are trades like barbers, butchers or bakers,

which in general do not agglomerate, but rather tend to be uniformly distributed over the

entire urban zone.

Under the assumption that the principal consideration for a businessman to choose the

location of his business is to maximize his profits, it seems intriguing that businesses in the

same trade would choose to be neighbors. After all, proximity forces them to share the mar-

ket and to compete amongst each other. This is more intriguing given the fact that other

trades driven by the same consideration of maximum profit have a markedly distinct behav-

ior, choosing locations as far as possible from the competition. From a physics perspective,

it is tempting to identify this situation with some sort of condensation phenomenon in which

interacting particles equilibrate into a condensate or gaseous phase, which optimizes (in this

case minimizes) a free energy, depending, say, on the temperature of the system. However,

it is not clear how stores “interact”, nor the sense in which the distribution of stores can

be considered an equilibrium state. Furthermore, the optimization of the profit, which we

assume drives the decision of where to locate a business, is an individual decision which

generally does not lead to a globally optimized state as in thermodynamics. Thus, before

trying to approach this problem through an analogy with a physical system, we need to

understand the economic factors that give rise to these phenomena. In this respect there is,

in fact, a long history on the study of spatial competition in economics, starting with the

model by Harold Hotelling (the original reference is [1], for more recent analysis, see [2–5],

for empirical studies, see [6]).

In this work we present a simple model incorporating some of the essential economic

2



determinants involved in consumer decision and we try to assess the effect these factors

have in the spatial distribution of stores. We discuss the principal features of our model and

present analytical and numerical results obtained for a 2-dimensional town.

II. CLUSTERING COEFFICIENT

Before going into the details of the model we need to determine what we are looking

for. In particular, as the main phenomenon we are trying to understand is the aggregation

of stores, we need a measure of this quantity to characterize the outcome of our model.

We begin by considering a geographically extended system (which can represent a city, a

country, a road, a beach, etc.) which we divide into small regions. Those regions containing

stores will be possible shopping sites (we will refer to them just as “sites”). The idea is

that the businesses within a site are close enough for a customer to visit them all when

searching for an item. In a very important sense we are assuming that when customers

decide where to make a purchase, they actually choose among the various sites, rather than

among individual stores, though, of course, some sites may contain a single store. The actual

size of the regions that constitute a site is relatively arbitrary and depends on the scale of

description. Thus, sites may be as large as cities if the complete system is a large country, or

a few blocks if the system corresponds to a city. In any case, the size of a site should be such

that customers will consider a trip to any of the stores at a given site as being of essentially

the same length, and thus, of the same cost. For the business owners the presence of other

stores within the distance which defines the site will force them to compete for their share

of the market.

We will characterize the tendency to aggregate in a system in which there are Nstores

stores distributed among Nsites, sites through the following clustering coefficients:

The clustering coefficient C defined as :

C = 1 − Nsites/Nstores (1)

Which has the following behavior: C = 0 when all the stores are isolated and C ' 1 when all
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the stores aggregate in a single site. This coefficient does not represent a complete description

of the store distribution among the sites (for example, 30 stores can be distributed among

3 sites as 1,1,28 or 10,10,10, both leading to C = 0.9).

A different measure of the store agglomeration is given by the mean site size is defined

as:

Nm =

∑

sites i
N2

i

∑

sites i
Ni

=

∑

sites i
N2

i

Nstores
(2)

which is the mean number of stores per site. This quantity allows to discriminate among

the preceding examples, since it equals 26.2 and 10 respectively.

Table I gives an idea of how these coefficients reflect the degree of clustering of different

businesses in the city of Lyon. The difference in the values of the clustering coefficients

results from the difference in the spatial distribution which can be appreciated in the figures

showing the locations of the businesses on the map of Lyon (Figure 1).

III. ECONOMIC INGREDIENTS OF THE MODEL

We will focus on single unspecified trades, under the simplifying assumption that the

interaction between different trades is not a relevant factor for the geographical clustering of

businesses [7]. We begin by characterizing the sites s, which are points (representing small

regions) in a geographically extended system at each of which there are Ns ≥ 1 businesses.

These Ns are the central quantities of this work: if profit is optimized when Ns > 1 there

will be clustering of businesses. This behavior will be reflected by the clustering coefficients

defined previously.

