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Abstract

We present algorithms that compute the linear and quadratic factors of supersparse
(lacunary) bivariate polynomials over the rational numbers in polynomial-time in the
input size. In supersparse polynomials, the term degrees can have hundreds of digits
as binary numbers. Our algorithms are Monte Carlo randomized for quadratic factors
and deterministic for linear factors. Our approach relies on the results by H. W. Len-
stra, Jr., on computing factors of univariate supersparse polynomials over the rational
numbers. Furthermore, we show that the problem of determining the irreducibility
of a supersparse bivariate polynomial over a large finite field of any characteristic is
NP-hard via randomized reductions.

1 Introduction

The algorithms in this paper take as inputs “super”sparse polynomials, which A. Schinzel
and H. W. Lenstra, Jr., call lacunary† polynomials. A supersparse polynomial

f(X1, . . . , Xn) =
t

∑

i=1

ai X
αi,1

1 · · ·Xαi,n
n

is input by a list of its coefficients and corresponding term degree vectors. One defines the
size of f as

size(f) =
t

∑

i=1

(

size(ai) + dlog2(αi,1 · · ·αi,n + 2)e
)

, (1)

∗This material is based on work supported in part by the National Science Foundation under Grant No.
CCR-0305314 (Kaltofen).

†A lacuna is a hole as in the word ‘lake;’ the polynomials have, so to speak, “lagoons of zero coefficients.”
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thus allowing very high degrees, say with hundreds of digits as binary numbers, in distinction
to the usual sparse representation [Zippel 1979; Kaltofen and Lee 2003]. If the coefficients
are integers, one cannot evaluate a supersparse polynomial at integer values in polynomial-
time in its size, because the value of the polynomial can have exponential size, say 2100

digits. Important exceptions are evaluating at 0 or ±1. A supersparse polynomial can be
represented by a straight-line program [Kaltofen 1988] of size O(sizef) via evaluating its
terms with repeated squaring. It is NP-hard to test if two integral univariate supersparse
polynomials have a non-trivial greatest common divisor [Plaisted 1984].

A breakthrough polynomial-time result is in [Cucker et al. 1999]. Any integral root of
a univariate supersparse polynomial with integral coefficients can be found in (sizef)O(1)

bit operations. H. W. Lenstra, Jr., [1999a; 1999b] has generalized the result to computing
factors of fixed degree in an algebraic extension of fixed degree, in particular to computing
rational roots in polynomial-time. Using interpolation and divisibility testing à la [Agrawal
et al. 2002] in connection with Lenstra’s algorithm, in section 3 we present an algorithm
for computing linear and quadratic rational factors of integral bivariate (n = 2) supersparse
polynomials in (sizef)O(1) bit operations. Our algorithm is randomized of the Monte Carlo
kind, and in section 4 we show how the linear bivariate factors can be found deterministically.

Several hardness results for supersparse polynomials over finite fields have been derived
from Plaisted’s approach [von zur Gathen et al. 1996/1997; Karpinski and Shparlinski 1999].
For example, Plaisted’s hardness of GCD 6= 1 extends to polynomials over Zp [von zur
Gathen et al. 1996/1997] and can be used to show NP-hardness (via randomized reduction)
of the irreducibility of supersparse bivariate polynomials for sufficiently large p (cf. [Karpinski
and Shparlinski 1999, Proof of Theorem 1]). In section 5 we summarize those results and
generalize them to finite fields of any characteristic.

For all problems that we consider there are deterministic and/or probabilistic algorithms
whose bit complexity is of order (size(f) + deg(f))O(1) [Kaltofen 1992, 2003a]. We remark
that our representation of the coefficients of f and the modulus p is by dense vectors of digits,
not by supersparse lists of non-zero digits and their positions in the integers (cf. [Shparlinski
2004]).

We note that Barvinok’s representation by short rational generating functions [Barvinok
and Woods 2003] is related to our supersparse representation, and short rational functions
have been successfully employed to solve combinatorial counting problems [De Loera et al.
2004].

2 The results by Cucker et al. and Lenstra

In [Cucker et al. 1999] it is shown how to compute an integer root of a supersparse polynomial
f(X) = a1 + a2X

α2 + · · · + atX
αt ∈ Z[X] in polynomial time in the size of the polynomial.

The result has a short proof based on finding gaps: suppose that f(X) = g(X) + Xuh(X)
with g 6= 0, h 6= 0, deg(g) ≤ k and let u − k ≥ log2 ‖f‖1 = log2(|a1| + · · · + |at|). For an
integer a 6= ±1, we have f(a) = 0 =⇒ g(a) = h(a) = 0. Assume the contrary, namely that
a 6= 0,±1 and h(a) 6= 0. Then

|g(a)| < ‖f‖1 · |a|
k ≤ 2u−k · |a|k ≤ |a|u ≤ |auh(a)|, (2)
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thus |f(a)| ≥ |auh(a)| − |g(a)| > 0. Note the similarity of (2) with the proof of Cauchy’s
root bound. The estimate on u − k can be sharpened [Cucker et al. 1999, Proposition 2].
The polynomial time algorithm can now proceed by computing the integer roots of those
polynomial segments aiX

αi + · · · + ajX
αj in f whose terms have degree differences αl −

αl−1 < u − k, for all i < l ≤ j. After dividing out Xαi , we have polynomials of degree
≤ (t− 1)(u− k − 1), whose common integer roots are found by p-adic lifting [Loos 1983]. In
section 4 we give a variant of the gap technique for high degree sums of linear forms.

