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5 Institut Rhônalpin des Systèmes Complexes, IXXI, 5 Rue du Vercors,
F-69007 Lyon, France
E-mail: jean-philippe.bouchaud@cfm.fr, christian.borghesi@u-cergy.fr and
pablo.jensen@ens-lyon.fr

Received 4 November 2013
Accepted for publication 27 January 2014
Published 11 March 2014

Online at stacks.iop.org/JSTAT/2014/P03010
doi:10.1088/1742-5468/2014/03/P03010

Abstract. We argue that when a social convergence mechanism exists and
is strong enough, one should expect the emergence of a well-defined ‘field’, i.e.
a slowly evolving, local quantity around which individual attributes fluctuate
in a finite range. This condensation phenomenon is well illustrated by the
Deffuant–Weisbuch opinion model for which we provide a natural extension to
allow for spatial heterogeneities. We show analytically and numerically that the
resulting dynamics of the emergent field is a noisy diffusion equation that has
a slow dynamics. This random diffusion equation reproduces the long-ranged,
logarithmic decrease of the correlation of spatial voting patterns empirically found
in Borghesi and Bouchaud (2010 Eur. Phys. J. B 75 395) and Borghesi et al (2012
PLoS One 7 e36289). Interestingly enough, we find that when the social cohesion
mechanism becomes too weak, cultural cohesion breaks down completely, in the
sense that the distribution of intentions/opinions becomes infinitely broad. No
emerging field exists in this case. All these analytical findings are confirmed by
numerical simulations of an agent-based model.
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1. Introduction

The understanding that unremarkable individual elements can give rise, through
interactions, to remarkable collective emergent phenomena is arguably the most important
contribution of statistical physics to science. These collective effects are often so ordinary
that we do not think of them as surprising, like for example the rigidity of a solid,
which is still one of the most remarkable properties of interacting atoms6. Some exotic
states of matter are more astonishing, such as superfluidity or superconductivity, liquid
crystals, etc. However, this concept reaches out far beyond physics and is relevant to our
understanding of a host of situations, ranging from avalanches [4], the functioning of the
brain [5], traffic jams [6] and bird flocks [7], to all kinds of social phenomena, like crowd
motions [8], fads [9], bubbles, panic and crashes, see e.g. [10]–[14] for recent reviews.

Recently, two of us (CB and JPB) analyzed the spatial correlations of the turnout rate
in many elections and in different European countries [1, 2]. We found in all cases a slow,
logarithmic decay of the correlation function as a function of distance. This logarithmic
behavior was very recently confirmed on US data by another group [15]. This empirical
regularity not only means that the behavioral pattern of individuals is far from random,
but also suggests that some universal underlying mechanism must be at play for such a
non-trivial characteristic pattern to appear.

6 On this point, please read the deeply insightful remarks of Anderson [3]. One particularly relevant quote in the
present context is the following. We are so accustomed to [this] rigidity property that we don’t accept its almost
miraculous nature, that is an ‘emergent property’ not contained in the simple laws of physics, although it is a
consequence of them.
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Intrigued by this logarithmic correlation function, we proposed in [1] an interpretation
in terms of a space dependent collective field, which we called a ‘cultural’ field, that
determines the local propensity of individuals to vote. We argued that this field ‘transcends
individuals while being shaped, shared, transported and transformed by them’, and
conjectured [1] that the spatio-temporal evolution of this field is governed by a noisy
diffusion equation (a.k.a. the Edwards–Wilkinson equation [16]),7 which naturally leads
to logarithmically decaying correlation functions. Still, this proposal was only based on
analogies and plausibility, and a detailed, agent-based justification of the existence of such
a field, and its diffusive character, was lacking. The arguments put forward in [1] were
targeted at the statistical physics community but were deemed unconvincing in other
circles, in particular sociologists, who in fact strongly balked at the name ‘cultural’, if not
at the concept itself. There are two points of possible contention. First, physicists’ notion
of a field is quite different from its counterpart in, for example, Bourdieu’s sociology.
Although in both cases the field is supposed to induce some agents’ actions, in Bourdieu’s
meaning of the word [18] the field designates a much more heterogeneous structure, a
system of social positions structured by power relationships in which different actors
occupy different positions and try to seize social capital (such as money or influence)
according to their specific position in the ‘field’. Here, the field is rather a scalar quantity,
slowly changing in space. Second, the concept of a ‘field’ as an autonomous entity
automatically inducing agents’ actions, as if they were passive puppets, is criticized by
some sociologists [19].

