
On the expressive power of CNF formulas of
bounded Tree- and Clique-Width

Irenée Briquel1, Pascal Koiran1 and Klaus Meer2 ?

1 Laboratoire de l’Informatique du Parallélisme
ENS Lyon, France, e–mail: irenee.briquel,pascal.koiran@ens-lyon.fr

2 Lehrstuhl Theoretische Informatik
BTU Cottbus, Germany, e–mail: meer@informatik.tu-cottbus.de

Abstract. The starting point of our work is a previous paper by Flarup, Koiran, and
Lyaudet [8]. There the expressive power of certain families of polynomials is investigated.
Among other things it is shown that polynomials arising as permanents of bounded
tree-width matrices have the same expressiveness as polynomials given via arithmetic
formulas. A natural question is how expressive such restricted permanent polynomials
are with respect to other graph-theoretic concepts for representing polynomials over a
field K. One such is representing polynomials by formulas in conjunctive normal form.
Here, a monomial occurs according to whether the exponent vector satisfies a given CNF
formula or not. We can in a canonical way assign a graph to such a CNF formula and
speak about the tree-width of the related CNF polynomial.
In this paper we show that the expressiveness of CNF polynomials of bounded tree-
width again gives precisely arithmetic formulas. We then study how far the approach
of evaluating subclasses of permanents efficiently using a reduction to CNF formulas of
bounded tree-width leads. We show that no family of CNF polynomials of bounded tree-
width can express general permanent polynomials. The statement is unconditional. In
an earlier version of this paper [10] this result was obtained by reduction to an OBDD
lower bound. Here we appeal instead to arguments from communication complexity. The
present approach provides a new point of view on this problem; it also has the advantage
of providing at little additional cost some new lower bounds, derived from communication
complexity lower bounds in the so-called ”best-case” model.
Finally, we observe that an analoguous impossibility result holds for CNF polynomials
of bounded clique-width. This time the result is not unconditional : it relies on the
assumption that #P 6⊆ FP/poly.
The paper contributes to the comparison between classical Boolean complexity and al-
gebraic approaches like Valiant’s one.

1 Introduction

An active field of research in complexity is devoted to the design of efficient algorithms for
subclasses of problems which in full generality likely are hard to solve. It is common in this
area to define such subclasses via bounding some significant problem parameters. Typical such
parameters are the tree- and clique-width if a graph structure is involved in the problem’s
description.

In the center of the present paper stand problems related to families of polynomials. These
families are given in a particular manner through certain Boolean formulas in conjunctive
normal form, shortly CNF formulas. More precisely, we consider functions of the form
? Support of the following institutions is gratefully acknowledged: ENS Lyon; the French embassy in

Denmark, Service de Coopération et d’Action Culturelle, Ref.:39/2007-CSU 8.2.1; the Danish Agency
for Science, Technology and Innovation FNU.

2 I. Briquel, P. Koiran, and K. Meer

f(x) =
∑

e∈{0,1}n

ϕ(e)xe, x ∈ {0, 1}n , for some n ∈ N (∗)

where ϕ is a CNF formula in n Boolean variables. We are interested in the question how
expressive such a representation of polynomials is and under which additional conditions f(x)
can be evaluated efficiently. Fischer, Makowksy, and Ravve [7], extending earlier results from
[3], have shown that the counting SAT problem, i.e. computing

∑
e∈{0,1}n

ϕ(e) for a CNF formula

ϕ can be solved in time O(n · 4k) if a certain bipartite graph Gϕ canonically attached to ϕ is
of bounded tree-width k.

Our first main result precisely characterizes the expressive power of functions of form (∗)
when Gϕ is of bounded tree-width. It is shown that the class of these polynomials equals both
the class of polynomials representable by arithmetic formulas of polynomial size and the class of
functions obtained as permanents of matrices of bounded tree-width and polynomially bounded
dimension. Here, equality of the latter two concepts was known before due to a result of Flarup,
Koiran, and Lyaudet [8].