In our model, sites have four characteristics : a position, the number of businesses Ns,

the variety of items it offers and the price of the products sold there. Clearly, the variety is

a non decreasing function of Ns. We also consider that, due to competition, having various

stores at a given site might have an effect on the price offered at that site. Barring the

possibility of cartels, we expect that the price ps = p(Ns) will be a non growing function of
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Ns, the number of stores at the site s.

Now, to proceed, we need to characterize the buyers that form the market for which each

site competes. We begin by assuming that each buyer j can assign to each site s a perceived

probability of satisfying his need Vs(j). There may be many factors affecting Vs(j), including

advertisement, but whatever the peculiarities of buyer j, it is again certain that Vs(j) should

be a non decreasing function of the variety of site s, and therefore a non decreasing function

of the number of stores at the site. Another element that affects the decision of which site

to visit is the cost of getting there: if we denote by rj and rs the positions of buyer j and

site s respectively, we denote this cost as C(rj, rs). Finally, we assume that each consumer

has a maximum amount he is willing to pay for the desired item, which we denote as R(j)

(R(j) can also be thought as the “utility” of this good to consumer j).

The choice of which site consumer j will patronize is achieved by maximizing a criterium

function K(R(j), Vs(j), C(rj, rs), ps) over all sites, where in general this function may vary

from one buyer to another. However, once again, it is clear that K(R(j), Vs(j), C(rj, rs), ps),

which we will call the customer’s surplus, should be a decreasing function of C(rj, rs) and

of ps; and a growing function of Vs(j). We define K so that a consumer buys only if its

maximum K is positive.

To see how this works consider an artificially simplified market, for example soft drinks.

Since most convenience stores offer the complete available variety of soft drinks at basically

the same price, the perceived probability of satisfying your crave for a drink is essentially 1

at any of these stores (sites) (of course, real convenience stores sell more products than soft

drinks, but for the sake of argument, let us assume that soft drinks constitute their trade).

Then, for each buyer, K will be maximized at the site for which C(rj, rs) is minimum. That

is, at the store of easiest (cheapest) access, which is of course what one expects. Thus, for

the market of soft drinks a convenience store caters to the customers contained in a region,

namely the region for which site s is the most convenient choice. If a second shop sets up

next to the first, the site now has 2 stores but the perceived probability of satisfaction of the

customers, being already optimal, will not change. If there is no markdown in prices due to
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competition, the site with two stores will cater to the same customers as when there was a

single store, and both stores will end up dividing the original profits.

Our model is based on the assumption that the new stores will appear in the system at

the locations that maximize their profit. Thus, one of the factors that is partly responsible

for the geographical distribution of stores is the capture of market share. The share of

an aggregated site is large because a geographical grouping of many shops increases the

consumer’s expected satisfaction probability of finding the desired product at that “shopping

site” and, perhaps, at a lower price. The model also includes factors that push against an

aggregated distribution (or, in the economic terminology, that push for differentiation of the

products on the spatial dimension) such as lowering of the consumer transportation cost

and the decrease in profits due to price competition between neighboring shops [3,5].

IV. WRITING DOWN THE EQUATIONS

A. Characterization of consumers and sites

The scenario we set up in the previous section is too vague to lead to concrete predictions.

In this section we choose specific functional forms for the various quantities involved in the

system. Perforce our choices are relatively arbitrary: we use simple functions which comply

with the monotonicity conditions mentioned above and which interpolate between intuitively

acceptable cases.

First we introduce the customer’s surplus function, which we will assume to be given by

the total expected utility of shopping at a site. That is, the criterium on which consumer j

decides whether or not to shop at site s will be given by:

Kjs ≡ K(R(j), Vs(j), C(rj, rs), ps) = R(j)Vs(j) − C(rj, rs) − ps. (3)

Note that since we are assuming that consumers never buy at sites for which K is negative,

the above form discards all sites for which the transportation costs plus the retail price

exceeds R.
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Now, for the probability of satisfaction of a given site s with Ns stores we will assume

that

Vs(j) = 1 − exp(−Ns/Z) (4)

for all customers j. The value of Z will vary from trade to trade depending on the complete

variety offered in the market. Thus, Z will be small (smaller than 1) for trades in which

stores typically carry the whole variety in the market (newspaper stores, convenience stores,

boulangeries ...). Conversely, Z will be large in trades in which there is a high variety and

there is little overlap between the items offered at the various stores (used book sellers,

motorbike stores, art galleries . . . ).