The aim of this work is precisely to provide a well-defined, agent-based micro-
foundation to the notion of field (which we rename henceforth ‘intention field’, to avoid any
possible confusion induced by the word ‘cultural’). As we were working on these ideas,
[15] appeared on arXiv with related, but different, ideas. Here, we investigate a model
of interacting agents that exhibits a transition between a socially cohesive phase, where
the concept of an emergent intention field has a precise meaning and obeys a diffusion
equation, and a socially disconnected phase where no emergent quantity can be defined.
The model we consider can be viewed as a spatially heterogeneous version of the Deffuant–
Weisbuch model [20]. When simulated on the actual map of French towns, our model is
found to reproduce quantitatively the shape of the correlation function measured on data.
Our model, furthermore, allows us to discuss several interesting questions, such as the role
of population migrations on the integrity of the intention field.

2. The model

We assume that each potential voter i in city α (located in space around ~Rα) has, at time
t, a propensity to vote (or ‘intention’) φα,i(t). The probability that this potential voter
will actually vote on election day is chosen to be the logistic function, as is standard in
choice theory [21],

p =
1

1 + e−φ
. (1)

7 A similar proposal was actually made in 2000 by Schweitzer and Holyst in a different context, and without the
noise component [17].
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Now, we posit, as in many previous studies [13, 20], [22]–[24], that the intention φ of each
individual evolves through interactions with others. (This can, of course, be generalized
to other situations beyond voting, and the intentions can also be thought of as ‘opinions’).

More precisely, we postulate the following rules, which are quite general and plausible.
Between t and t+ dt, each individual i from city α can meet an individual j from city β,
and his intention at the end of the meeting will have evolved towards that of individual j
by some quantity, possibly zero. The probability (per unit time) that these two individuals
meet and that the encounter leads to a change of intention is8

w(i, α; j, β) = f(|Rα −Rβ|)G [|φβ,j − φα,i|] , (2)

where f(r) is a decreasing function (over a scale of a few kilometers) and G is a decreasing
function of its argument, so as to model, in the spirit of the Deffuant–Weisbuch model
[20], the fact that far away opinions have a smaller probability of being in the same
social circle, or that such encounters leave each participant with unchanged opinion. The
quantity dt

∑
β,j f(|Rα − Rβ|)G[|φβ,j − φα,i|] is the total probability of an encounter for

individual i between t and t+dt. In practice, a reasonable order of magnitude is probably
one (or a few) per week.

The result of this encounter is that both intentions will evolve as9

φα,i → φα,i + γ(φβ,j − φα,i) + η,
φβ,j → φβ,j + γ(φα,i − φβ,j) + η′,

(3)

where 0 ≤ γ ≤ 1
2

measures how intentions get closer together, much like in other opinion
formation models, and η, η′ describe all sources of noise due to other influences, which vary
both in time and across agents, with some distribution Q(η), for example Gaussian. The
component of the ηs common to all agents, independently of the city where they live, can
be reabsorbed in a shift of all φα,i by a time dependent contribution φ(t), which is irrelevant
in the following discussion. We will assume henceforth that the remaining idiosyncratic
ηs are independent, identically distributed variables, both in time and across agents. (In
a refined version of the model, it might be interesting to allow η to be correlated for
individuals of the same city, in particular to account for the empirical dependence of the
variance of φ on the city size, reported in [2].)

