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Abstract

Thanks to a large database (∼ 215 000 records) of relevant articles, we empirically study the “complex
systems” field and its claims to find universal principles applying to systems in general. The study of
references shared by the papers allows us to obtain a global point of view on the structure of this highly
interdisciplinary field. We show that its overall coherence does not arise from a universal theory but
instead from computational techniques and fruitful adaptations of the idea of self-organization to specific
systems. We also find that communication between different disciplines goes through specific “trading
zones”, ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts
(a network).

Introduction

Fundamental science has striven to reduce the diversity of the world to some stable building blocks such
as atoms and genes. To be fruitful, this reductionist approach must be complemented by the reverse step
of obtaining the properties of the whole (materials, organisms) by combining the microscopic entities,
a notoriously difficult task (Hayden, 2010; Anderson, 1972; Grauwin et al., 2009a; Gannon, 2007). The
science of complex systems tackles this challenge, albeit from a different perspective. It adds the idea
that “universal principles” could exist, which would allow for the prediction of the organization of the
whole regardless of the nature of the microscopic entities. Ludwig Von Bertalanffy wrote already in 1968:
“It seems legitimate to ask for a theory, not of systems of a more or less special kind, but of universal
principles applying to systems in general ” (Von Bertallanffy, 1976). This dream of universality is still
active: “[Complex networks science] suggests that nature has some universal organizational principles
that might finally allow us to formulate a general theory of complex systems ” (Solé, 2000). Have such
universal principles been discovered? Could they link disciplines such as sociology, biology, physics and
computer science, which are very different in both methodology and objects of inquiry1?

Results

In this paper, we empirically study the “complex systems” field using the quantitative tools developed to
understand the organization of scientific fields (Small, 1999) and their evolution (Glänzel, 2003; Chavalar-
ias & Cointet, 2009; Cambrosio et al. , 2006). Global science maps (Small, 1999; Klavans & Boyack,

1The web site of the Santa Fe complex systems institute (http://www.santafe.edu/about/, accessed June 1st, 2010)
defines its aim as promoting “multidisciplinary collaborations in the physical, biological, computational, and social sciences.”
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2009; Small, 1973; Börner & Schernhost, 2009; Börner, 2010; Noyons, 2004; Leydesdorff & Rafols, 2009,
2010; Agarwal & Skupin, 2008; Cobo et al., 2011; Leydesdorff & Persson, 2011; Grauwin & Jensen, 2011)
have become feasible recently, offering a tentative overall view of scientific fields and fostering dreams
of a “science of science” (Börner & Schernhost, 2009). Specifically, to collect a representative database
of articles, we selected from the ISI Web of knowledge (http://apps.isiknowledge.com/) all records
containing topic keywords relevant for the field of complex systems (Table 1). Table 2 contains the 20
most frequent cited references and journals within our dataset. To analyze the data, we build a network
(Börner & Schernhost, 2009) in which the ∼ 215 000 articles are the nodes. These nodes are linked
according to the proportion of shared references (bibliographic coupling (Kessler, 1963)). For this study,
bibliographic coupling offers two advantages over the more usual co-citation link: it offers a faithful rep-
resentation of the fields, giving equal weight to all published papers (whether cited or not) and it can be
applied to recent papers (which have not yet been cited). For more details, the reader is referred to the
section “Methods”.

Figure 1 shows the largest communities (thereafter also called “fields” or “disciplines”) obtained by
modularity maximization of the network of papers published in the years 2000-2008. The layout of all the
graphs is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software
Bastian et al (2009); Jacomy et al (2011). We first note that all important complex systems subfields2 are
present3. At the center, we find mostly theoretical domains: self-organized criticality, dynamical systems,
complex networks, neural networks. These fields are connected to more experimental communities lying
at the edges (materials science, biology or neurosciences). The links between theoretical and experimental
fields suggest that complex systems science models have connections to the “real” world, as claimed by
their practitioners.

To understand the inner structure of these large communities, we use recursive modularity optimiza-
tion (see (Fortunato & Barthélemy, 2007) and “Methods”). Most fields display a rich inner structure
(Figure 2) with subcommunities (thereafter also called “subfields” or “subdisciplines”) organized around
specific topics and references. The only exceptions are self-organized criticality and complex networks,
where all articles cohere around a few references. For a short presentation of all the subfields, see Table
3. For a more detailed presentation of the main subfields, including their authors, most used journals,
references and keywords, see the Supplementary Information. We analyze this complex structure at two
levels. First, at the global scale, complex systems science appears to be a densely interconnected network.
This is somewhat surprising since sharing references between subdisciplines means that they are able to
read and understand these references, and moreover, that they find them useful. Would these shared
references point to “universal” principles? Second, we focus on a more local scale, on the links that
specifically connect two different disciplines (ie two different colors in Figure 1) to understand how they
manage to exchange knowledge.