2.1 Generalization by H. W. Lenstra, Jr.

H. W. Lenstra has used the gap method to computing rational roots and low degree factors of
supersparse rational polynomials via the height of an algebraic number (see section 4). The
algorithm presented in [Lenstra 1999a] receives as input a supersparse polynomial f(X) =
∑t

i=1 aiX
αi ∈ K[X], where the algebraic number field K is represented as K = Q[ζ]/(ϕ(ζ))

with a monic irreducible minimum polynomial ϕ(ζ) ∈ Z[ζ]. Furthermore, a factor degree
bound d is input. The algorithm produces a list of all irreducible factors of f over K of
degree ≤ d and their multiplicities. Let D = d · deg(ϕ). There are at most

O(t2 · 2D · D · log(2D t)) (3)

irreducible factors of degree ≤ d [Lenstra 1999b, Theorem 1], each of which, with the ex-
ception of the possible factor X, has multiplicity at most t [Lenstra 1999a, Proposition 3.2].
The algorithm finishes in

(

t + log(deg f) + log ‖f‖ + log ‖ϕ‖
)O(D)

(4)

bit operations. Here ‖ϕ‖ is the (infinity) norm of the coefficient vector of ϕ and ‖f‖ is the
norm of the vector of norms of the coefficients ai(ζ). We assume that a common denominator
has been multiplied through and all coefficients of the ai(ζ) are integers. We note that by
standard factor coefficient bound techniques [von zur Gathen and Gerhard 1999], all factors

have coefficients of size
(

t + log ‖f‖ + log ‖ϕ‖
)O(D)

, which is independent of deg(f).
For example, for ϕ = ζ − 1, that is, K = Q, and d = 1 = D, Lenstra’s algorithm finds all

rational roots of a supersparse integral polynomial f in polynomial-time in size(f).

3 Linear and quadratic bivariate factors

We now present our randomized algorithm for computing linear and quadratic factors of
supersparse polynomials and their multiplicities. For simplicity, we shall consider polynomials
with rational coefficients only, although our method would allow coefficients in an algebraic
number field. Our algorithm calls the univariate algorithm by Lenstra [1999a].

Algorithm Supersparse Factorization
Input: a supersparse f(X,Y ) =

∑t
i=1 ai X

αiY βi ∈ Z[X,Y ] that is monic in X and an error
probability ε = 1/2l.
Output: a list of polynomials gj(X,Y ) with degX(gj) ≤ 2 and degY (gj) ≤ 2 and corre-
sponding multiplicities, which with probability no less than 1− ε are all linear and quadratic
irreducible factors of f over Q together with their true multiplicities.
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Step 0. Factor out the maximum powers of X and Y that divide f . The non-zero coefficients
of f do not change.
Compute all linear and quadratic irreducible factors of f that are in Q[Y ] by applying
Lenstra’s method to the coefficients of Xαi . The multiplicities are also provided by
Lenstra’s algorithm.

Step 1. Compute all linear and quadratic irreducible factors in Q[X] of f(X, 0), f(X, 1)
and f(X,−1) by Lenstra’s method. The algorithm will also provide the multiplicities
of those factors.

Step 2. Interpolate all factor combinations.
Test if a factor candidate g(X,Y )µ of candidate multiplicities µ divides f(X,Y ) by
testing if 0 ≡ f(X, a) mod (g(X, a)µ, p) where a ∈ S ⊂ Z, and p ≤ B a prime integer are
randomly selected. The cardinality |S| of S and the bound B are chosen in dependence
of f and the input error probability ε (see below). The algorithm may fail to sample
a prime p ≤ B and return “failure,” which is interpreted as an incorrect answer in the
output specification of the probability of correctness. �

We now show that our algorithm Supersparse Factorization can be implemented as to
run in

(

t + log(deg f) + log ‖f‖ + log 1/ε
)O(1)

(5)

bit operations. Note that the measure (5) is polynomial in size(f) and l = − log ε.
By (3) in section 2 and our restriction to D ≤ 2, the polynomials f(X, 0), f(X,−1) and

f(X, 1) each have no more than O(t2 log t) linear or irreducible quadratic factors. In Step 2,
one interpolates factors that are monic in X and whose coefficients have size (t+log ‖f‖)O(1).
There are O(t4(log t)2) combinations of linear factors and O(t12(log t)6) combinations of
quadratic factors, the latter because we must also consider products of univariate linear
factors as images of bivariate quadratic factors. In practice, of course, the number of com-
binations can be much smaller. At least one of the univariate factors in each combination
is 6= X in the linear case and 6= X2 in the quadratic case, because the interpolated bivariate
factor cannot be X or X2. Therefore the multiplicity m of one of the univariate factors
satisfies m ≤ t, and we need to check all µ ≤ m.