These rules allow one to write a Boltzmann-like equation for the probability Pt(φ|α)
that a given individual in city α has intention φ:

∂Pt(φ|α)

∂t
= −Wt(φ)Pt(φ|α) +

∑
β

f(|Rα −Rβ|)

×
∫ ∫ ∫

dη dψ dψ′Q(η)Pt(ψ|α)Pt(ψ
′|β)G(|ψ − ψ′|)

× δ (φ− ψ − γ(ψ′ − ψ)− η) , (4)

8 We assume for simplicity that all cities have the same population size, and identical number of individuals and
probabilities.
9 Many variations are of course possible, such as choosing γ to be a random variable, but we believe that our
results are robust to most changes. Note in particular that the rule given by equation (3) does not conserve the
total intention at each encounter.
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with

Wt(φ) =
∑
β

f(|Rα −Rβ|)
∫

dψ′ Pt(ψ
′|β)G(|φ− ψ′|). (5)

By inspection, one checks that the above Boltzmann equation preserves the total
probability in each city (at this point we do not consider the possibility that people
may change places—but see below).

In the spirit of the Chapman–Enskog expansion which allows one to derive
(macroscopic) Navier–Stokes equations from the (microscopic) Boltzmann equation [25],
we will argue that under some conditions, a local equilibrium is quickly reached, of the
form

Peq(φ|α) = P ∗(φ− ϕα), (6)

where ϕα =
∫

dφφPeq(φ|α) is the (time dependent) average of the intention of the
individuals in city α, for which a diffusion equation can be established. The emergence of
a slow ‘intention’ field ϕα (which is what we called the cultural field in [1]) is the analogue

of the emergence of the macroscopic velocity field ~U(~r, t) in the Boltzmann equation.
In this case, the distribution of velocities quickly reaches a local equilibrium shape (the

Maxwell distribution) centered around ~U(~r, t) that obeys a (slow) hydrodynamic equation.
As with the intention/opinion field, each molecule in the hydrodynamic flow interacts with

the velocity field ~U(~r, t) such that the local equilibrium is maintained, while the latter
is an emergent, collective variable (the local velocity average) that does not ‘belong’ to
any molecule in particular, but acquires an autonomous, slow dynamics that allows it
to persist on long time scales and develop long-range correlations (whereas the residual
velocity of each molecule/individual decorrelates on fast time scales).

3. Local equilibrium and phase transitions

Let us first look for a homogeneous solution of the Boltzmann equation, with ϕα = ϕ∗,
which can, at this point, be set to zero without loss of generality:

Peq(φ|α) = P ∗(φ). (7)

In order to keep the calculations tractable, we assume that the ηs are Gaussian variables
of zero mean and variance Σ2, and that the interaction kernel G is also Gaussian with a
range ζ:

G(u) = e−u
2/2ζ2 , (8)

meaning that individuals with intentions/opinions that are too distant from each other
(>ζ) cease to interact, much as in the original model of Deffuant and Weisbuch [20]. We
believe that these specific choices do not change the qualitative conclusions below.

We will also write∑
β

f(|Rα −Rβ|) = F, (9)
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which could depend on α for non-translation-invariant geographies, but this would only
change the local equilibration time and not the shape of the equilibrium. Note that F has
the dimension of an inverse timescale.

We look for a Gaussian solution:

P ∗(φ) =
1√

2πσ2
e−φ

2/2σ2

. (10)

Inserting into the definition of W (φ) yields

W ∗(φ) = F
ζ√

ζ2 + σ2
e
− φ2

2(ζ2+σ2) . (11)

Hence, W ∗(φ)P ∗(φ) is proportional to a Gaussian of zero mean and variance σ2(ζ2 +
σ2)/(ζ2 + 2σ2).