Next, we will assume that the cost of transportation is proportional to the geometrical

distance between the customer and the site being considered:

C(rj, rs) = a|rj − rs| ≡ adsj (5)

where a is the cost per unit distance.

For the price offered by the site, we take

p(s) = p0 + b/Nα
s (6)

where p0 is the cost price of the product, b is the maximum store margin for that product and

α is an exponent reflecting the strength of price competition among stores at the same site.

If α = 0 there is no competition (all the stores, isolated or aggregated, offer the same price).

This particular expression for the price competition is suggested by the “circular city model”

[3,8,9] and a study of a basic oligopoly model [4]. Finally, as a first approximation, we will

assume R to be the same for all customers and that customers are uniformly distributed

throughout the city.

Then, in principle, consumer j will buy at the location s which maximizes his surplus,

i.e. the location for which Kjs is maximum (and positive), where this quantity is explicitly

given by

Kjs = R(1 − exp(−Ns/Z)) − adjs − (p0 + b/Nα
s ) (7)
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B. Demand of a site and profit

The actual choice of business location falls on the business owners. We are assuming

that these will choose the site that maximize their profit and this profit will depend on the

number of consumers that can be expected to attend the chosen site once the new business

is in place, as well as on the price that the local competition forces on the businesses at that

site.

1. Non interacting sites

To estimate the expected profit for a business, we begin by introducing the demand D′

s

of site s as the number of consumers that choose to attend this site, i.e.

D′

s =
∑

j

δjs (8)

where δjs = 1 if Kjs > Kjs′ for every site s′ 6= s and δjs = 0 otherwise.

As mentioned above, we have assumed that if max
s

Kj′s < 0 the consumer j ′ chooses not

to buy; thus, we define the fraction of the market covered by the stores as the proportion

of costumers who effectively buy something. This will allow to distinguish between the

situations of partial market coverage versus complete market coverage and will allow us to

define a kind of “range of interaction” among sites. Specifically, consider a system containing

a single site s with Ns stores in an unbounded domain. We define the range of this site,

denoted by ls as the distance at which

R(1 − exp(−Ns/Z)) − als − (p0 + b/Nα
s ) = 0. (9)

That is, ls is the distance to the boundary beyond which customers will not patronize the

site because it would result in a negative surplus. Clearly, the region within this boundary

contains the demand of site s. This range is a growing function of R, α and Ns; and a

decreasing function of a, p0 and b. The significance of these ranges of demand is also clear:

sites located in such a way that the regions contained within their ranges of demand do
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not overlap, do not compete with one another for customers and the increase in the market

attending one site does not translate into a loss of market for the other sites. In this sense,

these sites do not “interact”. Such a situation can only happen at low market coverages,

where still a large fraction of the customers are not willing to acquire the article offered at

any of the sites. Then, if it is profitable to do so, at low enough market coverages new sites

can appear to cater to the unattended customers without interacting with the previous sites

on the system. If these new sites appear randomly in the system, as long as their demand

ranges still do not overlap, the problem can be mapped directly to a sequential adsorption

problem with exclusion, for which a jamming transition occurs [10]. After this transition

point, every new site will have a demand range that overlaps with the demand range of

previous sites and interaction between different sites begins to play a rôle in the system. We

will return to this point later.

The caveat of profitability mentioned in the last paragraph is important. Indeed, the

range of demand as defined above is a growing function of the number of stores at a site,

however the profit accrued by the individual stores at the site is not necessarily so. We will

assume that the actual profit (Prof(Ns)s) which each store stands to gain at site s to be

given by:

Prof(Ns)s = (ps(Ns) − p0)D
′

s(Ns)/Ns. (10)

This is an important quantity in the model as it is the quantity upon which businesses

decide where to locate. It is again an undoubtedly oversimplified assumption. The idea is

that the addition of a store to a site modifies the demand for that site but the eventual

profits are the result of complicated maneuvering by all the stores, matching supplies and

competing in price. The above expression assumes that the outcome will result in an equal

share of the site’s demand among the stores, and that all the stores at the site sell at a

uniform competition adjusted price, achieving the same profit.
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2. Interacting sites

Of course, in any finite system, as more and more sites appear, their ranges will always

end up overlapping and the simple analysis presented above breaks down.