For each candidate factor G(X,Y ) = g(X,Y )µ we consider the division with remainder
in X,

f(X,Y ) − q(X,Y )G(X,Y ) = h(X,Y ), where degX(h) < degX(G). (6)

By considering (6) as a (unimodular) linear system over Q(Y ) with degX(f) + 1 equations
and variables, we obtain bounds for degY (h) and ‖h‖ [Goldstein and Graham 1974]:

degY (h) ≤ degY (f) + degY (G) · (degX(f) + 1 − degX(G)) = O(t deg(f)) (7)

and
‖h‖2

∞ ≤ t · ‖f‖2
1 · ((degX(G) + 1) · ‖G‖2

1)
degX(f)+1−degX(G). (8)

From (7) and ε we derive a bound for |S| in Step 2, and from (8) and ε a bound for B in
Step 2. Suppose G does not divide f , that is there is a coefficient hi(Y ) 6= 0 of X i in h.
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First, we wish to have 0 6= hi(a) with probability ≥ 1 − δ/3, where δ = ε/A with
A = O(t13(log t)6) being the number of factor combinations and multiplicities that have to
be tested. The probability to pick a root of hi(Y ) among the elements in S ⊂ Z is no more
than degY (h)/|S|. By (7), for a set S of cardinality

|S| = (t + deg f + 1/ε)O(1) (9)

we can succeed with probability ≥ 1 − δ/3. Let H = hi(a) for a ∈ S. We get by (9) and
again by (7) and (8) that H = (t + deg f + ‖f‖ + 1/ε)O(t deg f).

Second, we choose B such that 0 6≡ H (mod p) with probability ≥ 1 − δ/3. By facts
on the prime number distribution (see [Rosser and Schoenfeld 1962] for explicit estimates),
there is a constant γ1 such that H has at most γ1 log H/ loglog H distinct prime factors. Since
there are no fewer than γ2B/ log B primes ≤ B, the probability that 0 ≡ H (mod p) is no
more than γ3(log H/ loglog H)/(B/ log B) for some constants γ2 and γ3. Thus we have

γ3
log H/ loglog H

B/ log B
≤

ε

3 A
⇐⇒ B = O(A · log H · 1/ε). (10)

Note that the number of digits in p is of order (t + log(deg f) + log ‖f‖ + log 1/ε)O(1).
The algorithm must succeed to pick a prime p ≤ B. By iterating the prime selection

process O(log(A/ε) · log B) times we can assume that to happen with probability ≥ 1− δ/3.
Thus a single false factor combination is eliminated with probability ≥ (1− δ/3)3 ≥ 1− 1/δ.
Therefore no false factor combination or multiplicity is accepted with probability ≥ (1−δ)A ≥
1 − Aδ ≥ 1 − ε.

The bit complexity measure (5) follows from the bounds (9) and (10) together with the
repeated squaring algorithm and a polynomial primality test used in Step 2.

Our algorithm can be extended to compute in polynomial time all irreducible factors gj

with degX(gj) = O(1), i.e., of constant degree in X, and simultaneously degY (gj) ≤ 2. The
input condition of monicity of f can be relaxed to accept polynomials with a leading coefficient
(or trailing coefficient) in X that does not vanish for Y = 0, Y = −1 or Y = 1. One imposes
a factor of the leading coefficient on the interpolated polynomials, which is a technique from
sparse Hensel lifting [Kaltofen 1985a]. One may also switch the roles of X and Y . However,
at this time we do not know at all how to interpolate the factors of polynomials such as
∑

i(X
2di − 1)(Y 2ei − 1)fi(X,Y ) where the fi are supersparse. However, in the next section,

we can show how to compute in deterministic polynomial time all factors of total degree 1 of
any supersparse bivariate rational polynomial.

4 Linear factors deterministically

In this section we give a deterministic polynomial time algorithm that finds the linear factors
of a supersparse polynomial. In contrast to the randomized algorithm of section 3, this
deterministic algorithm can handle all (bivariate) supersparse polynomials: there is no special
requirement on the leading coefficient of the input polynomial. Our approach is based on the
observation that a polynomial g(X,Y ) is divisible by Y − bX − a iff g(X, a + bX) = 0. We
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will first give an algorithm that decides whether a polynomial of the form

t
∑

j=0

ajX
αj(a + bX)βj (11)

is identically equal to zero. Here a and b and the aj are rational numbers; the αj and βj

are non-negative integers. This algorithm can be used to check with certainty whether a
“candidate factor” Y − bX − a (for instance generated by an interpolation technique as in
section 3) really is a factor of the bivariate polynomial

∑

j ajX
αjY βj . In general, deciding

deterministically whether a straight-line program computes the identically zero polynomial
is a notorious open problem. It turns out, however, that for polynomials of the form (11)
this problem has an efficient solution. We will then see that this verification algorithm can
be easily converted into an algorithm that actually finds all linear factors.

Even though our input polynomials have rational coefficients as in the remainder of the
paper, the results of this section rely heavily on algebraic number theory.‡ We review the
necessary material in section 4.1. A suitable gap theorem is established in section 4.2. Here,
some crucial ideas are borrowed from Lenstra’s [1999a] paper. In particular, Proposition 1
closely follows Proposition 2.3 of [Lenstra 1999a]. Finally, our deterministic algorithms are
presented in section 4.3.