Recall that in Valiant’s algebraic model of computation for families of polynomials the
permanent is VNP complete and thus unlikely to be efficiently computable. Though an un-
conditional proof of this conjecture seems extremely difficult, we can at least show that trying
to obtain an efficient algorithm for computing permanents through formulas of type (∗) with
Gϕ of bounded tree-width must fail. Such an algorithm would exist if the boolean function
PERMn recognizing n× n permutation matrices could be written as a (polynomial size) CNF
formula of bounded treewidth. We show that such a CNF formula does not exist. This result is
unconditional in that it does not rely on any open conjecture in complexity theory. In an earlier
version of this paper [10] this impossibility result was obtained by reduction to an OBDD lower
bound. Here we appeal instead to arguments from communication complexity (incidentally, this
seems to be the first time that the PERMn function is studied from the point of view of com-
munication complexity). The present approach provides a new point of view on this problem;
it also has the advantage of providing at little additional cost some new lower bounds for other
functions, derived from communication complexity lower bounds in the so-called “best case”
model.

Finally, we pose the corresponding question for CNF formulas of bounded clique-width.
Using another result from [7] we show that expressing the permanent of an arbitrary matrix by
formulas of type (∗), this time with Gϕ of bounded clique-width would imply #P ⊆ FP/poly
and thus is unlikely.

The paper is organized as follows. In Section 2 we recall basic definitions as well as the
needed results from [7] and [8]. Section 3 first shows how permanents of matrices of bounded
tree-width can be expressed via polynomials of form

∑
e∈{0,1}n

ϕ(e)xe with Gϕ of bounded tree-

width. Then, we extend a result from [7] to link such polynomials to arithmetic formulas.
The results in [8] now imply equivalence of all three notions. In Section 4 the above mentioned
negative results concerning expressiveness of (general) permanents by CNF formulas of bounded
tree- or clique-width are proven.

Our results contribute to the comparison of Boolean and algebraic complexity. In particular,
we consider it to be interesting to find more results like Theorem 7 below which states that
certain properties cannot be expressed via (certain) graphs of bounded tree-width.

On the expressive power of CNF formulas 3

2 Basic definitions

In this section we collect the basic definitions and results that are needed below. We try to keep
the section as short as possible since most of the notions are well known. Nevertheless, for the
readers’ convenience we collect all notions needed at one place.

2.1 Arithmetic circuits

Definition 1. a) An arithmetic circuit is a finite, acyclic, directed graph. Vertices have in-
degree 0 or 2, where those with indegree 0 are referred to as inputs. A single vertex must
have outdegree 0, and is referred to as output. Each vertex of indegree 2 must be labeled by
either + or ×, thus representing computation. Vertices are commonly referred to as gates.
By choosing as input nodes either some variables x or constants from a field K a circuit in
a natural way represents a multivariate polynomial over K.

b) An arithmetic formula is a circuit for which all gates exept the output have outdegree 1.
c) The size of a circuit is the total number of gates in the circuit.

Note that for formulas the reuse of partial results is not allowed. For more on different
subclasses of arithmetic circuits see [12].

2.2 Tree- and clique-width

Tree-Width for undirected graphs is defined as follows:

Definition 2. Let G = 〈V,E〉 be a graph. A k-tree-decomposition of G is a tree T = 〈VT , ET 〉
such that:

(i) For each t ∈ VT a subset Xt ⊆ V of size at most k + 1.
(ii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.

(iii) For each vertex v ∈ V the set {t ∈ VT |v ∈ XT } forms a (connected) subtree of T .

The tree-width twd(G) of G is then the smallest k such that there exists a k-tree-decomposition
for G.

If we require the decomposition trees to be paths, then we obtain the path-width of the given
graph.

The path-width of a graph G with n nodes can be bounded from above by O(twd(G) · log n),
see [2].

For the algorithmic treatment of CNF formulas below we recall the definition of H-sums of
graphs, see [7].