To analyze what happens in general when the market coverage is high and ranges of

demand of the distinct sites do overlap we must recur to numerical simulations. However, in

this situation the expressions for Kjs and D′

s used in the previous discussion lead to relatively

unrealistically sharp discontinuities in consumer preferences, as already noted by Hotelling

[1]. Therefore, we have taken a less sharp expression for the demand, assuming that there

exists some unknown random factors that “smoothen” the consumer’s choice among similar

stores. A simple way for smoothing the demand of each site is to use the well-known (in

economics) “logit” function [4]:

Ds =
∑

j

σjs (11)

where

σjs =
exp(Kjs/T )

∑

s′ exp(Kjs′/T )
(12)

where only the sites for which Kj′s > 0 are considered. In this expression T is a parameter

which defines how sharply consumers discern between the expected surpluses offered by each

site. As T → ∞ consumers do not discriminate between eligible sites, whereas if T → 0

we recover the sharp condition of Eq.(8). Furthermore, in systems containing single or

noninteracting sites customers will have at most one site to choose from, so Ds = D′

s for any

T . In what follows, the profit will be calculated in terms of this demand function through

the expression

Prof(Ns)s = (ps(Ns) − p0)Ds(Ns)/Ns (13)
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V. CUALITATIVE BEHAVIOR: NON INTERACTING SITES

For the simple case in which the market coverage is extremely low, the system will contain

a set of noninteracting or isolated sites. An estimate of the profit of each store as a function

of Ns in this situation can be obtained by noting that the demand is proportional to the

area within the range of demand of a site. Approximating this area by a circle, and given

the explicit functional forms we have assumed, the profit will be given by

Prof(Ns) ≈ ρ
πb

Nα+1
s

[

R(1 − e−Ns/Z) − p0 −
b

Nα
s

]2

(14)

where ρ is the number of consumers per unit area.

As mentioned above, in this situation, the profit of each store in a site is not necessarily

a monotonous function of the number Ns. Indeed, depending on the value of the parameters

characterizing the system, the profit can grow as Ns increases, up to a maximum and then

decrease to zero. Or else, the profit may be a purely decreasing function of Ns (see figure 2),

depending on the variety coefficient Z, which is the major determinant of store aggregation.

Only values of Z higher than 1 lead to aggregation. It should be noted, however, that N opt
s

does not correspond to the site size that is actually reached in a simulation. Stores will

continue to aggregate at a site beyond N opt
s as long as it is more profitable to do so than to

establish a new site. Take for example the case Z = 5 in Figure 2b. N opt
s equals 8, but the

9th store still finds more profitable to locate within the site than alone where it would get

the profit corresponding to Ns = 1. This is true until the 124th enters the site (not shown

in Figure 2b). On the other hand, if Z < 1, stores will find it more profitable to locate

far from the existing stores to avoid the overlap of their range of demand with those of the

previous stores as long as this is possible. This situation is akin to a short range repulsion

between stores.
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VI. APPLICATION TO A SQUARE CITY : NUMERICAL RESULTS

When the ranges of demand overlap, the determination of the expected profit to be made

by new stores is not as simple as in the preceding cases and we must resort to numerical

simulations.

While most extensions of the Hotelling model have considered the situation in which

stores are distributed over a one dimensional space (for an exception dealing with two stores,

see Ref. [11]), in this work we concentrate on the distribution of stores in a 2-dimensional

square city of area L2 with a uniform density of consumers. In our numerical simulations we

choose b = R/10, i.e. a maximum store margin of 10%, a = 1/L to normalize the distances

and p0 = 0 (except in section VIC3).

The process we want to reproduce is simple enough: we assume that businesses are able

to estimate the expected profit for each location, and choose the location in which they

expect to earn the most. Depending on the existing configuration and the value of the

parameters, the chosen site can be one in which other stores are already present, leading to

store aggregation, or an isolated location. It is, of course, the outcome of these decisions

that will lead to the final distribution of businesses.

The algorithm for simulating this process is very simple: for each set of parameters, after

putting by hand the first store in the center of the town, we repeat the following steps until

the desired number of stores has been attained:

(1) scan all the possible sites in the town (i.e. L2 possible sites) and calculate the profit

to be earned at each location, given the location of the stores already present.

(2) Put a new store at the location which maximizes the profit, and start again (1).