Complex systems’ science overall coherence

Let us start with the field’s overall coherence. We have looked for the references cited by many subfields.
These form the “glue” that links many subdisciplines and connects the network. More precisely, we define
the networking force of a reference N (r) as the sum, over all pairs of subfields, of the proportion of their
links explained by that reference (see Methods). Table 4 shows that the references that glue the network
are more methodological than theoretical: the most networking reference is “Numerical Recipes” (Press
et al, 2010), a series of books that gathers many routines for various numerical calculations and their
implementation in computers. Most of the other linking references are mathematical handbooks or data
analysis tools. If one looks for universality in the complex systems field, the computer – as a tool – seems

2In the following, we use italics to refer to the names of the communities.
3As can be checked by consulting authoritative CS web sites such as Santa

Fe’s and its “Exploring complexity” lectures: http://www.santafe.edu/news/item/

exploring-complexity-science-and-technology-santa-fe-institute-perspective/ (accessed June 1st, 2010).
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to be a serious candidate. Among the leading contributors to the glue, we also find several references on
self-organization (SO). Self-organization is not a predictive theory, but an approach that focuses on the
spontaneous emergence of large-scale structures out of local interactions between the system’s subunits
(Mehdi et al, 2009). Several subdisciplines in Figure 2 can be related to this approach, as they use a
keyword akin to “self-organization” (SO) in more than 10% of their articles (for a more complete list of
the communities using this keyword, see the Supplementary Information). Among these we find swarm
SO, molecular SO linking chemistry to biology, growth SO and pattern formation SO linking surface
science to dynamical systems. This suggests that the field of complex systems focuses on the cases in
which the link from microscopic to macroscopic can be analyzed through self-organization, which gave
rise to several fruitful scientific programs, as we discuss below (section Discussion).

Interdisciplinary trading zones

At a more local scale, let us now look at the links that specifically connect two distinct disciplines.
How are those connections established? It is widely accepted that scientific disciplines cannot easily
communicate or be linked (in our case, share references) simply because it is difficult for a physicist to
understand a biology paper and vice-versa. In addition, different disciplines have different definitions
of what counts as a result or as an interesting research topic. For example, physical sciences look for
universal laws, while social (Borgatti et al, 2009) and biological (Fox-Keller, 2005) sciences emphasize the
variations in structure across different groups or contexts and use these differences to explain differences in
outcomes. Physicians are interested in practical medical advances while physicists want to know whether
physiological rhythms are chaotic or not (Glass, 2001).

Where do the links come from then? In an illuminating analogy, Peter Galison (Galison, 1997)
compares the difficulty of connecting scientific disciplines to the difficulty of communicating between
different languages. History of language has shown that when two cultures are strongly motivated to
communicate - generally for commercial reasons - they develop simplified languages that allow for simple
forms of interaction. At first, a “foreigner talk” develops, which becomes a “pidgin” when social uses
consolidate this language. In rare cases, the “trading zone” stabilizes and the expanded pidgin becomes a
creole, initiating the development of an original, autonomous culture. Analogously, biologists may create
a simplified and partial version of their discipline for interested physicists, which may develop to a full-
blown new discipline such as biophysics. Specifically, Galison has studied (Galison, 1997) how Monte Carlo
simulations developed in the postwar period as a trading language between theorists, experimentalists,
instrument makers, chemists and mechanical engineers. Our interest in the concept of a trading zone
is to allow us to explore the dynamics of the interdisciplinary interaction instead of ending analysis by
reference to a “symbiosis” or “collaboration”.

Table 5 gives a list of the main “trading zones” which connect theoretical and experimental fields
in Figure 1 and capture a significant fraction of the links between these fields. The clearest example is
transcriptomics data analysis, a subfield of neural networks which connects biologists interested in the
interpretation of data retrieved from DNA chips and computer scientists interested in data analysis via
methods from the neural networks field. The transcriptomics data analysis subfield represents 2.3% of
neural networks papers but accounts for 46.3% of the connections between neural networks and biology and
16.5% of the links between neural networks and complex networks. Other trading zones are computational
systems biology, linking biology to many theoretical fields, among which dynamical systems, self-organized
criticality and complex networks, neural synchronization linking dynamical systems and neurosciences,
cytoskeleton self-organization linking biology to dynamical systems and self-organized criticality and cal-
ibration linking neural networks and material sciences. Note that a single trading zone can be used by
a fields to exchange with several other fields, as long as these other fields share the same “language”.
For example, computational systems biology, links biology to dynamical systems, self-organized criticality
and complex networks, three subfields which share the physicists’ toolkit. Since our map cannot cover all
scientific fields, we may not recognize some subfields as trading zones, such as electrocardiogram which is
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likely to connect dynamical systems to medecine, or even miss a trading zone between geosciences and
self-organized criticality.