Now, look at the second term on the right-hand side of the equation:∫ ∫ ∫
dη dψ dψ′Q(η)P ∗(ψ)P ∗(ψ′)G(|ψ − ψ′|)δ (φ− ψ − γ(ψ′ − ψ)− η) , (12)

which is clearly also a Gaussian in φ with zero mean and variance:

Σ2 +
σ2

1 + 2Γ
(1 + Γ− 2γ(1− γ)), Γ =

σ2

ζ2
. (13)

Equating this expression with the above result leads to an equation for our unknown σ2:

σ2 =
1

2

Σ2ζ2

γ(1− γ)ζ2 − Σ2
, (14)

which, obviously, only makes sense if the denominator is positive. Therefore, a stationary
(Gaussian) solution only exists provided the idiosyncratic noise is small enough:

Σ2 < Σ2
c = ζ2γ(1− γ). (15)

We show in the appendix that for larger idiosyncratic noise there is indeed no stationary
state to the Boltzmann equation: the variance of P (φ) diverges without bound (in the
absence of any other mechanism limiting the growth of φ) and there is therefore no
emergent average opinion/intention.

Below this value, on the other hand, the opinion-sharing interaction between
individuals is strong enough to keep the dispersion of intentions finite. The above
inequality means that for this to happen the idiosyncratic evolution of intentions (of
strength Σ) must be small compared to the convergence effects: larger γ leads to a
stronger reduction of heterogeneities at each encounter, while ζ large means that even
far away opinions have a chance to meet and converge. Our numerical results below fully
confirm these analytic findings.

The above transition between confined and dispersed intentions, i.e. between consensus
and dissent, is in fact generic. It has been noted in the context of the Deffuant–Weisbuch
model in [22] (see also [23, 24]). It is also present in a variation of the above model, where
intentions evolve not only after an encounter, but further diffuse continuously in time,

doi:10.1088/1742-5468/2014/03/P03010 6
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due to influences unrelated to encounters, like all sorts of books, news media, personal
observations and experiences, etc which contain a part common to all agents (which can
be discarded as noted above) and a part that is agent specific. This last contribution adds
a diffusion term in the Boltzmann equation of the form D∂2P (φ)/∂φ2. We again find a
phase transition in this case, although it is now a first order transition, where σ2 jumps
discontinuously from a finite value when the diffusion constant D is smaller than a certain
threshold Dc ∝ γ(1 − γ)Fζ2 to infinity for larger idiosyncratic noises. The transition
discussed above, on the other hand, is second order, with σ2 diverging continuously as Σ2

reaches the threshold value Σ2
c, see equation (14).

In any case, the conclusion of this analysis is that when the idiosyncratic noise (called—
perhaps ironically—‘free will’ in [22]) is small enough, the basic message of the Deffuant–
Weisbuch model holds: there is convergence of the propensities, intentions or opinions of
the different individuals towards the average initial opinion of the population, up to a
random variable of zero mean (for infinite size populations) and variance given by σ2. The
condensation of opinions emphasized by Weisbuch et al is essentially what is needed for
a collective variable (the average ϕα) to emerge and play a special role in the long term
evolution of the system. In this sense, our model is a spatially heterogeneous extension
of the noisy Deffuant–Weisbuch model. Beyond the threshold, there is no convergence
anymore and the concept of an intention field (the average intention or opinion) evaporates
and becomes meaningless. This happens when the social interactions are no longer strong
enough to maintain cultural cohesion.

The convergence of P (φ) towards its equilibrium, condensed shape is however non-
trivial and needs to be discussed. When the width of the initial distribution σ0 is not too
broad compared to the interaction distance ζ, the time τ needed for the initial distribution
to converge towards its asymptotic form P ∗(φ) is set by a renormalized microscopic
timescale, given by

τ−1 = F
ζ√

ζ2 + σ2
. (16)

In the consensus phase far from the transition Σ2� ζ2γ(1−γ), one has also σ2� ζ2, and
therefore τ ≈ F−1, where F is simply the total ‘encounter rate’ for each individual, which
is, as we said above, roughly one per week. Therefore, we expect convergence to happen
quickly, over weeks or perhaps months in a well-connected society, where individuals
share their thoughts. If, on the other hand, the system approaches its deconfining phase
transition, σ2 � ζ2 and the equilibration time diverges as τ ≈ F−1σ/ζ.