We stress that in this work we do not consider business mobility. Thus once a store

chooses its location, it remains there forever. This is an extreme case, applicable to businesses

which have high costs of relocation. Also, the profits of some stores diminish drastically as

more stores enter the system. In real economic systems, stores earning too little eventually go

bankrupt and disappear. Furthermore, systems should saturate once they reach the situation
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in which all stores present have profits above the bankruptcy level but every possible new

entry leads to profits below that level. In this work we will assume that stores survive even

when perceiving extremely small profits, so there will be no bankruptcies nor saturation

effects. However, we note that very small profits only arise when the parameter T in the

“logit” function appearing in Eq. 11 is very small, i.e. consumers buy at the best location

exclusively.

A. Repulsive Regime

We begin considering trades for which the profits expected in noninteracting sites are a

purely decreasing function of Ns. We start with the case in which the range of interaction

is small compared to the size of the city, and new stores faced with several equivalent

possibilities (in the low coverage regime) choose among these possibilities randomly.

First we consider the case in which Z << 1 and market coverage is low, so there is no

competition. This situation is repulsive, as discussed above, since the profits are decreasing

functions of Ns. Thus we expect the system to pass from a random sequential adsorption

scenario at the beginning, where each new entry finds enough unattended market to choose

sites in which it does not interact with the previous sites, to a cluttered configuration, in

which each new entry searches the site at which it can bite off the most market from the

previous stores. In figure 3 we show the profit of each new store as it enters the system,

which stays constant for the first 8 stores, and then decays, when the market coverage is

high enough. The same behavior is observed for any value of α, since inclusion of lower price

due to price competition does not affect demand in the system and all sites continue having

only one store each.

We now turn to the case in which the range of demand is of the order of the size of the

city. This gives rise to strong boundary effects: the range of demand of stores located near

the edge of the city extend beyond the city limits, so these stores would have less market

than locations near the center of the city. Thus even a single store would be “pushed”
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away from the boundaries and if the range is of the order of the size of the city, will try to

locate close to the city center. As we illustrate in a numerical example below, this boundary

effect will also lead to nonuniform store distributions, with many stores near the center, that

resemble store aggregation even when we are dealing with sites in the repulsive regime.

B. Clustering as a function of R

Fig. 4 shows the clustering coefficient obtained for α = 1, Z = 1, L = 50 and 70 stores

(and, as always, b = R/10). There exists a clear trend towards agglomeration when the

utility R increases. However, there are jumps in the clustering coefficient, which we now

discuss in more detail.

For R < 5, the shops are totally disaggregated to avoid decreasing the retail price due

to competition. However, they are not homogeneously distributed over the city (Fig. 5, for

R = 3), since there exists a preference for a central position, which minimizes the distance

to consumer’s locations. This situation suddenly changes around R = 5 because for this

system, this value of R represents a threshold at which the 66th store gets a higher profit

when aggregating with the first one (at the very center of the town) instead of finding some

other (isolated) place. Fig. 6 helps to understand why this is so. It shows the (decreasing)

profits for the stores as they enter the market and also the (hypothetical) profits when

aggregation is forbidden. As long as the best choice is to remain isolated, the two curves are

of course identical, and follow a simple law : the profit for the nth single store entering the

town is given by P1 = bD1 ' R
10n

, showing that all stores roughly share the total demand.

However, when it becomes more profitable for an entering store to aggregate, the two curves

split, and at first sight, profits seem smaller for the “free” case than for the isolated case. A

close inspection of the numerical results shows that the first store that decides to aggregate

effectively finds there a higher profit opportunity. This is because the demand of this 2-store

site is much larger than that of single sites, in fact 4 times higher to compensate for the loss

of profit from price competition. This higher demand, in turn, comes from the high R value,
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which allows the satisfaction factor to dominate all the other terms in Eq. 7. This is why

there is no clustering for smaller values of R in Fig. 4. The point is that once this 2-store

site is created, it modifies the whole market, “gulping” a substantial share of the demand, so

that all the subsequent stores find no better solution than to aggregate too. In some sense

the “selfish” decision of the 66th store put the system in an inconvenient situation in which

the maximum profits of subsequent stores are lower than they would have been had all the

stores remained isolated. As R increases, this first aggregation event takes place sooner,

leading to a higher clustering coefficient.

C. Effects of the other parameters

We now examine the effects of the different parameters in more detail.