By analyzing carefully the references used by trading zones and also the references that make the
links between the trading zones and their neighbors, we can distinguish two types of trading zones, ap-
plicative and speculative. Let us start with transcriptomics data analysis, which is a clear example of
“applicative” trading zone. The development of new measurement techniques in cellular biology (mainly
DNA microarrays) produced huge amounts of data together with the need of new tools to analyze them.
Since this new technique promised a better understanding of cell dynamics, a new scientific subdisci-
pline, able to understand data analysis and its biological interest was built around transcriptomic tools.
The two references most used by this subfield stress the applicative side: the purpose of the first paper
is “to describe a system of cluster analysis for genome-wide expression data from DNA microarray hy-
bridization [. . . ] in a form intuitive for biologists” (Eisen et al, 1998) while the second “describes the
application of self-organizing maps for recognizing and classifying features in complex, multidimensional
[transcriptomic] data” (Tamayo et al, 1999). The transcriptomics data analysis papers are clustered to-
gether because they share references presenting this kind of applications. The applicative character of
transcriptomics data analysis can also be seen in the origin of the references that link them to neighbor
subfields (Figure 4). The common references between transcriptomics data analysis and biology (mainly
transcriptomics) are similar to references used by transcriptomics data analysis papers themselves. This
means that the link arises from biologists citing results obtained by transcriptomics data analysis scien-
tists or techniques they use. On the other hand, the common references between transcriptomics data
analysis and self-organizing maps (a subfield of neural networks) are similar to references used by self-
organizing maps papers. Therefore, the link arises from transcriptomics data analysis scientists citing
classification techniques created by self-organizing maps scientists, while these scientists do not often use
transcriptomics data analysis references. Therefore, transcriptomics data analysis allows self-organizing
maps techniques to be understood and used to interpret biological data, with a relevance certified by
biologists’ citations. The case of another trading zone, computational systems biology, is different. Its
most used references point to computational methods - mainly Gillespie’s algorithm (Gillespie, 1977) or
to experimental papers in which there is no explicit modeling but that show complex cellular dynamics,
thus justifying indirectly the need for modeling. The link between experiments and modeling is still
speculative, as summarized by one of the most used references in this subfield (Tyson et al, 2010): “we
hope that this review will [...] promote closer collaboration between experimental and computational bi-
ologists.” Moreover, the common references between computational systems biology and biology are from
biology, as if computational systems biology scientists were eager to quote potentially interesting biological
applications for their modeling approach, while many biologists were still unaware of these models. In
short, compared to transcriptomics data analysis, computational systems biology seems a more speculative
trading zone, at the frontier of biology and modeling, but presently lacking a specific object or concept
to define an operational trading zone.

Discussion

Our empirical study of the “complex systems” field shows that its overall coherence does not arise from
a universal theory but from computational techniques and successful adaptations of the idea of self-
organization. The computer is important for advancing the understanding of complex systems because it
allows scientists to play with simple but nonlinear models and to handle large sets of data obtained from
complex systems. At a more local level — specifically the interdisciplinary level — trading zones allow for
coordination between vastly different scientific cultures, who differ on their conception of an interesting
topic, but who can work together around specific tools (a DNA microchip) or concepts (a network).

We now discuss how our study sheds light on the overall philosophy of the complex systems field. First,
we examine the various claims to universality. A “general systems theory” would possess a collection of
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theoretical books or papers revealing the “universal” explanation; this would be evidenced in Figure 2 by
a central group to which other groups would connect. Instead, our analysis shows a variety of modeling
disciplines in a central position.

We argue that claims to universality are part of a rhetoric that legitimates the study of abstract and
simple models (Edmonds, 2010). Certainly, a few theoretical papers, such as Bak’s (Bak et al, 1987) (in
SOC) or Albert and Barabasi’s (Albert & Barabasi, 2002) (in CN) point to “universal” mechanisms and
are heavily cited. However, more than 90% of their citations arise from modelers themselves 4, suggesting
that they may be universal... for theorists. Our data support the local character of these “universal” laws.
First, Albert and Barabasi’s (Albert & Barabasi, 2002) paper is the most cited in the 2000-2008 decade
but only links complex networks and self-organized criticality subfields (Figure 3a). The contrast with
the global networking achieved by methodological references such as Metropolis’ algorithm or Numerical
Recipes (Figure 3b) or self-organization references (Figure 3c) is clear. Second, the references that
complex networks (Figure 4) and self-organized criticality communities share with experimental fields
are similar to those of the experimental fields. This seizure of experimental references suggests that the
links between modeling practices and their potential applications are mostly rhetorical: complex networks
and self-organized criticality papers often quote experimental work as legitimating their models, while
experimentalists rarely refer to them. To try to become universal, theoretical approaches have to be
“translated” into other disciplines. An example of this strategy is shown in Figure 3d which shows the
links established between network science and biology thanks to Barabasi and Oltvai’s introduction of
networks for biologists (Barábasi & Oltvai, 2004). Regardless, many physicists are likely to continue
looking for common patterns across systems to justify their neglect of the “details” of the system under
study, the precise components and interactions (Fox-Keller, 2005; Stanley et al., 2000). Universality is
then another name for simplicity, a strong motivation for many physicists as expressed by the Santa
Fe institute who aims at uncovering “the mechanisms that underlie the deep simplicity present in our
complex world” 5. It is true that simple analytical models such as SOC or chaotic systems may lead
to complicated behaviors and patterns. But this does not prove the reverse proposition, i.e. that all
complex patterns can be explained by simple mechanisms. The “simplicity” approach turned out to be a
successful strategy in the study of phase transitions, which can be studied through the very simple Ising
model (Fox-Keller, 2009; Castellano et al., 2009; Solé et al., 1999), but arguments for the usefulness of
such an approach for biological or social systems are unconvincing (Edmonds, 2010).