4.1 Heights of algebraic numbers

In this section we quickly recall some number theoretic background. For any prime number p,
the p-adic absolute value on Q is characterized by the following properties: |p|p = 1/p, and
|q|p = 1 if q is a prime number different from p. For any x ∈ Q \ {0}, |x|p can be computed
as follows: write x = pαy where p is relatively prime to the numerator and denominator of
y, and α ∈ Z. Then |x|p = 1/pα (and of course |0|p = 0). We denote by MQ the union of the
set of p-adic absolute values and of the usual (archimedean) absolute value on Q.

Let d, e ∈ Z be two non-zero relatively prime integers. By definition, the height of the
rational number d/e is max(|d|, |e|). There is an equivalent definition in terms of absolute
values: for x ∈ Q, H(x) =

∏

ν∈MQ
max(1, |x|ν). Note in particular that H(0) = 1.

More generally, let K be a number field (an extension of Q of finite degree). The set MK

of normalized absolute values is the set of absolute values on K which extend an absolute
value of MQ. For ν ∈ MK , we write ν|∞ if ν extends the usual absolute value, and ν|p if ν
extends the p-adic absolute value. One defines a “relative height” HK on K by the formula

HK(x) =
∏

ν∈MK

max(1, |x|ν)
dν . (12)

Here dν is the so-called “local degree”. For every p (either prime or infinite),
∑

ν|p dν = [K :

Q]. Sometimes, instead of (12) one just writes

HK(x) =
∏

ν

max(1, |x|ν)

‡It is an interesting open problem whether they have more elementary proofs such as the one given in
section 2.
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if it is understood that each absolute value may occur several times (in fact, dν times) in the
product. The absolute height H(x) of x is HK(x)1/n, where n = [K : Q]. It is independent
of the choice of K. In Proposition 1 we will use the product formula:

∏

ν∈MK

|x|dν

ν = 1 (13)

for any x ∈ K \ {0}. More details on absolute values and height functions can be found for
instance in [Lang 1993] or [Waldschmidt 2000].

4.2 A gap theorem

We define a notion of height for an expression of the form (11) by the formula

H(f) =
∏

ν∈MQ

|f |ν ,

where |f |ν = max0≤j≤t |aj|ν . There is a classical notion of height for a point in projective
space ([Hindry and Silverman 2000], section B.2) and in fact H(f) is simply the height of
the point (a0, a1, . . . , at). A nice feature of H(f) is its invariance by scalar multiplication: if
λ ∈ Q \ {0}, H(λf) = H(f). Indeed, if we multiply a polynomial by pα where p is prime,
the archimedean absolute value is multiplied by pα and the p-adic absolute value is divided
by pα. The other absolute values are unchanged. Note also that H(f) = maxj |aj| if the
aj are relatively prime integers. Computing H(f) in the general case aj ∈ Q is therefore
quite easy: reduce to the same denominator to obtain integer coefficients, divide by their
gcd and take the maximum of the absolute values of the resulting integers (so in particular
H(f) ∈ Z>0 for any f). Finally, a word of caution: our notion of height is not intrinsic
to the given polynomial in X, since it is not invariant of the particular representation (11).
Given a bivariate polynomial g(X,Y ) one could, however, define an intrinsic height H(G)
as done above (i.e., as the projective height of its tuple of coefficients), and we would have
H(f(X, a + bX)) = H(G).

Theorem 1 Let f(X) be a polynomial of the form (11) where (a, b) is a pair of rational
numbers different from the five pairs (0, 0), (±1, 0), (0,±1). Assume without loss of generality
that the sequence (βj) is nondecreasing, and assume also that there exists l such that

βl+1 − βl > log(tH(f))/ log κ,

where κ > 1 is an absolute constant defined in Lemma 2. If f is identically zero, the poly-
nomials g =

∑l
j=0 ajX

αj(a + bX)βj and h =
∑t

j=l+1 ajX
αj(a + bX)βj are both identically

zero.

Proof. Let U(a, b) be the set of roots of unity defined in Lemma 2 below. By hypothesis,
f(θ) = 0 for each θ ∈ U(a, b). By Proposition 1 below, g and h are both identically zero on
U(a, b). The result follows since U(a, b) is an infinite set. �

We denote by U the set of complex roots of unity of prime order, and by U5 the set of
complex roots of unity of prime order ≥ 5.
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Lemma 1 There is an absolute constant κ1 > 1.045 such that the following holds. For any
θ ∈ U5, if a ∈ Z \ {0} and b ∈ Z \ {0} then H(a + bθ) ≥ κ1.

Remark 1 The hypothesis that θ is of order at least 5 is necessary. Indeed, if θ is of order
3 then H(1 + θ) = 1 since 1 + θ = −θ2. Moreover, the restriction to roots of prime order can
probably be removed with some additional work.

Proof of Lemma 1. Note that |a+bθ|ν ≤ 1 for any ultrametric absolute value. Hence we only
need to take the archimedean absolute values into account to estimate the height. Recall
that if θ is of order d, its conjugates are the other roots of unity of order d. Hence

H(a + bθ)d−1 =
d−1
∏

k=1

max(1, |a + be2ikπ/d|).