Definition 3. Let G1, G2 be two graphs that share (by isomorphy) a common induced subgraph
H. The H-sum G := G1 ⊕H G2 of G1 and G2 is the graph obtained by joining the vertices and
edges of G1 and G2 while identifying the two copies of H in the new graph.

Given a k-tree decomposition of a graph G with sets of vertices Xt, we can consider the
subgraph Ht of G induced by Xt and reconstruct G using a sequence of Ht-sums.

Next we recall the clique-width notion.

Definition 4. A graph G has clique-width at most k iff there exists a set of k labels S such
that G can be constructed using a finite number of the following operations:

i) verta, a ∈ S (create a single vertex with label a);

4 I. Briquel, P. Koiran, and K. Meer

ii) φa→b(H), a, b ∈ S (rename all vertices having label a to have label b);
iii) ηa,b(H), a, b ∈ S, a 6= b (add edges between all vertices having label a and all vertices having

label b);
iv) H1 ⊕H2 (disjoint union of graphs).

To each graph of clique-width k we can attach a (rooted) parse-tree whose leaves correspond
to singleton graphs and whose vertices represent one of the operations above. The graph G then
is represented at the root.

2.3 Permanent polynomials

Definition 5. The permanent of an (n, n)-matrix M = (mi,j) is defined as

perm(M) :=
∑
σ∈Sn

n∏
i=1

mi,σ(i) ,

where Sn is the symmetric group.

We are interested in representing polynomials via permanents. If M above has as entries
either variables or constants from some field K, then f = perm(M) is a polynomial with
coefficients in K (in Valiant’s terms f is a projection of the permanent polynomial). One main
result in [8] characterizes arithmetic formulas of polynomial size by certain such polynomials.
The tree-width of a matrix M = [mij] is defined to be the tree-width of the graph including an
edge (i, j) iff mij 6= 0.

Theorem 1. ([8]) Let (fn)n∈N be a family of polynomials with coefficients in a field K. The
following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formulas.
(ii) There exists a family (Mn)n∈N of polynomial size, bounded tree-width matrices such that

the entries of Mn are constants from K or variables of fn, and fn = perm(Mn).

2.4 Clause graphs

One of our goals is to relate Theorem 1 to yet another concept, namely CNF formulas of bounded
tree-width. The latter will be defined in this subsection. Our presentation follows closely [7].

Definition 6. Let ϕ be a Boolean formula in conjunctive normal form with clauses C1, . . . , Cm
and Boolean variables x1, . . . , xn.

a) The signed clause graph SI(ϕ) is a bipartite graph with the xi and the Cj as nodes. Edges
connect a variable xi and a clause Cj iff xi occurs in Cj . An edge is signed + or − if xi
occurs positively or negated in Cj .

b) The incidence graph I(ϕ) of ϕ is the same as SI(ϕ) exept that we omit the signs +,−.
c) The primal graph P (ϕ) of ϕ has only the xi’s as its nodes. An edge connects xi and xj iff

both occur commonly in one of the clauses.
d) The tree- or clique-width of a CNF formula ϕ is defined to be the tree- or clique-width of

I(ϕ), respectively.
If below we want to speak about the tree-width of P (ϕ) we mention this explicitly.

In [7] the authors prove:

On the expressive power of CNF formulas 5

Theorem 2. a) Given ϕ and a tree-decomposition of I(ϕ) of width k one can compute the
number of satisfying assignments

∑
x∈{0,1}n

ϕ(x) of ϕ in 4kn arithmetic operations.

b) Given a CNF formula ϕ and a parse-tree for the signed clause graph SI(ϕ) of clique-width
≤ k the number

∑
x
ϕ(x) of satisfying assignments of ϕ can be computed in O(n2ck) many

arithmetic operations.

Below, we extend the algorithm proving Theorem 2 a) in order to relate CNF formulas to
arithmetic formulas and to Theorem 1. Note that similar results to those of part a) of Theorem
2 have independently been obtained in [13].