It could be argued that links between these theories and experimental fields take time to establish
and will be seen in the future. An interesting insight of the possible evolution of universality claims is
given by the history of self-organization, which was considered by many as a universal key to Nature in
the 1980’s (Fox-Keller, 2009). This idea was fecund in that it gave birth to several active subdisciplines
(cytoskeleton SO, growth SO...) (Figure 2). However, it should be noticed that these heirs of self-
organization are nowadays almost unrelated. The different self-organization subfields are more linked to
their own discipline (biology, materials science . . . ) than between them. This is shown by the plain fact
that community detection puts these SO subfields into different disciplines (different colors in Figure 2)
instead of creating a single, unified, self-organization field. The reason is that these subfields use widely
different references, as illustrated by the fact that there is no common reference among the 10 most
used references for all the different self-organization subcommunities. Self-organization is therefore not a
universal explanation but rather a kind of banner, which needs to be associated to references to specific

4Counted on Web of Science (January 28th 2011) by analyzing the citing papers by discipline. Specifically, “Subject
Areas” (Web of Science name for subdisciplines) related to Physics (such as Physics Multidisciplinary or Physics Math-
ematical) account for 2272 out of 3158 citations (72%) for Bak’s paper (Bak et al, 1987) while more “applied” subject
areas (such as Geosciences and Applied mathematics) account for 676 citations (21%). Subject areas related to Physics or
Mathematics account for 4201 out of 5281 citations (80%) of Albert and Barabasi’s paper (Albert & Barabasi, 2002), while
subject areas related to biology or more applied fields account for 1060 citations (20%). Instead, areas related to biology
account for most of citations to Barabási and Oltvai’s introduction of network theory to biologists (Barábasi & Oltvai,
2004).

5http://www.santafe.edu/about/ (accessed June 1st, 2010).
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elements (including techniques, microscopic entities and their interactions) to be fruitful.
To understand the essential role of the computer, it is important to distinguish between complex and

complicated. A complex phenomenon has to be understood synthetically, as a whole, while a complicated
phenomenon can be explained analytically (For a telling example of this distinction, see Venturini (2008)).
In other words, a system is complex when the “parts” that are relevant to link the micro to the macro
cannot be properly defined, as in social systems where humans cannot be defined without taking into
account society (e.g. language, an essential part of the individual which is acquired through society).
Similarly, synthetic biology aims at using functional components of living systems as building blocks to
create artificial devices (Benner & Sismour, 2005). But many difficulties arise from the intertwining of
the elements in a living being (Serrano, 2007). Biological parts are ill defined and their function cannot
be isolated from the context that they themselves create. Despite its claims to complexity and holism,
the “complex systems” field proposes a standard mechanistic vision of nature and society. As for most
natural sciences, its aim is to transform complex systems into complicated systems that can be handled
and eventually engineered by models and computer force.

This is confirmed by historical studies showing (Schweber & Wakchters, 2000; Fox-Keller, 2009) that
the complex systems field is heir of the postwar sciences born around the computer: operational research,
game theory and cybernetics. These fields started when physicists, mathematicians and engineers started
collaborating to maximize the efficiency of WW II military operations (Pickering, 1995; Schweber &
Wakchters, 2000; Bowker, 1993). These sciences extended the mechanistic, engineering vision of the
physical world to the biological and social worlds. This view is still present in many today’s prominent
CS scientists: “our knowledge of [social] mechanisms [..] is essential for self-optimization of the society
as a whole” (Palla et al., 2007); “We spend billions of dollars trying to understand the origins of the
universe, while we still don’t understand the conditions for a stable society, a functioning economy, or
peace” (Helbing, 2009) or “[Systems biology] leads to a future where biology and medicine are transformed
into precision engineering” (Kaneko, 2002).

In summary, we have obtained a global point of view on the structure of the ”complex systems” field.
This has allowed us to test empirically the idea of universality, showing that it remains a dream, albeit one
which has lead to interesting but more modest realities. At the global scale, the whole domain is linked by
the focus on self-organization and the use of computer-based methods for solving non-linear models. At a
more local scale, the links between different disciplines are achieved through the development of “trading
zones” (Galison, 1997). These allow for coordination between vastly different scientific cultures, for
example theoretical and experimental disciplines, which are only marginally connected. These disciplines
may differ on the very conception of what is an interesting topic, but can work together around specific
tools (a DNA microchip) or concepts (a network). Today, these interdisciplinary collaborations are a
key to essential scientific challenges such as the analysis of the massive amount of data recently made
available on biological and social systems (Lazer, 2009; Microsoft, 2006) and the understanding of the
complex intertwining of different levels of organization that is characteristic of these systems.

Methods

Extraction of the data

Our data have been extracted from the ISI Web of Knowledge database in December 2008. The science
of complex systems is particularly challenging as an epistemic object since there exists no consensual
definition of the domain, nor any list of disciplines or journals that would gather all the relevant papers.
Therefore, we selected all the articles of the database whose title, abstract (for articles published after
1990) or keywords contained at least one of a chosen list of topic keywords (Table 1). These keywords
were derived from discussions with experts of the field, mainly scientists working at the complex systems
institute in Lyon (IXXI). We have retrieved 215 305 articles (141 098 between 2000 and 2008) containing
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4 050 318 distinct references. Each record contains: authors, journal, year of publication, title, keywords
(given by the authors and/or ISI Web of Science) and the list of references of the article. Any choice of
keywords being potentially biased and partial, our strategy was to risk choosing too many of them - thus
bypassing the lack of precise definition of the “complex systems” field and retrieving all its important
subfields - and to trust the subsequent analysis to eliminate irrelevant articles.

In fact, as shown in table 1, around 40% of the articles of the database comes solely from the combi-
nation of keywords “complex*” and “control”. While most of those articles were close to biology and not
directly related to the field of complex systems, we chose to keep them in order to test the robustness of
our analysis. As shown below, our strategy was successful, since most of these “irrelevant” articles are
grouped into a few communities (such as Apoptosis or Immunology) that lie at the network’s edges and
do not bias the results.