Assume first that a and b are of the same sign, and for instance positive. Then |a+be2ikπ/d| ≥
a + b cos(2ikπ/d) ≥ 1 + cos(2π/5) if k ≤ d/5. Hence H(a + bθ) ≥ (1 + cos(2π/5))bd/5c/(d−1).
This lower bound is always > 1.045 since d ≥ 5, and its limit as d → +∞, which is equal to
(1 + cos(2π/5))1/5, is > 1.055.

To complete the proof, we now consider the case where a and b have opposite signs.
Assume for instance that a ≥ 1 and b ≤ −1. Then |a + be2ikπ/d| ≥ a + b cos(2ikπ/d) ≥ 3/2
if d/3 ≤ k ≤ 2d/3. Hence H(a + bθ) ≥ (3/2)bd/3c/(d−1). This lower bound is again always
> 1.10 and its limit as d → +∞, which is equal to (3/2)1/3, is > 1.14. �

We now deal with the case where a and b are rational numbers.

Lemma 2 There is an absolute constant κ > 1.045 such that the following holds: for any
pair (a, b) of rational numbers, different from the 5 excluded pairs of Theorem 1, there exists
an infinite set U(a, b) of roots of unity such that H(a + bθ) ≥ κ for any θ ∈ U(a, b).

Proof. Let (a, b) be a pair of rational numbers different from the 5 excluded pairs. If b = 0,
H(a + bθ) = H(a) ≥ 2 since a 6∈ {−1, 0, 1}. If a = 0, H(a + bθ) = H(bθ) = H(b) ≥ 2 since
b 6∈ {−1, 0, 1} (indeed, for any ν we have |bθ|ν = |b|ν |θ|ν = |b|ν). One may therefore take for
U(a, b) the set of all roots of unity if a = 0 or b = 0.

Also, we have shown in Lemma 1 that one may take U(a, b) = U5 if a ∈ Z \ {0} and
b ∈ Z \ {0}. We therefore assume for the remainder of the proof that a and b are both
nonzero, and that they are not both integers.

By reduction to the same denominator one finds integers c, d, e ∈ Z\{0} such that e ≥ 2,
gcd(c, d, e) = 1, and a + bθ = (dθ − c)/e for any root of unity θ. Let x = a + bθ, let p be a
prime factor of e, and fix any ν such that ν|p. Since |x|ν ≥ p|y|ν where y = dθ− c, it remains
to lower bound |y|ν (note that we have the upper bound |y|ν ≤ 1). If θ is a n-th root of unity,
we have

(y + c)n = dn. (14)

We first assume that p divides c. In this case p cannot divide d since gcd(c, d, e) = 1.
Hence (14) implies that |y|ν = 1, so that |x|ν ≥ p. Since this is true for any ν such that ν|p,
we have H(x) ≥ p ≥ 2. If p divides c, one may therefore take U(a, b) equal to the set of all
roots of unity.

We now examine the case p - c. We assume that θ 6= 1 is a n-th root of unity, and
distinguish 3 subcases.
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(i) If c = d, we shall see that |y|ν = 1 whenever p - n. Indeed, |y|ν = |c|ν |θ− 1|ν = |θ− 1|ν .
Set z = θ − 1. Since (z + 1)n = 1 and z 6= 0, it follows from the binomial formula that

zn−1 + nzn−2 +
(

n
2

)

zn−3 + · · · +
(

n
2

)

z = −n.

Hence |z|ν = 1 since |n|ν = 1. We conclude that H(x) ≥ p ≥ 2, and one may take
U(a, b) equal to the union for all integers n such that p - n of the set of n-th roots of
unity different from 1.

(ii) The second subcase (c 6= d and p - d − c) is similar, but slightly more involved. Let
U(a, b) be the set of positive integers n such that p - (dn − cn). Note that U(a, b) is
infinite since n ∈ U(a, b) or n + 1 ∈ U(a, b) for any n ≥ 1 , as is shown as follows:
assume the contrary, namely that p | dn+1 − cn+1 and p | dn − cn. It follows that
p | (dn+1 − cn+1) − d(dn − cn) = cn(d − c). This is impossible since p - c.

Let n ∈ U(a, b). Using again the binomial formula, it follows from (14) that

yn + ncyn−1 +
(

n
2

)

c2yn−2 + · · · + ncn−1y = dn − cn.

Since |dn − cn|ν = 1, we must have |y|ν ≥ 1 (so that in fact |y|ν = 1). We conclude that
H(x) ≥ p ≥ 2 if θ ∈ U(a, b).

(iii) The last subcase occurs when c 6= d and p | d − c. We can write y = dθ − c =
c(θ − 1) + (c − d). By hypothesis |c − d|ν ≤ 1/p, and by subcase (i) |c(θ − 1)|ν = 1 if
θ belongs to the set U(a, b) defined in that subcase. We may therefore take the same
U(a, b), and we conclude again that H(x) ≥ 2 if θ ∈ U(a, b).

