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The complexity of evaluating polynomials is still poorly understood even though this is one of the
most studied algorithmic problems. Examples of interest include the determinant and permanent
polynomials, or matrix multiplication (where the goal is to evaluate simultaneously the n2 entries of
the product of 2 matrices of size n). In the arithmetic circuit model, the complexity of an algorithm
is measured by the number of arithmetic operations (additions and multiplications) performed on
an input of size n. This is a very natural model for the study of polynomial evaluation. This
internship proposal suggests several research problems connected to arithmetic circuit complexity.
The student could work on one or several problems depending on his/her interests and the available
time.

1 Reconstruction Algorithms

In recent years, a number of reconstruction algorithms for arithmetic circuits have been proposed.
Here the goal is, given an input polynomial f(x1, . . . , xn), to find the smallest circuit computing f
in some fixed class of circuits (usually a restricted class of circuits since the general case seems too
hard given the current state of our knowledge). As an introduction to this subject we recommend
reading the reconstruction algorithm for sums of powers of linear forms in Section 5 of [7], which is
particularly simple and elegant. In research on lower bounds, the goal is to show that some explicit
polynomials (such as for instance the permanent polynomial, or matrix multiplication) cannot be
computed by any “small” circuit from some fixed circuit class. It turns out that the topics of lower
bounds and reconstruction are closely related (see for instances sections 1.2 and 1.3 of [9]); in
particular reconstruction methods often yields lower bounds.

Goal of the internship. Most of the known reconstruction algorithms use polynomial factoriza-
tion as a subroutine [1, 3, 4, 6, 7, 8, 9, 15, 16]. This is quite natural since factoring f amounts to
providing an arithmetic circuit for f with a multiplication gate at the top. Unfortunately, recon-
struction algorithms often treat polynomial factorization as an atomic step that can be performed
at unit cost. As a result, polynomial time running time bounds for these algorithms are often not
available in the standard Turing machine model. One goal of the internship will be to firmly es-
tablish such bounds by taking the radical step of removing all polynomial factorization subroutines
from (some) reconstruction algorithms. The advisor has been working successfully along these lines
on the reconstruction of sums of powers of linear forms [14, 12]. In these two papers, polynomial
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factorization was replaced by standard linear algebra subroutines such as simultaneous matrix diag-
onalization. One goal for the student could be to obtain similar results for other classes of arithmetic
circuits. For instance, can we handle polynomials of the form f = g+ h where g is a sum of powers
of linearly independent linear forms (the model of [14, 12]) and h is a sum constantly many powers
(the model of [1])? Or, can we remove polynomial factorization from [16]? The model for that paper
is that of depth-3 arithmetic circuits with two multiplication gates, generalized in [6] to a constant
number of multiplication gates,1 and from finite fields to characteristic 0 in [17].

2 Combinatorial Geometry of Newton Polygons

Let f(X,Y ) =
∑

i,j cijX
iY j be a bivariate polynomial. We associate to each monomial of f with

a nonzero coefficient (cij 6= 0) the point of the plane with coordinates (i, j). By definition, the
Newton polygon Newt(f) of f is the convex hull of this set of points. If f has t monomials, then
its Newton polygon has at most t vertices and edges. It is known that Newton polygons behave
well under product: Newt(fg) is the Minkowski sum of Newt(f) and Newt(g). In particular, it
has at most 2t vertices and edges if f and g have at most t monomials each. But what about sums
of products? In the simplest version of this problem, we consider Newt(fg + 1) where f, g have at
most t monomials each. The issue here is that adding 1 to fg might cancel the constant term of that
product, thereby exposing monomials that were previously hidden inside Newt(fg). Using tools
from combinatorial geometry [2] we managed to obtain an O(t4/3) upper bound [10, 18], improving
significantly on the trivial quadratic upper bound. We also managed to obtain similar improvement
for more general sums of products, and showed that a further improvement (the "τ -conjecture for
Newton polygons") would yield very strong lower bounds for arithmetic circuits. Unfortunately, up
to now this conjecture could not be proved nor refuted [5]; moreover, the O(t4/3) upper bound for
Newt(fg + 1) could not be improved nor proved optimal.

Goal of the internship. We will consider again simple expressions of the form fg + 1, assuming
now that f has degree less than d and g has at most t monomials. Can the constraint on deg(f) help
us obtain an upper bound for Newt(fg + 1)? In other settings than the Newton polygon setting,
similar "mixed constraints" (on the degree of f , and the number of monomials of g) have already
proved fruitful [11, 13]. We will then move on to more complex expressions, for instance of the form∑k

i=1 figi.

3 Student’s background

For the reconstruction work, the student should be interested in algorithms and complexity and have
some prior exposure to these subjects. He or she should be comfortable working with polynomials
and with standard notions of linear algebra as taught for instance in "classes préparatoires" or in
universities at the undergraduate level. More advanced notions could be learned as needed during
the internship.

The work on Newton polygons is of a different nature. Although motivated by arithmetic circuit
complexity, it is really a problem from combinatorial (convex) geometry. As such, we do not expect
that a lot of algebra or experience with algorithms and complexity will be necessary.

1A mistake in [6] was recently corrected in [15].
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