Links between articles

Weight of links between articles are calculated through their common references (bibliographic coupling
(Kessler, 1963)). We define a similarity between two articles i and j as the cosine distance:

ωij =
|Ri ∩Rj |√
|Ri| |Rj |

(1)

where Ri is the set of references of article i. By definition, ωij ∈ [0, 1], is equal to zero when i and j
do not share any reference and is equal to 1 when their sets of references are identical. For this study,
bibliographic coupling offers two advantages over the more usual co-citation link: it offers a faithful
representation of the fields, giving equal weight to all published papers (whether cited or not) and it can
be applied to recent papers (which have not yet been cited). Moreover, the links are established on the
basis of the author’s own decisions (to include or not a given reference) rather than retrospectively from
other scientists’ citations. Thus, bibliographic coupling can be used to analyze the community of research
as it builds itself rather than as it is perceived by later scientists that cite its publications.

Community detection and characterization

In order to structure this network into groups of cohesive articles, we partition the set of papers by
maximizing the modularity function. Given a partition of the nodes of the network, the modularity is the
number of edges inside clusters (as opposed to crossing between clusters), minus the expected number of
such edges if the network was randomly conditioned on the degree of each node. Community structures
often maximize the modularity measure. We compute our partition using the algorithm presented in
(Blondel et al, 2008), which is designed to efficiently maximize the modularity function in large networks.
More precisely, we used the weighted modularity Q (Newman, 2004; Fortunato, 2010), which is defined
as Q =

∑
I qI , where the module qI of a community I is given by

qI =
ΩII

Ω
−
(∑

J 6=I ΩIJ + 2ΩII

2Ω

)2

(2)

where

ΩII =
1

2

∑
i∈I, j∈I

ωij is the total weight of the links inside community I,

ΩIJ =
∑

i∈I, j∈J
ωij is the total weight of the links between communities I and J 6= I

Ω =
1

2

∑
i,j

ωij =
∑
(i,j)

ωij is the total weight of the links of the graph.
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Each module qI compares the relative weight of edges ΩII

Ω inside a community I with the expected

weight of edges
(∑

J 6=I ΩIJ+2ΩII

2Ω

)2

that one would find in community I if the network were a random

network with the same number of nodes and where each node keeps its degree, but edges are otherwise
randomly attached. See Ref (Fortunato & Barthélemy, 2007) for a more explicit interpretation of the
modularity, its properties and limits.

Applying the Louvain algorithm yields a first partition of the network into communities (also referred
to as “fields” or “disciplines”, see Figure 1). To obtain the substructure of these communities, we apply
the Louvain algorithm a second time on each of them. We find that most of these communities display a
clear substructure with high values of internal modularity Qi (typically between 0.4 and 0.8). Only two
of them (self-organized criticality and complex networks) are strongly bound around a few references and
present much lower values of Qi (typically less than or around 0.2). Consequently they were not split
into subfields which would not have much scientific relevance.

This recursive modularity optimization (Fortunato & Barthélemy, 2007) leads us to a “subfield” graph
(Figure 2). We have checked that all the obtained sub-communities satisfy the criterion (qI ≥ 0) proposed
by Fortunato and Barthélémy (Fortunato & Barthélemy, 2007) to check their relevance (see Table 3).

Links between communities and their orientation

The link between two communities I and J can be quantified by the average distance between an article
i ∈ I and an article j ∈ J :

< w >−1
IJ =< wij >

−1
i∈I,j∈J = (ΩIJ/NI NJ)

−1
(3)

A link between a community I and a community J exists if at least one reference is shared between an
article of I and an article of J . To analyze the scientific content conveyed by the link, it is important to
know if the shared references are more similar to the references used by community I or to the references
used by community J . To take into account this similarity, we define the orientation of a community-
community link in the following way.

Let nr,I be the number of papers of community I using reference r. Then,

• the number of article-article links inside community I which use reference r is Lr,II = nr,I (nr,I−1)/2

• the number of article-article links between communities I and J which use reference r is Lr,IJ =
nr,Inr,J

We compare the set of references shared by the two communities I and J to the references used by I
and J by computing the cosine similarity measures:

cosII,IJ =

∑
r Lr,IILr,IJ√∑

r L
2
r,II

∑
r L

2
r,IJ

comparing the shared refs to those of I

cosJJ,IJ =

∑
r Lr,JJLr,IJ√∑

r L
2
r,JJ

∑
r L

2
r,IJ

comparing the shared refs to those of J

For example, if cosII,IJ < cosJJ,IJ , the shared references are more similar to the references binding
community J than to the references binding community I. We then direct the link from community J
to community I, as community I “pumps” community J references to establish the link. See Figure 4
for examples of link orientation.
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Visualizing linked communities

To obtain Figures 1 and 2, we use Gephi Bastian et al (2009). The layout of the graph is obtained
thanks to a spring-based algorithm implemented in it Jacomy et al (2011). ForceAtlas is a force directed
layout: it simulates a physical system. Nodes repulse each other (like magnets) while edges attract the
nodes they connect (like springs). These forces create a movement that converges to a balanced state,
which helps in the interpretation of the data.