We have shown that H(x) ≥ 2 whenever θ ∈ U(a, b) and a 6∈ Z \ {0}, b 6∈ Z \ {0}, a = 0 or
b = 0. One may therefore take κ = min(2, κ1) (so in fact κ = κ1). �

Proposition 1 Let (a, b) be a pair of rational numbers different from the five excluded pairs
of Theorem 1. Let f be a polynomial of the form (11), and let k ≥ 1 be an integer. Write
f = g + h where g collects all the terms of f with βj ≤ k and h collects all the terms of f
with βj > k. Let u = min{βj; βj > k}. Assume that θ is a zero of f , and that θ belongs to
the set U(a, b) of Lemma 2. If

u − k > log(tH(f))/ log κ, (15)

where κ is as in Lemma 2, then θ is a common zero of g and h.

Proof. We may assume that each of the two polynomials g and h collects at most t of the
t + 1 terms of f (otherwise, the result is clear). Assume by contradiction that g(θ) 6= 0.
Let K = Q[θ] and ν ∈ MK . If |a + bθ|ν ≥ 1, each term of g(θ) satisfies |ajθ

αj(a + bθ)βj | ≤
|f |ν |a + bθ|kν , therefore

|g(θ)|ν ≤ max(1, |t|ν)|f |ν |a + bθ|kν if |a + bθ|ν ≥ 1.

A similar argument shows that

|h(θ)|ν ≤ max(1, |t|ν)|f |ν |a + bθ|uν if |a + bθ|ν ≤ 1.
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We have |g(θ)|ν = |h(θ)|ν , so we can combine these two statements in

max(1, |a + bθ|ν |)
u−k · |g(θ)|ν ≤ max(1, |t|ν) · |f |ν · |a + bθ|uν .

Raise this to the power dν/[K : Q] and take the product over ν ∈ MK . Using the fact that
H(t) = t, and applying (13) to g(θ) and a + bθ (which are both supposed to be nonzero) one
finds that

H(a + bθ)u−k ≤ t · H(f).

However, H(a + bθ) ≥ κ by Lemma 2. This is in contradiction with (15). �

4.3 Deterministic algorithms

Theorem 2 There is a polynomial-time deterministic algorithm for deciding whether a poly-
nomial of the form (11) is identically zero.

Note that there is a trivial algorithm which deals with the case where (a, b) is one of the five
excluded pairs of Theorem 1. In the following we therefore assume that (a, b) is not one of
these five excluded pairs, and we fix a rational number ε > 0 such that one may take κ = 2ε

in Lemma 2. Set δ = dn/εe, where n is the unique integer such that 2n−1 ≤ tH(f) < 2n.
Assume that the βj’s are sorted by nondecreasing order as in Theorem 1. There is a unique
integer s ≥ 1 and a unique partition of the set {0, 1, . . . , t} in subsets U1, . . . , Us of consecutive
integers with the following property: if an integer j belongs to Ul then j + 1 also belongs to
Ul if βj+1 < βj + δ, otherwise j + 1 belongs to Ul+1 (to obtain this partition, just sweep the
list of the βj’s from left to right and create a new subset whenever an element βj such that
βj+1 − βj ≥ δ is found). Let fl =

∑

j∈Ul
ajX

αj (a + bX)βj . By construction f =
∑s

j=1 fl and
by Theorem 1, f is identically zero iff all the fl are identically zero. Indeed, we have

δ > log(tH(f))/ log κ,

where κ = 2ε. Furthermore, we can write fl = (a + bX)γlgl where

gl =
∑

j∈Ul

ajX
αj (a + bX)δj,l , (16)

γl = min{βj; j ∈ Ul}, and δj,l = βj − γl. Each exponent δj,l satisfies 0 ≤ δj,l < δ. The gl are
all identically zero iff f is identically zero. We can now describe our main algorithm.

1. Compute H(f) as explained before Theorem 1 and the integer δ defined above.

2. Construct the list (g1, . . . , gs) defined by (16).

3. Express each polynomial (a + bX)δj,l as a sum of powers of X.

4. Substitute in (16) to express each gl as a sum of powers of X, and decide whether the
gl are all identically zero. If so, output “f = 0”. Otherwise, output “f 6= 0”.

10



The correction of this algorithm follows from the discussion after Theorem 2, and it is clear
that steps 1 and 2 run in polynomial time. Step 3 also runs in polynomial time since δj,l < δ
and δ is bounded by a polynomial in the input size (so we can simply expand (a + bX)δj,l by
brute force). Finally, in step 4 we express gl as a sum of at most δ|Ul| ≤ δ(t+1) terms. This
completes the proof of the running time estimate, and of Theorem 2.

Remark 2 One can deal at no additional expense with polynomials of the slightly more
general form:

f(X) =
t

∑

j=0

aj(c + dX)αj(a + bX)βj .

Indeed, the change of variable Y = c + dX yields a polynomial g(Y ) of form (11). The only
case which cannot be handled in this way is the seemingly trival one b = d = 0. Here one has
to decide whether the rational number

∑t
j=0 ajc

αjaβj is equal to zero. It is not clear whether
this can be done in deterministic polynomial time, even if a, c and the aj are all integers.

Theorem 3 There is a polynomial-time deterministic algorithm that finds all linear factors
of a supersparse polynomial g(X,Y ) =

∑t
j=0 ajX

αjY βj .

