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In tensor decomposition, the goal is to express an input tensor as the sum of a small number
of rank one tensors. Assume for instance that T is a tensor of order 3, i.e., a 3-dimensional array.
Then we want to write down T as

T =

r∑
i=1

ui ⊗ vi ⊗ wi (1)

where the ui, vi, wi are (unknown) vectors. The smallest number of terms that can be achieved in
such a decomposition is known as the tensor rank of T . For 2-dimensional arrays (i.e., matrices),
this is just the matrix rank and in matrix notation we have u⊗ v = uvT .

The study of tensor rank and tensor decomposition is well motivated from several points of
view. In algebraic complexity, it is know that the complexity of bilinear problems such as matrix
multiplication is characterized by the rank of an associated tensor. We can therefore prove lower
bounds on the complexity of matrix multiplication and other bilinear problems by proving lower
bounds on the rank of the corresponding tensor [6, 14]. Conversely, we can design faster algorithms
by finding short decompositions of this tensor [1]. Tensor decomposition also occurs naturally in
more applied areas such as machine learning [11], statistics or signal processing [3, 2]. In these areas
the input tensor is usually not known a priori, but inferred from the data; and the components
ui, vi, wi have a special meaning in the application domain. For instance they can be used to
reconstruct phylogenetic trees, or identify the topics occurring in a collection of documents [11].
Computing the tensor rank is NP-hard in the worst case [4, 12, 13]. In order to obtain efficient
algorithms it is therefore necessary to make some assumptions on the input tensor. For instance,
linear independence assumptions on the vectors occurring in the decomposition (1) have proved
useful [11].

Goal of the internship. The student will work on tensor decomposition by methods of linear
algebra such as (simultaneous) matrix diagonalisation. One prototypical example is the so-called
"Jennrich algorithm" described in e.g. [11]. Such algorithms can be analyzed at varying levels of
detail. In the literature, it is often assumed that objects such as eigenvalues and eigenvectors of
matrices can be computed exactly. This is the case in the book [11]. Similar problems have been
studied in the literature on arithmetic circuit reconstruction. As an introduction to this subject we
recommend reading the reconstruction algorithm for sums of powers of linear forms in Section 5
of [5], which is particularly simple and elegant. In the language of tensors, the problem tackled
in [5] is known as "symmetric tensor decompoosition" (meaning that ui = vi = wi in (1)). In
that paper and in most of the literature on arithmetic circuit reconstruction, it is assumed that
that polynomial roots can be computed exactly. Doing a very "high level" analysis as in [5, 11] is
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certainly fine, at least as a first step; but it doesn’t yield a precise analysis of the complexity and
accuracy of the algorithm. For a more precise analysis, at least two options are available.

(i) One can assume that the input tensor T is known exactly, and aim for a decision algorithm
(does T admit an exact a decomposition of the required form?). This is the approach followed
in [10, 7, 8].

(ii) One can try to find an approximate decomposition of T . This is the approach followed in [9]
and it only requires the approximate computation of eigenvalues and eigenvectors.

The main goal of the internship is to design and analyze tensor decomposition algorithms with
provable performance guarantees. More precisely, the student could work on the two following
topics (or possibly just one of them):

1. Undercomplete tensor decomposition. Suppose for simplicity that T is a cubic tensor, of format
n×n×n. In [9] we have only studied symmetric tensor decomposition, and only the case r = n
has been published so far. Therefore, one goal would be to get rid of the symmetry assumption
and to allow for r ≤ n as well (the so-called undercomplete setting). We note that [9] contains
a rather heavy analysis of errors due to finite precision arithmetic. For this internship it would
make perfect sense to assume infinite precision arithmetic, which is easier to analyze. One
would then analyze the complexity of the algorithm as a function of the desired precision on
the output and of the other parameters of the problem (input size, condition number of the
tensor).

2. Overcomplete tensor decomposition. This is the setting where r > n, and it is much less
understood than the undercomplete setting. In fact, obtaining an effficient algorithm for the
decomposition of "generic" tensors in that case is suggested as an open problem in [11]. The
advisor has some concrete ideas to make progress on this problem, and the student could
contribute to this work. Since this setting is relatively unexplored, it would make sense to
stick at least initially to a rather "high level" style of analysis along the same lines as done
in [5, 11] for the undercomplete setting.

Finally, depending on the student’s interests we note that the algorithms could be implemented and
tested.

Student’s background. The student should of course be interested in the design and analysis of
efficient algorithms. A good knowledge of linear algebra as taught for instance in classes prépara-
toires will also be very useful. For some parts of the above work plan, prior exposure to numerical
linear algebra could be useful but it is certainly not a requirement. The relevant notions (numerical
stability, condition numbers...) can be learnt during the internship.
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