Networking power of references

To understand which references link the different subdisciplines to form a connected network, we define
the “glue” as the set of references shared between subfields. To give equal weight to all these links, we
normalize each link to 1, leading to the normalized networking strength N (r) of reference r as:

N (r) =
1

Z

∑
I 6=J

fIJ(r) (4)

where fIJ(r) is the fraction of links between an article of community I and an article of community
J in which reference r is used and where Z is a normalization constant such that

∑
rN (r) = 1. The

normalization ensures that N (r) represents the proportion of all the links of the complex systems field
that can be assigned to reference r.
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Figure Legends

Figure 1: Community structure obtained with a first run of the modularity maximization
(Blondel et al, 2008) on the 2000-2008 network (141 098 articles). The surface of a community
I is proportional to its number of articles NI and the width of the link between two communities I and
J is proportional to the mean bibliographic coupling 〈ω〉IJ =

∑
i∈I,j∈J ωij/NI NJ . The layout of the

graph is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software
(Bastian et al , 2009; Jacomy et al , 2011). For the sake of clarity, communities with less than 300 articles
are not displayed. The label of a community represents the most frequent and/or significant keyword
of its articles. CN stands for Complex Networks, SOC for Self Organized Criticality, DS for Dynamical
Systems, DigitCom for Digital Communication and SurfaceSO for Self-organization on Surfaces. EMC
is a more composite community where the three most representative keywords are Ecology, Management
and Computational Models. See Figure 2 for details.
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Figure 2: Community structure obtained with a second run of the modularity maximization
on the 2000-2008 network. This community structure is obtained by optimizing the internal modu-
larity Qi of each community obtained by the first run of the modularity maximization algorithm on the
2000-2008 network, displayed on Figure 1 (See Methods for details on the procedure). The layout of the
graph is obtained thanks to a spring-based algorithm implemented in the Gephi visualization software
(Bastian et al , 2009; Jacomy et al , 2011). The surface of each community is proportional to its number
of articles and the width of the link between two communities I and J is proportional to the mean weight
〈ω〉IJ . For the sake of clarity, communities with less than 300 articles and links with a mean weight
〈ω〉IJ less than 2.10−5 are not displayed. The color of a community (see online) corresponds to the color
of the field (Fig 1) it belongs to. Community labels generally correspond to the most frequent and/or
significant keyword. For a detailed presentation of all the subfields, including their authors, most used
journals, references and keywords, see the Supplementary Information.
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Figure 3: Local “networking” force for four different references on the 2000-2008 network
(Fig 2). Links established using the reference are shown in color. The number of citations corresponds
to those included in papers of our database published between 2000 and 2008 a. Ref used: Albert &
Barabasi (Albert & Barabasi, 2002) (2058 citations) b. Ref used: Press WH et al, Numerical Recipes
- all editions (Press et al, 2010) (1267 citations) c. Ref used: Nicolis (Nicolis & Prigogine, 1977) (342
citations) d. Ref used: Barabasi and Oltvai (Barábasi & Oltvai, 2004) (244 citations).
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Figure 4: Directed network. On this subset of the graph presented in Figure 2, the arrows are
directed to the subfield that uses the other subfield’s references to establish the link. More precisely,
the common references shared by two linked subfields are more similar to the internal references of the
subfield from which the arrow originates than to the internal references of the subfield to which the arrow
points (see “Methods” for more details). The figure shows that transcriptional data analysis (TDA) feeds
from self-organizing maps (SOM) and neural networks (NN) methodological references, while biology
subcommunities (mainly Transcriptomics) use transcriptional data analysis references. The orientation
of the links is quite different for computational systems biology (CSB) and complex networks (CN), because
these subfields tend to pump their neighbors’ references, while the other subfields do not find much use
in computational systems biology and complex networks references.
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Tables

Table 1: Topic keywords used in our request in the ISI Web of Knowledge database and
number of articles matching independently to each of these topic keywords.

topic keywords Results
“self organ*” 32484
“complex network*” 6953
“dynamical system” 8205
“econophysics” 633
“strange attractor” 769
“synergetics” 379
“adaptive system*” 1141
“artificial intelligence” 1812
“attractor” 1034
“bifurcation” 3164
“chaos“ 5370
“control“ 116017
“criticality” 980
“ecology” 5869
“economics” 2243
“epistemology” 345
“far from equilibrium” 253
“feedback” 12881
“fractal” 3867
“ising” 975
“multi agent” 2032
“multiagent” 665
“multi scale” 779

topic keywords Results
“multifractal” 390
“multiscale” 1439
“neural network*” 12747
(“non linear*” OR “nonlinear*”)

NOT “equation*” 10240
“non linear dynamic*” 560
“non linear system*” 391
“nonlinear dynamic*” 2285
“nonlinear system*” 1826
“phase transition” 5503
“plasticity” 6667
“random walk” 758
“robustness” 6498
“scaling” 7008
“social system*” 586
“spin glass*” 643
“stability” AND (“lyapunov” OR

“non linear*” OR “nonlinear*”) 1399
“stochastic” 9184
“synchronization” 4645
“turbulence” 4602
“universality” 861
“cell* automat*” 1659

Each topic keywords except the first six where coupled with the topic keywords “complex*”. We moreover
rejected the articles containing the topic keywords “complex scaling” or “linear search”, two terms refering
respectively to (heavily used) specific methods of quantum chemistry and computer science.
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Table 2: The 20 references (including books and articles) and journals which are the more
used by the articles of the whole database