1. Effect of variety

We start with the influence of Z: small (smaller than 1) for trades in which stores

typically carry the whole variety in the market and large in trades in which there is a high

variety.

Our results are summarized in Fig. 7. For Z = 5, clustering is always larger than for

Z = 1 for the following reason. The satisfaction factor is low (1 − exp(−1/5) = .181 for

N = 1 and 0.33 for N = 2), to be compared to 0.632 for N = 1 and Z = 1). Therefore,

stores have to cluster in order to generate enough demand, otherwise Kis is lower than 0

for virtually every consumer (for example, for R = 1, the market coverage in our model city

is of only 2 % for 2 stores at the center, but increases to 25 % for 3 stores). For small Z,

only single stores exist, since they carry the whole variety (Vs ' 1, see Eq. 4). Then, as

discussed previously, aggregation of stores only leads to profit sharing, without increasing

the demand significantly.
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2. Effect of price competition

Fig. 8 shows the influence of α for Z = 1 and Z = 5. Stores are more agglomerated

for α = 0 than for α = 1 as the outcome of the competition between two opposite effects.

The α value changes the price dependence on the number of clustered stores, strong for

α = 1 and unexistent for α = 0. However, the effect of the price on the store profit is not

direct, but the combination of two factors. A lower price (α = 1) obviously decreases the

profit per sale, but increases the demand. It is the competition between these two factors

that determines the clustering effect. In our model (Fig. 8), the effect of dismissing price

competition (α = 0) favors clustering, i.e. the increase of price always exceeds the losses

due to the demand factor, at least for high enough R values (R > 4).

That this should be the case is again easy to see in the case of non interacting sites.

Indeed, from Eq. 14, it is straight forward to verify that the profit is a decreasing function

of α. Then, since the expected profit when Ns = 1 is the same independently of α, when the

parameters are such as to favor aggregation, the maximum profit for α > 0 will be achieved

at a lower number of stores than when α = 0. Similarly, the number of stores beyond which

profits fall below those of a single isolated store is smaller for α > 0. However, it is by no

means obvious how these effects carry over to the case of interacting sites.

3. Effect of p0 and T

For completeness, we have also examined the effects of the other parameters, p0 and T ,

and also the effect of a sharp consumer choice, without the logit smoothing. The effect of

the first one is trivial, since it only induces a difference with p0 = 0 when R < p0, as shown

in Fig. 9.

The “temperature” T has subtler effects. Figure 10 shows that there are two regimes

: for R < 1, all the curves are similar, while forR > 1 the temperature matters and the

curves split. The first regime can be easily understood by noting that if Kjs/T << 1, the
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exponentials in Eq. 12 are essentially 1 and T disappears from the demand calculation. To

understand the second regime, let us note that, compared to the “reference” case (T=1),

decreasing the temperature leads to a discrimination of the “best” site, while a higher T

leads to a uniform demand among all sites. Therefore, when T is large, competing stores

tend to isolate, since their demand is essentially unaffected, but their prices (and profits)

are much higher. Instead, when consumers pay attention to prices, the competition between

aggregation and isolation is subtler : for small R, aggregation increases the demand (via

a larger market coverage) efficiently enough to compensate for the price competition, and

stores aggregate. When R increases, agglomeration is not so interesting and a compromise

is found which depends on the precise value of R.

The effects of a sharp consumer choice (i.e. T = 0 or, equivalently, demand given by Eq.

8) are shown in Fig. 11. When consumers choose to buy exclusively at the “best” store

(that with the highest K), as in the previous cases, the agglomeration is always higher for

α = 0 or/and Z = 5.

VII. DISCUSSION

Let us put our results in the perspective of previous analysis of the store aggregation

phenomena.

Here, the main economical force that leads to aggregation is the capture of market

share. The share of an aggregated site is large because a geographical grouping of many

shops increases the consumer probability of finding the desired product in that region, and

reduces the prices. Alternatively, factors that push for a homogeneous distribution (i.e. a

differentiation of the products on the spatial dimension) are the decrease of the consumer

transportation cost and the avoidance of price competition between shops.

The common view in marketing texts is that differentiation is important to soften price

competition. However, there are several economical forces that push against too much

differentiation, as summarized by Tirole [3] :
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(1) Be where the demand is : this pushes all the stores to be located near the center of the

town, or near “strategic” places where the demand is concentrated, for example restaurants

near working places for lunch time, etc. The “center” effect is recovered in our model (see

Fig. 5), but since our city is homogeneous, we cannot reproduce the “strategic” effect.