3 Expressiveness of CNF polynomials of bounded tree-width

In this section we prove our first main result. We study how expressive polynomials pn are
which are given via CNF formulas ϕn of bounded tree-width. It turns out that permanents
of bounded tree-width matrices are captured by such CNF polynomials, whereas the latter in
turn are captured by arithmetic formulas. Given the equivalence stated in Theorem 1 all three
concepts have the same expressive power.

3.1 From permanents to clause graphs

Theorem 3. Let M = [mij] be an n× n matrix such that the corresponding directed weighted
graph GM = (VM , EM) is of tree-width k. Then there is a CNF formula ϕ of tree-width O(k2)
and of size polynomially bounded in n such that

perm(M) =
∑
e,θ

ϕ(e, θ) ·me.

Here, e = {ei,j} denotes variables representing the edges of GM ,m = {mi,j} denotes the entries

of M and me :=
∏
i,j

m
ei,j

i,j , where mei,j

i,j =
{
mi,j if ei,j = 1

1 if ei,j = 0 .

For every e there exists θ such that ϕ(e, θ) = 1 if and only if e is a cycle cover of GM ; in
this case, the corresponding θ is unique.

Moreover, the number of additional variables θ is of order O(n). Finally, a tree decomposition
of I(ϕ) of width O(k2) can be obtained from a decomposition of GM in time O(n).

Remark 1. In the above CNF polynomial
∑
e,θ

ϕ(e, θ) ·me there are no monomials corresponding

to θ. Formally one could introduce another block y of variables and add to each monomial
me another factor yθ. Then perm(M) is obtained as a projection (in Valiant’s sense) of a
CNF-polynomial

∑
e,θ

ϕ(e, θ) ·me · yθ by plugging in for each y-variable the value 1.

Proof. Let (T, {Xt}t) be a tree decomposition of width k for GM . Without loss of generality
T is a binary tree. The CNF formula ϕ to be constructed contains two blocks of variable
vertices, one being the edge-variables ei,j of GM and another block θ of auxiliary variables to
be explained below. The tree decomposition (T, {X ′t}t) that we shall construct for ϕ uses the
same underlying tree T as the tree decomposition of GM , but the boxes X ′t will be different
from the boxes Xt in the initial decomposition.

A straightforward set of clauses to describe cycle covers in GM is the following collection:

(i) for each vertex i ∈ VM clauses Outi and Ini containing as its literals all outgoing edges
from and all incoming edges into i, respectively;

6 I. Briquel, P. Koiran, and K. Meer

(ii) for each i ∈ VM and each pair of outgoing edges ei,j , ei,l a clause ¬ei,j ∨ ¬ei,l; similarly for
incoming edges to i.

A tree decomposition of the resulting formula then is obtained from T by taking the same tree
and joining in a box X ′t for every i ∈ Xt all vertices resulting from (i) and (ii). However, due
to the conditions under (ii) this might not result in a decomposition of bounded width.

To resolve this problem for each box t ∈ T and each i ∈ VM we add additional variables
checkti+, check

t
i−. Fix t and the subtree Tt of T that has t as its root. For any assignment of

the ei,j indicating which edges in GM have been chosen for a potential cycle cover a condition
checkti+ = 1 indicates that an edge starting in i has already been chosen with respect to those
vertices of GM occurring in the subtree Tt.

Further clauses are introduced to guarantee that each i finally is covered exactly once for a
satisfying assignment of ϕ(e, θ), where θ is the collection of all check variables. More precisely,
we proceed bottom up. Let t be a leaf of T. For every i ∈ Xt in addition to the variable vertices
checkti+, check

t
i− introduce clause variables representing the following clauses:

(1)
∨

j∈Xt

ei,j ∨ ¬checkti+;

Interpretation: if none of the ei,j ’s where chosen yet, then checkti+ = 0.
(2) ¬ei,j ∨ ¬ei,l for all j, l ∈ Xt;

Interpretation: at most one outgoing edge covers i.
(3) ¬ei,j ∨ ¬checkti+ for all j ∈ Xt;

Interpretation: if an ei,j was chosen (i.e. ei,j = 1), then checkti+ = 1.