Reference Times used Journal (# distinct refs) Times used
Bak P, 1987, PHYS REV LETT (59) 2131 NATURE (29166) 169309
Albert R, 2002, REV MOD PHYS (74) 2050 P NATL ACAD SCI USA (42504) 151140
Laemmli UK, 1970, NATURE (227) 1762 J BIOL CHEM (59436) 149042
Watts DJ, 1998, NATURE (393) 1732 SCIENCE (24880) 148002
Barabasi AL, 1999, SCIENCE (286) 1693 CELL (11044) 99168
Bak P, 1988, PHYS REV A (38) 1555 PHYS REV LETT (23269) 94861
Sambrook J, 1989, MOL CLONING LAB MANU 1439 J AM CHEM SOC (29807) 82569
Newman MEJ, 2003, SIAM REV (45) 1308 EMBO J (10926) 53049
Bradford MM, 1976, ANAL BIOCHEM (72) 1255 MOL CELL BIOL (12866) 52694
Lowry OH, 1951, J BIOL CHEM (193) 1106 J NEUROSCI (12313) 43152
Rumelhart DE, 1986, PARALLEL DISTRIBUTED (1) 947 J IMMUNOL (18891) 41496
Strogatz SH, 2001, NATURE (410) 907 PHYS REV B (19367) 41450
Kohonen T, 1982, BIOL CYBERN (43) 901 J CELL BIOL (10239) 40560
Chomczynski P, 1987, ANAL BIOCHEM (162) 849 J CHEM PHYS (17136) 40074
Goldberg DE, 1989, GENETIC ALGORITHMS S 822 GENE DEV (4879) 38903
Lorenz EN, 1963, J ATMOS SCI (20) 726 BIOCHEMISTRY-US (16035) 32061
Mandelbrot BB, 1982, FRACTAL GEOMETRY NAT 721 BRAIN RES (15364) 30517
Kohonen T, 1990, P IEEE (78) 715 ANGEW CHEM INT EDIT (7572) 27718
Dorogovtsev SN, 2002, ADV PHYS (51) 688 NUCLEIC ACIDS RES (9738) 27242
Albert R, 2000, NATURE (406) 678 J EXP MED (8100) 27220
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Table 3: 2000-2008 subfields’ sizes N , inner coherences < ω >−1 and modules q.

Subfield N < ω >−1 q

Analytic Chemistry (AnalyticChem) 419 336.14 0.0002
Angiogenesis (Angiogen) 3642 1408.78 0.005
Apoptosis (Apopt) 2632 1424.23 0.0026
Attractors 1161 524.42 0.0013
Bacterial Genomics (BactGen) 1517 120.19 0.0103

Brain Chaos 1175 70.06 0.0105
Calibration (Calib) 538 371.17 0.0004
Cellular Automata(CA) 846 164.26 0.0023
Cellular Neural Networks (CellularNN) 620 86.17 0.0024
Chaos 3134 531.3 0.0099

ClimateChaos 352 205.31 0.0003
Complex Fluids (CFluid) 2310 994.14 0.0029
Complex Networks (CN) 3684 21.87 0.2235
Computational Complexity (ComputCompl) 1134 379.92 0.0018
Computational Systems Biology (CSB) 1799 323.99 0.0053

Computer 526 437.08 0.0003
Condensed Matter (CondMatt) 2629 631.99 0.0059
Condensed Matter - Polymers (CondPolymers) 471 131.85 0.0009
Control 4772 1086.35 0.0112
Crystal Structure (CrystalStruct) 3386 350.41 0.0175

Cytoskeleton Self-Organization(CytoskSO) 651 132.58 0.0017
Deformation 590 432.48 0.0004
Diabetes 1015 669.24 0.0008
Digital Communication (DigitCom) 3811 470.56 0.0165
Ecology 4751 1846.16 0.0066

Econophysics (Econophys) 738 96.12 0.003
Electrocardiogram (ECG) 987 117.68 0.0044
Endocrinology (Endocrino) 1223 607.63 0.0013
Energy Transfert (EnergyTransf) 801 258.27 0.0013
Epigenomics 3055 677.49 0.0074

Epilepsy 316 273.67 0.0001
Evolution 1318 796.76 0.0011
Fractals 1015 192.02 0.0029
Functional MRI (fMRI) 2634 897.28 0.0041
Functional Neurosciences (fNS) 935 497.44 0.0009

Genetic Algorithm (GenAlgo) 2177 197.96 0.0128
Genetic Diseases (GenDiseases) 2273 387.34 0.0072
Growth Self-Organization (GrowthSO) 1192 113.84 0.0067
Hemodynamics (Hemodyn) 346 344.37 0.0001
Immunology (Immuno) 4403 2234.66 0.0047

In Vitro Fertilization (IVF) 591 281.01 0.0006
Kolmogorov Complexity (K-Comp) 501 121.94 0.0011
Malaria 2702 747.44 0.0052
Management (Managt) 3563 2159.31 0.0031
Mitosis 3171 564.98 0.0095

Molecular Self-Organization (MolecularSO) 2684 409.08 0.0094
Multi-agent System (MAS) 1787 1094.91 0.0015
Nanofabrication (NanoFabr) 457 45.28 0.0025
Nanosciences (Nano) 1995 418.01 0.0051
Neural Networks (NN) 2902 221.15 0.0201