(2) Positive externalities between firms : if there are common installations (for example

fishermen along the same harbor) or a source of raw materials. Alternatively, consumers

may encourage firms to gather, because this lowers their research cost. One can argue that

aggregation should be an interesting option when consumers visit more than one shop before

buying a given product. This point is particularly relevant for non standard products, for

variety seeking would be pointless if products sold by neighboring stores would be perfect

substitutes. This point is clearly shown in Ref. [5] : “In some activities, the basic reason

for the agglomerative tendency is that the outputs [...] differ in such manifold and changing

ways that they cannot be satisfactorily compared by the buyer without actual inspection.

[Take the example of] a man or woman buying a car or a new hat [...] : the buyer does

not know exactly what will be purchased. The items cannot be adequately described in

a catalog, and it would be much too expensive and time consuming for the producers to

supply each prospective buyer with a full set of samples. Under these circumstances, the

”demand” is not so much demand for specific items as it is demand for a varied display of

products; and the wider the variety presented at a particular location, the more demand

that location will attract. It is clear that the activity that is presenting the displays will tend

to adopt a clustered pattern, with its units positively attracting one another. A newcomer

to the cluster may even be welcomed, because that seller will enrich the variety and draw

still more demand to the location.” Our model clearly illustrates this second effect, most

clearly through the variety factor Z. The higher Z values (see paragraph VIC1) show that

demand for variety effectively leads to clustering.

(3) Absence of price competition : in some cases, for legal or technical reasons, prices

are exogeneously fixed. Therefore, there is no direct push for differentiation. In Hotelling’s

model, this induces aggregation at the center of the one-dimensional “town” for two firms.
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When there are more than two firms, the analysis is more complex and has been carried out

only in one-dimensional spaces [4]. Here, absence of price competition means α = 0, and we

have seen that this value always lead to higher aggregation than α = 1.

It can be shown [4] that for a 1D space, n firms charging equal prices and competing over

locations (with a demand obtained through a logit function), there are different equilibria

depending on the value of T/a. Roughly, for low values there is no equilibrium, for interme-

diate values there are equilibria with stores located outside the center of the interval, while

aggregation of stores at the middle of the “town” is the only equilibrium for high values.

This result is interpreted as “minimal differentiation” on the spatial dimension provided

there is enough differentiation in the characteristics (of the goods sold) space, represented

by the T value appearing in the logit, or when consumers put more weight on nongeograph-

ical dimensions (less sensitive to price, i.e. to transportation in this model without price

differences among stores).

Thus, we believe that our rather simplified model captures most of the essential economic

features of the system. We have also shown that by simply changing the parameters of the

model we can reproduce qualitatively the behavior of different trades.

Furthermore, our approach highlights the fact that the distribution of stores is the result

of strategic decisions of business owners as a response to strategic decisions of the customers.

Thus, two different models are actually involved: one for strategy of the businessmen (max-

imum immediate profit in this case) and one for the strategy of the customers (maximum

surplus, though tempered by a logit function). From this setup, an effective interaction

arises between stores trying to attain maximum profits given the location of the stores that

preceded them.

VIII. PERSPECTIVES

From the point of view of modelling economic systems many improvements could be

included to the model presented in this work. Such improvements would basically confer
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more realism and flexibility to the model but would probably not give rise to qualitatively

new behaviors. In particular, one could introduce a “better” description of the interactions

amongst neighboring sites, which is essential for price competition and satisfaction. This

could be done by substituting the dependence on Ns in our formulas by an “effective”

Neff which would take into account the presence of stores at the neighboring sites. Such a

modification would correspond to spatially extending the effects of competition and variety

beyond the simplified pointlike sites we have used in this work.

One important ingredient which for the sake of simplicity we have left out is real price

competition within and between sites. In respect to competition within sites, it is interesting

to note that if the stores at an isolated site were able to set the price of maximum profit,

the price offered by the site would be a growing function of the number of stores at the

site. This is true under the assumption that all the stores sell at the same price, however,

this cartel practice would be unstable due to price competition within the site. The actual

equilibrium price, if it exists at all, seems hard to find even for this simple case.