Analogue clause variables are added for checkti−.
For the box X ′t in the decomposition of I(ϕ) that corresponds to box Xt of T all variable

vertices ei,j , checkti+, check
t
i−, i, j,∈ Xt as well as the clause variables resulting from (1)-(3)

above are included. These are O(k2) many elements in X ′t. Now T ′ is constructed bottom up.
The check variables propagate bottom up the information whether a partial assignment for
those ei,j that already occured in a subtree can still be extended to a cycle cover of GM . At the
same time, the width of the new boxes of T ′ constructed will not increase too much. Suppose in
T there are boxes t, t1, t2 such that t1 is the left and t2 the right child of t. Let i ∈ Xt∩Xt1∩Xt2 .
The case where i only occurs in two or one of the boxes is treated similarly. Assuming X ′t1 , X

′
t2

already been constructed the following clauses are included in Xt :

(1′)
∨

j∈Xt\{Xt1∪Xt2}
ei,j ∨ checkt1i+ ∨ check

t2
i+ ∨ ¬checkti+;

Interpretation: if all new ei,j ’s and the previous check variables are 0, then the new check
variable checkti+ is 0 as well;

(2′) ¬x ∨ ¬y for all x, y ∈ {ei,j : j ∈ Xt \ {Xt1 ∪Xt2}} ∪ {check
t1
i+, check

t2
i+};x 6= y

Interpretation: at most one among the old check variables and the new edge variables gets
the value 1;

(3′) ¬x ∨ ¬checkti+ for all x ∈ Xt \ {Xt1 ∪Xt2} ∪ {check
t1
i+, check

t2
i+};

Interpretation: if one among the values ei,j or checkt1i+, check
t2
i+ is 1, then

checkti+ = 1.

Again, analogue clauses are added for the ingoing edges to i. Box X ′t contains all related
edge vertices ei,j for the new j ∈ Xt \ {Xt1 ∪Xt2}, the six check vertices and the O(k2) many
clause vertices resulting from (1’)-(3’).

This way (T, {X ′t}t) is obtained. Finally, for each i ∈ T two new clauses containing the
single literals checkri+ and checkri−, respectively, are included in that box Xr which represents

On the expressive power of CNF formulas 7

the root r of the subtree of T generated by all boxes that contain i. This is to guarantee that i
is covered in both directions.

Clearly, (T, {X ′t}t) is a binary tree with each X ′t containing at most O(k2) many vertices.
Let θ denote the vector of all check variables. It is obvious from the construction that

∃θ ϕ(e, θ)⇔ e represents a cycle cover

(via those ei,j that have value 1). Moreover, for each assignment of e∗ giving a cycle cover there
is precisely one assignment θ∗ such that ϕ(e∗, θ∗) = 1 because e∗ uniquely determines which
check variables have to be assigned the value 1. Therefore

perm(M) =
∑
e,θ

ϕ(e, θ) ·me.

Finally, it remains to show that (T ′, {X ′t}t) actually is a tree decomposition of the graph I(ϕ).
Vertices resulting from check variables at most occur in two consecutive boxes of T ′ and thus
trivially satisfy the connectivity condition. Clause vertices related to one of the construction
rules (1), (3), (1′) − (3′) for a fixed t ∈ T only occur in the single box X ′t. Finally, an edge
variable ei,j occurs in a box X ′t iff both i and j occur in Xt. Thus, the fact that (T, {Xt}t) is
a tree decomposition implies that the connectivity condition also holds for these vertices and
(T ′, {X ′t}t). ut

3.2 From clause graphs to arithmetic formulas

In the next step we link CNF polynomials to arithmetic formulas. More precisely, the next
theorem shows the latter concept to be strong enough to capture the former.