Neural Synchronization (NeuralSynchr) 1451 453.59 0.0025
Organic Chemistry (OrgChem) 649 368.67 0.0006
Pattern Formation (PattForm) 1403 205.82 0.0051
Pattern Formation & Self-Organization (PattformSO) 691 142.82 0.0018
Petri Nets 957 275.76 0.0018

Photosynthesis (PhSynth) 2000 224.48 0.0096
Plasticity 1066 915.05 0.0006
Polimerization (Polymeriz) 645 98.54 0.0022
Protein Structure (ProteinStruct) 1830 237.07 0.0076
Protein Transport (ProteinTransp) 1305 308.77 0.0029

Quantum Chaos (QChaos) 1456 636.22 0.0018
Quantum Dots (QDots) 921 130.93 0.0035
Reinforcement Learning (RLearning) 891 287.57 0.0014
Respiration Rhythm 416 57.35 0.0016
Self-Organized Criticality (SOC) 4447 199.3 0.0509

Self-Organizing Maps(SOM) 3495 168.85 0.0376
Social Cognition Therory (SocialCognTheor) 800 680.59 0.0005
Sorption 1354 925.37 0.001
Support Vector Machines(SVM) 3660 867.91 0.0082
Surface Self-Organization (SurfSO) 1511 468.34 0.0026

Swarm Intelligence (SwarmIntel) 608 145.94 0.0013
Synaptic Plasticity (SynPlasticity) 1625 370.25 0.0038
Transcriptomics (Transcrip) 2043 439.37 0.0051
Transcriptomics Data Analysis (TDA) 628 43.32 0.0049
Transmission Control Protocol (TCP) 1473 718.93 0.0016

Tuberous Sclerosis (TubScler) 766 153.33 0.002
Turbulent Flow (TurbFlow) 3172 1212.32 0.0045
Visual Cortex Model 2851 845.22 0.0051
VocalLearning 389 162.56 0.0005

The acronyms and abbreviations in parenthesis corrrespond to the label of the subfields displayed on Fig
2. The inverse of the average of the weight of the inner links of a subfield < ω >−1 can be taken as an
inner coherence measure. Indeed, would the weight of these links be homogeneously distributed between
all pairs of articles of a given subfield, then two articles of this subfield chosen at random would share 1
reference over < ω >−1.

19



Table 4: The 20 most networking references in the 2000-2008 decade

Reference Topic N (r) (%)
Press et al. (1992)* Numerical recipes (book) 1.250
Shannon (1948)* Information theory 0.607
Metropolis et al. (1953) Monte Carlo integration 0.509
Nicolis et al. (1977)* Self organization (book) 0.420
Kauffman (1993)* Self organization (book) 0.309
Hebb (1949) Neuropsychology and behavior (book) 0.297
Alberts et al. (1994) Molecular and cellular biology (book) 0.288
Abramowitz et al. (1968)* Handbook of mathematical functions 0.269
Feller (1958)* Introduction to probability theory (book) 0.268
Watson & Crick (1953) Structure of DNA 0.250
Lakowicz (1999) Fluorescence spectroscopy 0.249
Turing (1952) Morphogenesis 0.237
Witten et al. (1981) Diffusion-limited aggregation 0.234
Cohen (1988) Statistics and behavioral sciences (book) 0.223
Hopfield (1982) Neural networks 0.217
Stanley (1971) Phase transition (book) 0.202
Whitesides et al. (2002) Self-assembly 0.188
Marquardt (1963) Applied mathematics 0.174
Chomczynski (1987) RNA isolation 0.167
Venter et al. (2001) Human genome sequence 0.160

The references followed by a star correspond to books or papers which appeared in the database under
several forms - essentially different publication years for the books - for which the networking power N (r)
have been summed. The complete references of these papers are given in Supplementary Information.
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Table 5: Strongest trading zones.

Subfield Fields T (%) T/T exp

TDA Biology/Neural Networks 46.355 20.51
CSB Biology/Dynamical Systems 49.704 8.87
CSB Biology/SOC 49.255 8.79
ProteinStruct Biology/Material Sciences 47.442 8.32
CSB Biology/CN 42.931 7.66
TDA CN/Neural Networks 16.543 7.32
Hemodyn Neurosciences/FluidMech 54.552 7.22
NeuralSynchr Neurosciences/Dynamical Systems 59.788 5.20
Hemodyn Biology/FluidMech 39.113 5.18
CytoskSO Biology/SOC 9.561 4.71
CytoskSO Biology/Dynamical Systems 9.522 4.69
Calib Material Sciences/Neural Networks 8.717 4.51
CellularNN CN/Neural Networks 9.605 4.30
Transcrip Biology/CN 25.806 4.05

The trading force T of a subcommunity measures the fraction of the links between two fields (in Fig.
1) which goes through this subcommunity. More precisely, the trading force of I, a subcommunity of
Ī, towards any community J̄ is the total weight of the article-article links between the subcommunity
I and community J̄ , normalized by the total weight of the the article-article links between Ī and J̄ :
TĪJ̄(I) =

∑
i∈I,j∈J̄ ωij/

∑
i∈Ī,j∈J̄ ωij . The expected force T exp is the value of the trading force one would

expect if all the links between Ī and outside communities were equally shared among all sub-communities
of Ī, which is simply the fraction NI/NĪ of articles of I in Ī. The acronyms of the subfiels used here
correspond to those explained in Table 3.
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