In regards to price competition between sites, we would require to consider the possibility

that once a store chooses the most profitable site, it may do so at the expense of the profits

at other sites. These affected sites might then react by lowering the price to recover, at least

partially, some of their lost profit, affecting other sites which react similarly. Once again,

what the equilibrium price distribution is, if any, very difficult to determine.

A different extension could be to consider the possibility of relocation of stores after all

of them have entered the town, sequentially maximizing their profits, or during this process.

However, these relocations may come at a cost to the stores, which will hinder their mobility

even if a better site exists. Still some of them will prefer to move to find better profits and it

would be interesting to find out whether equilibrium configurations exist and whether they

can be reached. Along the same lines, it should also be interesting to refine the description

of the economics of store life: for example to calculate the annual profit and delete those

stores who do not make enough profits to survive.

Finally, the implicit hypothesis that consumers are omniscient, knowing all stores location
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and prices is not realistic. In the spirit of the “agent based” modelling [12], one could start

with consumers that only know their closest store and then randomly visit the town to learn

the different prices and varieties offered by alternative stores, with the possibility of sharing

this information with their neighbors. This would allow to study how a store deciding to

change its prices influences the behavior of the consumers, and possibly the other stores as

well.

From the physics perspective the opposite is probably true. It would be satisfactory

to find a minimal realistic model based on the economic ingredients of the system, that

could reproduce the observed phenomena. One venue could be to propose interaction forces

among stores that mimic the customer mediated interactions in this system. This would be

an important first step in the direction of casting this problem into a nonequilibrium many

body physical system, however, it does require a good understanding of these economic

interactions.

A deep problem, intrinsic to many economic models, is that most of the parameters

that characterize the system are not readily accesible to direct measurement. Thus, another

interesting line of inquiry would be to develop methods to estimate these parameters a priori

in real economic systems. Otherwise, these models are explanatory but lack useful predictive

capabilities.
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Table I Clustering coefficients observed in Lyon for several businesses. The coefficients

have been calculated by defining stores grouped in a “site” as stores closer than lave/3,

where lave is the average distance between this kind of stores in the whole town (note that

by transitivity, two stores farther away than lave/3 can be grouped in the same site if

intermediate stores connect them). We then calculate the clustering coefficients as in Eqs.

1 and 2.

Business C Nm

motorbikes 0.45 5.6

banks 0.44 3.3

groceries 0.37 2.5

hairdressers 0.28 1.8

laundries 0.21 1.5

drugstores 0.12 1.28

savings banks 0.046 1.08
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FIGURES

(a) (b)
FIG. 1. Location of motorbike sellers (a) and savings banks (b) in Lyon (big dots, 1996 data).

We thank Jean-Louis Routhier (LET-CNRS) for help with this spatial information.
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FIG. 2. Profit of a store in an isolated site containing Ns stores : (a) α = 1; (b) α = 0. The

curves refer to R = 1, L = 50 but different values of Z and as indicated in the inserts.
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FIG. 4. Clustering coefficient obtained for α = 1, Z = 1, L = 50 and Nstores = 70
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FIG. 5. Location of the (isolated) stores for R = 3, α = 1, Z = 1, L = 50 and Nstores = 70
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FIG. 6. Profits of stores as they enter the market choosing the most profitable location (circles)

and profits when aggregation is forbidden (squares). R = 5.2, α = 1, Z = 1, L = 50 and

Nstores = 30
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FIG. 7. Mean site size obtained for different values of Z (shown in the inset) and different

values of α (1 for (a) and 0 for (b)). Other parameters are fixed : T = 1, p0 = 0, L = 50 and

Nstores = 70.
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FIG. 8. Clustering coefficient (a) and mean site size (b) obtained for L = 50, T = 1, p0 = 0,

Nstores = 70 and different values of Z and α, shown in that order in the legend box.
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FIG. 9. Effect of the cost price of the product (p0) on the store aggregation. It is a trivial

effect, leading to aggregation for small R values (to allow for some consumers with positive Ks) and

vanishing as soon as R gets higher than p0. All the curves are calculated for L = 50, Nstores = 30,

Z = 1 and α = 1.
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FIG. 10. Effect of the “temperature” weighting factor in the logit. All the curves are calculated

for L = 50, Nstores = 30, Z = 5 and α = 1.
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FIG. 11. Effect of a sharp consumer choice. All the curves are calculated for L = 50, p0 = 0

and Nstores = 30.
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