Proof. We first find all linear factors of f that are in Q[X] by applying Lenstra’s method to
the coefficients of Y βj (this is similar to step 0 of the algorithm of section 3). After that, it
remains to find all factors of the form Y − bX − a. There are five special cases for the pair
(a, b), which correspond to the five excluded pairs of Theorem 1. As pointed out in the proof
of Theorem 2, one can check easily for each of these five pairs whether g(X, a + bX) = 0. In
the following we therefore look for factors Y − bX − a where (a, b) is different from the five
excluded pairs. As in Theorems 1 and 2, we assume that the βj are sorted by nondecreasing
order.

The idea is to use Theorem 1 to reduce this problem to several factoring problems about
dense polynomials. Let U1, . . . , Us be the partition of the set of indices {0, 1, . . . , t} which is
constructed when the algorithm of Theorem 2 is run on the polynomial f(X) = g(X, a+bX).
Crucially, this partition is in fact independent of the pair (a, b). As in the proof of Theorem 2,
one can write g =

∑s
j=1 Y γlgl, where gl =

∑

j∈Ul
ajX

αjY δj,l , γl = min{βj; j ∈ Ul}, and δj,l =
βj − γl. By Theorem 1, the linear factors of g are (excluding excluded pairs!) the common
linear factors of the gl. We have therefore reduced our initial problem to the computation
of the linear factors of each gl. This progress is significant since, as shown in the proof of
Theorem 2, in every gl the exponents δj,l of variable Y are “small” (polynomially bounded
in the size of the input polynomial g). The exponents of X may still be large, however. To
deal with this problem we run the same factoring algorithm on input gl instead of g, with
the roles of variables X and Y interchanged. This reduces the problem to the computation
of the linear factors of polynomials where the exponents of X and Y are all “small”. One
can then use any deterministic polynomial time algorithm that finds the linear factors of a
dense polynomial. �

11



5 NP-hardness of supersparse bivariate irreducibility

In [Plaisted 1977, 1978, 1984] NP-hardness results are derived for supersparse polynomials
over the integers. In [von zur Gathen et al. 1996/1997; Karpinski and Shparlinski 1999]
several hard problems are extended for supersparse polynomials over finite fields. We give
similar NP-hard problems over finite fields, but now for finite fields of arbitrary characteristic.

Formula Polynomial Rootset
zj XN/pj − 1 {(e2πi/N )a | a ≡ 0 (mod pj)}

¬zk
XN − 1

XN/pk − 1
=

∑pk−1
i=0 X iN/pk {(e2πi/N )b | b 6≡ 0 (mod pk)}

L1 ∨ L2 LCM(Poly(L1), Poly(L2)) Roots(L1) ∪ Roots(L2)

zj ∨ zk
(XN/pj − 1)(XN/pk − 1)

XN/(pkpj) − 1

zj ∨ ¬zk
(XN/(pjpk) − 1)(XN − 1)

XN/pk − 1

¬zj ∨ ¬zk
XN − 1

XN/(pjpk) − 1
L1 ∨ L2 ∨ L3 LCM(Poly(L1), Poly(L2), Poly(L3))

⋃3
j=1 Roots(Lj)

zj ∨ zk ∨ zl
(XN/pj − 1)(XN/pk − 1)(XN/pl − 1)(XN/(pjpkpl) − 1)

(XN/(pkpj) − 1)(XN/(pkpl) − 1)(XN/(pjpl) − 1)

zj ∨ ¬zk ∨ zl
(XN/(pjpk) − 1)(XN − 1)(XN/(pkpl) − 1)

(XN/pk − 1)(XN/(pjpkpl) − 1)

¬zj ∨ ¬zk ∨ zl
(XN − 1)(XN/(pjpkpl) − 1)

XN/(pjpk) − 1

¬zj ∨ ¬zk ∨ ¬zl
XN − 1

XN/(pjpkpl) − 1

C1 ∧ · · · ∧ Cs GCD(Poly(C1), . . . , Poly(Cs))
⋂s

i=1 Roots(Ci)

Figure 1: Plaisted’s polynomials for literals, clauses and CNFs (N =
∏n

j=1 pj).

Figure 1 shows Plaisted’s model for 3-SAT in n Boolean variables z1, . . . , zn. Clauses
correspond to factors of XN − 1 with N =

∏n
j=1 pj, where pj distinct primes. We note that

all Poly(Ci) are supersparse polynomials for any clause Ci with one, two or three literals. An
immediate consequence of the construction is that the conjunctive normal form C1∧· · ·∧Cs is
satisfiable if and only if GCD(Poly(C1), . . . , Poly(Cs)) 6= 1. We first generalize that reduction
to coefficients from an arbitrary field field.

Let p - N be a fresh prime and let ΨN(y) =
∏

1≤b<N,GCD(b,N)=1(X − e2bπi/N ) ∈ Z[y] be the

cyclotomic equation of order N . Since ζ = (y mod ΨN(y)) is a representation for a primitive
N -th root of unity, we have over the integers

XN − 1 ≡ (X − y1)(X − y2) · · · (X − yN) mod (ΨN(y)). (17)
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Let Fq ⊇ Zp be the splitting field of ΨN(y) mod p (one has q = pλ where λ is the multiplicative
order of p modulo N) and let α ∈ Fq with ΨN(α) = 0 in Fq. Taking (17) modulo p and
evaluating the resulting polynomial identity at y = α, that is, taking it modulo y−α | ΨN(y),
one obtains

XN − 1 = (X − α1)(X − α2) · · · (X − αN) in Fq[X].§ (18)

Since p - N , the polynomial XN − 1 mod p has no multiple roots, and we can replace e2πi/N

by α in Plaisted’s construction.