The situation becomes quite interesting when the initial condition becomes broad,
i.e. σ0 � ζ. In this case, the convergence takes place, in the condensed phase, in two
steps. First, after a time of order F−1, several sharp peaks emerge, corresponding to a
mixed phase where sub-populations are socially cohesive, but the population as a whole
is fragmented [20]. Then, a very slow process sets in, through which the number of these
peaks progressively decreases and the width of P (φ) finally decreases to its equilibrium
value σ2. However, the time needed for this to happen can be estimated to be ∼eσ

2
0/ζ

2
lnN ,

which can be so long that equilibrium concepts become irrelevant, and several ‘sub-
cultures’ survive in the population. This picture is fully confirmed by our numerical results,
see figure 2 below.

doi:10.1088/1742-5468/2014/03/P03010 7
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4. Spatial heterogeneities

At this point, we borrow from the standard Chapman–Enskog approach to the Boltzmann
equation [25] and assume that (a) local equilibration towards a space dependent, shifted
distribution P ∗(φ− ϕα) is fast and (b) the field ϕα varies smoothly and slowly in space,
in such a way that ϕα−ϕβ is small whenever two individuals from the two cities have an
appreciable probability to interact (i.e. when f(|Rα −Rβ|) is large).

The time evolution of ϕα can then be computed from the Boltzmann equation, only
retaining contributions linear in ϕα − ϕβ and discarding terms of higher order in the
difference. The final result reads

∂ϕα
∂t

=
ζ√

ζ2 + 2σ2

(
1 +

(
γ − 1

2

)
ζ2

ζ2 + 2σ2

)∑
β

f(|Rα −Rβ|)(ϕβ − ϕα), (17)

which is precisely the diffusion equation proposed in [1, 15]. This allows one to obtain the
value of the diffusion constant in terms of the microscopic parameters of the model. If the
range of the function f is ξ, we find, in order of magnitude, that the diffusion constant is
given by ξ2/τ , where τ is the equilibration time discussed above. The relaxation time of
the ϕ field, in a country of linear size L, is therefore ∼τ(L/ξ)2, which is much larger than
the local equilibration time itself provided L � ξ. For France, for example, L ∼ 500 km
while ξ is maybe 5 km or so, so that the ratio of time scales is ∼10 000! It is precisely this
separation of time scales that justifies the very idea of a ‘hydrodynamical’ description in
terms of a collective field.

In the above derivation, we have not taken into account the noise term that describes
city-specific contributions to the intentions. This would add an additive random term to
the above equation, which, as shown in [1], eventually leads to the logarithmic spatial
correlation profile found empirically.

The microscopic model considered up to now discards several effects that would
be quite easy to reintegrate. One interesting effect is immigration of individuals with
significantly different cultures. This can be seen as adding to the Boltzmann equation a
term of the form

∂Pt(φ|α)

∂t

∣∣∣∣
imm

= ν [ρ(φ)− Pt(φ|α)] , (18)

where ν is the immigration rate and ρ(φ) is the distribution of intention (/opinion) of
the incoming population. If ν is small enough, convergence towards a local, single peak
equilibrium distribution will still hold. Although the local average ϕα evolves towards the
average intention of the new population, cultural cohesion is maintained. This is similar
to the observation by Grauwin and Jensen in [26], where they show that for small enough
population turnover, ‘structures may last longer than individual entities’. This is precisely
saying that there exists a slowly evolving local quantity around which individual attributes
(propensity, intention, opinion, etc) fluctuate in a finite range. For larger values of ν, on
the other hand, one may expect a phase transition akin to what happens in the original
Deffuant–Weisbuch model, where a multimodal distribution of intentions or opinions sets
in. In this case, a description in terms of a unique field is clearly not warranted.

doi:10.1088/1742-5468/2014/03/P03010 8
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Another effect is that people can change places, adding a true transport term in the
above Boltzmann equation, of the form

∂Pt(φ|α)

∂t

∣∣∣∣
tr

= −
∑
β

Wα→βPt(φ|α) +
∑
β

Wβ→αPt(φ|β), (19)

where Wα→β is the probability per unit time that an inhabitant of city α moves to city β.
This extra term may lead to two different effects. An obvious one is to increase the effective
diffusion constant in equation (17) above, or possibly even change the diffusion structure
by allowing long-range, Lévy-like jumps (for example from Paris to Montpellier, which has
become a popular move recently)10. However, we believe, on the basis of the numerical
results reported below, that this effect is much smaller than the diffusion induced by the
contact process investigated above, at least in European countries where internal mobility
is still quite small. Indeed, whereas contact interaction takes place on the scale of weeks,
changing places rather happens on the scale of several years. Still, this could play an
stronger role in the USA for example.