Proposition 2 The set of tuples of relatively prime supersparse polynomials in Fq[X] is
co-NP-hard for arbitrary q = pµ.

In [Plaisted 1984], co-NP-hardness is shown for pairs of supersparse relatively prime
polynomials over Z. However, Plaisted’s pairs do not remain relatively prime modulo all
primes p. We overcome that deficiency via randomized reductions.

Lemma 3 Let fi(X) ∈ K[X] be nonzero polynomials for i = 1, . . . , s, s ≥ 2, K a field,
d = deg(f1) and S ⊂ K. Then for randomly chosen ci ∈ S, 3 ≤ i ≤ s, we have the
probability estimate

Prob
(

GCD
1≤i≤s

(fi) = GCD(f1, f2 +
s

∑

i=3

cifi)
)

≥ 1 − d
/

|S| (19)

Furthermore, if f2 is squarefree and e = deg(f2) ≥ deg(fi) for i ≥ 3, then with probability no
less than 1 − (2e − 1)/|S| the polynomial f2 +

∑s
i=3 cifi will remain squarefree.

Proof. The estimate (19) is lemma 2 in [Dı́az and Kaltofen 1995]. Squarefreeness follows
from similar techniques by considering the discriminant of F = f2 +

∑s
i=3 yifi as a Sylvester

resultant of F and ∂F/∂X with symbolic yi and by applying the Schwartz/Zippel lemma.
�

We obtain the following NP-hardness problems under randomized reduction, which gen-
eralize the results in [Karpinski and Shparlinski 1999] to arbitrary characteristic.

Theorem 4 The set of pairs of relatively prime supersparse polynomials in K[X], the set of
squarefree supersparse polynomials in K[X], and the set of irreducible supersparse polynomials
in K[X, y] are NP-hard under randomized reduction for K = Q and K = Fq with arbitrary p
and sufficiently large q = pm. NP-hardness of irreducibility remains valid if we assume that
the supersparse bivariate polynomials are monic in X.

Proof. Reduction to two polynomials follows from proposition 2 and lemma 3 (cf. [von zur
Gathen et al. 1996/1997]). NP-hardness of squarefreeness follows by considering the product
f1(f2 +

∑s
i=3 cifi). Since Plaisted’s polynomials fi = Poly(Ci) are divisors of XN − 1 and

therefore are squarefree, with high probability both factors will be squarefree. Therefore

§With N = pµ − 1, 1 ≤ µ, we have proven that the multiplicative group of a finite field Fpµ is cyclic. For
that proof the only property of ΨN needed is that it is the monic integral minimum polynomial of a primitive
N -th root of unity in C.
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their product is not squarefee if and only if the two factors have a common GCD, which is
NP-hard under randomized reduction. NP-hardness of irreducibility follows by considering
the polynomial

F (X,Y ) = Xuf1(X) + Y (f2(X) + X
s

∑

i=3

cifi(X))

for sufficiently large u to make F (X,Y ) monic in X (cf. [Karpinski and Shparlinski 1999,
Proof of Theorem 1]). Note that Plaisted’s polynomials fi = Poly(Ci) are not divisible by X.
Shifting f3, . . . , fs by a factor of X ensures that f2 + c3Xf3 + · · ·+ csXfs is relatively prime
to Xu. Clearly, F (X,Y ) is irreducible if and only if GCD(f1, f2 + X

∑s
i=3 cifi) = 1, that if

and only if GCD(f1, . . . , fs) = 1 with high probability. �

For example, NP-hardness of supersparse bivariate irreducibility yields the following re-
duction to integer factoring.

Corollary 1 Suppose we have a Monte Carlo polynomial-time irreducibility test for super-
sparse polynomials in F2m [X,Y ] for sufficiently large m. Then large integers can be factored
in Las Vegas polynomial-time.

Already in [Karpinski and Shparlinski 1999], Hilbert irreducibility is mentioned as a means
to establish NP-hardness of irreducibility of supersparse polynomials in Z[X]. However, no
proven effective versions seem to be known that would yield a randomized polynomial reduc-
tion (cf. [Sprindžuk 1983; Schinzel and Zannier 1995]). Nonetheless, if a fast irreducibility
test of supersparse polynomials in Z[X] were discovered, we believe that Hilbert irreducibil-
ity would yield fast algorithms for NP-complete problems, thus resulting in what we call a
“good heuristic” for NP-completeness [Kaltofen 2003b]. Of course, the Hilbert irreducibility
theorem is not valid over Fq and the hardness of supersparse irreducibility in Fq[X] remains
open.

In addition, the complexity of root finding of supersparse polynomials over finite fields
is open. In [Kaltofen 2003b], we have posed two open problems: Given a prime number p
and integers b, c ∈ Zp and α, β with with p − 1 > α > β > 0, compute a ∈ Zp such that
aα + baβ + c ≡ 0 (mod p) in (log p)O(1) bit operations. Alternatively, prove that computing
a root in Zp of a polynomial given by straight-line program over Zp is NP-hard.
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