The other effect of the extra term (19) is similar to the immigration process above.
If the moving process is sufficiently frequent, mixing between different populations may
be strong enough to impede the convergence towards any local equilibrium. In this case,
the whole construction above, based on the emergence of a local field, should break down.
This, on the other hand, is not unexpected when mixing becomes so strong that the notion
of locality becomes moot. We will investigate this case numerically in section 5.

5. Numerical simulations

We now present numerical simulations of our model, with three aims in mind. First,
we want to confirm the existence of the second order condensation transition that we
obtained analytically above, and study the equilibration dynamics. Second, we want to
investigate the spatial pattern generated by our model when simulated with the real
positions of French towns, and a short-range interaction kernel f(r), and demonstrate that
the logarithmic behavior of the correlation function indeed appears. Finally, we investigate
the role of moving places, and show that beyond a certain frequency of long-range moves,
the whole correlation pattern vanishes.

5.1. Single city dynamics

We first consider the case where all N agents live in the same city. For each iteration,
a pair of individuals i, j is chosen at random and they change their opinions/intentions
φi and φj according to equation (3) with the probability given by equation (2), with
f(r = 0) = 1. We choose γ = 0.5 and fix the idiosyncratic noise variance Σ2 = 1. We study
the system as a function of the width of the interaction kernel ζ, see equation (8). Note
that the critical value for γ = 0.5 and Σ2 = 1 is ζ2c = 4.

10 Here we discard the possibility that the destination of the move might be correlated with the initial opinion of
the individual. However, much as the G function decays as the opinion ‘distance’ increases, it might well be that
the transition rate Wα→β depends on φ− ϕβ .
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Figure 1. The homogeneous model, corresponding to single city dynamics. We
plot 〈σ2〉−1 as a function of ζ2 for different system sizes N . The theoretical
value given by equation (14), and corresponding to N =∞, is also plotted. The
agreement is excellent, once finite size effects are accounted for.

Figure 2. The role of the initial conditions. We now plot 〈σ2〉1/2 as a function of
the initial width of the distribution σ0, measured after a time t = 40 000. For σ0 <
∼ ζ, the result agrees with the equilibrium theoretical prediction, equation (14),
as expected. However, for σ0 � ζ, the distribution fragments into sub-peaks (as
shown in the inset), but the overall width of the distribution hardly shrinks with
time. The time needed for convergence becomes exceedingly long in this case, and
equilibrium may lose its relevance.
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From the calculations above, we predict a transition towards a condensed phase where
the variance σ2 of the opinion/intention becomes finite when ζ2 > ζ2c = 4. Figure 1 shows
〈σ2〉−1 as a function of ζ2 for different system sizes N , and with initial condition σ2

0 = 1.
The average of σ2 is made over 50 realizations long after the transients. These curves are
compared with the theoretical prediction, equation (14), with very good agreement when
N is sufficiently large. In particular, our numerical results are in full agreement with the
existence of a second order transition for ζ2c = 4, beyond which a socially cohesive situation
sets in.

When the initial condition becomes broader, however, we observe the fragmentation
of the population discussed above and first reported in [20]. The width of the distribution
P (φ) obtained after a long, but finite, time t = 40 000 is shown in figure 2.

5.2. Spatial correlations

Spatial heterogeneities are taken into account via the real positions of the mairies (town-
halls) of the 36 000 French mainland municipalities. We consider that all agents living
in a given municipality have exactly the same spatial position: that of the mairie [1, 2].
Moreover, in order to test spatial effects we assume that each municipality has the same
number of agents, N = 1000. This is quite small in view of figure 1, but this already
corresponds to a simulation with 36 million agents, and we found little difference with the
case N = 100. However, when computing the total variance of the φs over all cities, we
already find a result very close to the theoretical prediction, equation (14). This comes
from the fact that agents of nearby cities interact, leading to a large effective value of
N . In any case, our main focus here is to demonstrate the emergence of a logarithmic
dependence of the spatial correlation function.

We choose the spatial interaction kernel f(|Rα − Rβ|) as an exponential, f(r) =
exp(−r/ξ). The characteristic length ξ is chosen to be the same as in [1, 2]: ξ = 4.5 km.
Figure 3 shows, for different values of ζ2, the average spatial correlation, defined exactly
as in [1, 2] for the empirical data:

Cφ(r) =
〈(φα −m)(φβ −m)〉|rαβ=r

〈(φα −m)2〉
, (20)

where the average is taken over all cities α, β at a certain distance r (within a certain
dr = ±2.5 km) and m = 〈φα〉 is the (national) average value of φ. The correlation function
is furthermore averaged over 50 realizations, after equilibration is reached. We also show
the average spatial correlation of the actual logarithmic turnout rate, for the same 36 000
municipalities over the 20 French national elections studied in [2]. As expected, the overall
level of Cφ(r) increases with ζ2. More interestingly, we see a clear logarithmic dependence
of Cφ(r) as a function of r, which extrapolates to zero for r ∼ 300 km, exactly as for the
empirical results. We see that when the model is well into the cohesive phase (ζ2 ≈ 5–6),
the value and shape of Cφ(r) are well reproduced, without any extra fitting parameter.
The main message is that our spatial extension of the Deffuant–Weisbuch model is indeed
able to account for the logarithmic decay of spatial correlations. This is in line with the
conclusions of [15] as well.
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Figure 3. The average spatial correlation 〈Cφ(r)〉 of φ as a function of r for
different values of ζ2, with N = 1000 agents in each city. We show for comparison
the average spatial correlation of the empirical logarithmic turnout rate, for the
same 36 000 municipalities over 20 French national elections. The logarithmic
behavior of the empirical correlation function is very well accounted for with our
agent-based model in its socially cohesive phase: ζ2 ≈ 5–6.

5.3. The influence of changing places

Up to now, we have considered exchange of opinion or intention between agents living
relatively close by, since we assume that the interaction kernel f(r) decays on the scale of
a few kilometers. This is probably reasonable for most everyday life encounters. Still, this
model neglects vacations or business travel, where people can meet with family, friends
or colleagues who live very far apart. This could be modeled by adding a slowly decaying
tail to f(r). Another effect is that people occasionally change places; these moves can be
long-ranged and are permanent. Intuitively, it is clear that the effect of these moves is to
strongly mix opinions/intentions; this could destroy the logarithmically correlated spatial
patterns discussed above.

In order to investigate this effect, we have added the following ingredient to our
numerical simulation. At each time step, each agent is given a certain probability π to
move. If he/she decides to move, the new town is chosen randomly among the 36 000
municipalities. This means that most moves in this model are long-ranged, since the
average distance of a move is of the order of L, the size of the country. The move is in fact
a swap, so that the number of inhabitants per city is fixed throughout the simulation. The
correlation function Cφ(r) is then measured for different values of π. We find that whenever
π < πc, the correlation remains approximately logarithmic, but with an amplitude and a
range that become smaller and smaller:

Cφ(r) ≈ A(π) [lnL∗(π)− ln r] , r < L∗(π); Cφ(r) ≈ 0, r > L∗(π), (21)

where both L∗(π) and A(π) lnL∗(π) decrease when π increases, and appear to vanish
continuously and simultaneously for π = πc. Beyond πc, the system is completely
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homogenized and Cφ(r > 0) is zero. We find, however, that the value of πc is quite large: it
corresponds to ≈ 0.03 per agent and per time step, which, as we argued, should correspond
to a week in physical time. Actual rates of moving, especially long-range moves, are much
smaller than this, probably once every 20 years (but a fraction of the population actually
never moves, so assuming a unique π for all agents is not a good approximation). This
would correspond to π = 10−3, a value much smaller than the homogenization threshold
πc. It is therefore reasonable to neglect these moves in accounting for the spatial pattern
of election turnouts.

6. Conclusion

In conclusion, we have argued that if an opinion/intention convergence mechanism exists
and is strong enough, one should expect the emergence of a slowly evolving, local quantity
around which individual attributes fluctuate in a finite range. We identify this quantity
with the ‘cultural field’ proposed in [1]. The opinion condensation mechanism is well
illustrated by the Deffuant–Weisbuch model; our mathematical analysis builds upon this
model and allows for spatial heterogeneities. We show analytically and numerically that
the resulting dynamics of the emergent field is a noisy diffusion equation that has a
slow dynamics, much slower than the time needed to reach local equilibrium, as required
for a hydrodynamical description in terms of collective variables. This random diffusion
equation reproduces the long-ranged, logarithmic decrease of the correlation of spatial
voting patterns empirically found in [1]. Interestingly enough, we find, again theoretically
and numerically, that when social cohesion mechanisms are too weak (i.e. when individuals
do not communicate enough and/or are not influenced by the opinion of others), cultural
cohesion can break down completely, in the sense that no local equilibrium exists and
the distribution of intentions/opinions becomes infinitely broad. In this case, obviously,
the notion of ‘field’ becomes meaningless. Reversing the argument, though, we view the
empirical results of [1, 2, 15] on voting patterns as strong quantitative evidence that the
western populations studied there are in a culturally cohesive phase, at least as far as
voting habits are concerned.

The ‘neighborhood effect’ on voting patterns was conjectured in political geography
papers as early as 1969 [27], and substantiated by some quantitative studies that suggest
‘conversion by conversation’ [28]. A fuller understanding of voting patterns needs to
account for the strong dependence of voting attitudes on people’s intrinsic characteristics
such as social status or age (see for example [29]). Since social status is known to be
spatially correlated as well [30], further studies are needed to disentangle the respective
effects of social status and ‘conversion by conversation’ in the spatial correlations observed.
Extension of these ideas to other types of behavioral patterns would also be very
interesting.
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Appendix

We establish here an equation for the dynamical evolution of the variance of the intentions
φ, valid for a Gaussian interaction kernel G(u). We start from the Boltzmann equation,
(4), and multiply both sides by φ and integrate over φ to get (assuming 〈φ〉 = 0)

∂〈φ2〉t
∂t

= FΣ2

∫ ∫
dψ dψ′ Pt(ψ)Pt(ψ

′)G(|ψ − ψ′|) + Fγ(1− γ)

×
∫ ∫

dψ dψ′ (ψ − ψ′)2Pt(ψ)Pt(ψ
′)G(|ψ − ψ′|). (A.1)

Going to Fourier space with the corresponding P̂t(k) and Ĝ(k), one has∫ ∫
dψ dψ′ (ψ − ψ′)2Pt(ψ)Pt(ψ

′)G(|ψ − ψ′|) ≡ −
∫

dk

2π
P̂t(k)P̂t(−k)

∂2Ĝ(k)

∂k2
. (A.2)

Using the fact that G(u) is Gaussian allows one to obtain

−
∫

dk

2π
P̂t(k)P̂t(−k)

∂2Ĝ(k)

∂k2
= ζ2

∫
dk

2π
P̂t(k)P̂t(−k)Ĝ(k), (A.3)

where the second term is exactly ζ2Φ(t), where Φ(t) is the rate of efficient encounters per
unit time:

Φ(t) =

∫
dk

2π
P̂t(k)P̂t(−k)Ĝ(k) ≡

∫ ∫
dψ dψ′ Pt(ψ)Pt(ψ

′)G(|ψ − ψ′|). (A.4)

Therefore, finally,

∂〈φ2〉t
∂t

= FΦ(t)
[
Σ2 − γ(1− γ)ζ2

]
, (A.5)

which shows that whenever Σ2 > γ(1− γ)ζ2, the variance of φ grows without bound and
no stationary state can be reached.
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