Theorem 4. Let K be a field. Let {ϕn}n be a family of CNF formulas of bounded tree-width
k and with n variables, SI(ϕn) the related signed clause graphs and (Tn, {Xt}t) a tree decom-
position of I(ϕn). Then there is a family {fn}n of polynomials with coefficients in K such that
{fn}n can be represented by a family of polynomially sized arithmetic formulas and

fn(x) =
∑

z∈{0,1}n

ϕn(z) · xz

for all x ∈ Kn.

The proof is based on an extension of results in [7], namely Theorem 1.3. In the latter
it is shown how to count efficiently satisfying assignments for a CNF formula ϕ, i.e. how to
compute

∑
z∈{0,1}n

ϕn(z), where I(ϕn) is of bounded tree-width and a tree decomposition is

given. Our extension is dealing with finding short arithmetic formulas for polynomials of the
form

∑
z
ϕ(z) ·xz. The proof of Theorem 1.3. in [7] proceeds along a tree-decomposition of I(ϕn)

analyzing how the evaluation can be done for a clause graph G obtained as an H-sum of two
other clause graphs G1 and G2, see Definition 3.

Our proof of Theorem 4 works as follows. We extend the ideas of [7] in order to show how
one efficiently can evaluate fn(x) for all x ∈ Kn when fn is defined as in the statement. Note
that counting satisfying assignments corresponds to evaluating fn(1, . . . , 1). Taking the xi’s
as variables the efficient algorithm obtained can then easily be converted into an arithmetic
formula that has polynomial size.

Let us first adapt some notation from [7]. Let Σ be a set of clauses over a variable set V ,
let W ⊆ V and z : W → {0, 1} an assignment for the variables in W. Denote by ϕ(Σ) the CNF

8 I. Briquel, P. Koiran, and K. Meer

formula
∧
C∈Σ

C and by Σ(z) the set of clauses obtained from Σ when replacing each v ∈ W by

the value z(v).
The main part of the proof of Theorem 2 now is to analyze how the decomposition along H-

sums used in [7] in order to calculate
∑
z
ϕG(z) can be extended to calculate as well

∑
z
ϕn(z) ·xz.

We need an additional definition:

Definition 7. Let K be a field, G a clause graph with variable vertices V, |V | = n, ϕG the
corresponding CNF formula, W ⊆ V and z : W → {0, 1} a (partial) assignment for the variables
in W.

Then the polynomial f(G,W,z) is defined as

f(G,W,z)(x) :=
∑

z′:V \W→{0,1}

ϕG(z′, z) ·
∏

i∈V \W

x
z′i
i

 , ∀x ∈ Kn.

Above the partial assignments z′, z are plugged into ϕG in the obvious way.
In particular, if W = ∅ (and thus z = ∅) we define

f(G,∅,∅)(x) :=
∑

z′:V→{0,1}

ϕG(z′) · xz
′
.

The following technical proposition shows how f(G,∅,∅)(x) can be computed along an H-sum
decomposition of G. As consequence Theorem 4 follows. We suppose the reader to be familiar
with the proof of the related lemmata in [7].

Proposition 1. Let G,G1, G2 be clause graphs with variable vertices V, V1, and V2, and clause
vertices C,C1, and C2, respectively. Suppose that G = G1⊕HG2, where H is an induced subgraph
of G1, G2 with variable vertices W and clause vertices D. Let ϕ1, ϕ2 denote the CNF formulas
related to G1, G2.

a) For D = ∅ it is

f(G,∅,∅)(x) =
∑

z:W→{0,1}

(
f(G1,W,z)(x) · f(G2,W,z)(x)

)
·
∏
i∈W

xzi
i ∀x ∈ Kn.

b) Suppose W = ∅ and D = {D1, . . . , Dm},m ∈ N. For an X ⊆ {1, . . . ,m} and i = 1, 2 let
Si(X) denote the set of clauses obtained from all Dj , j ∈ X when only maintaining literals
related to Vi. Finally, let Gi(X) be the clause graph with variable vertices Vi and clause
vertices Ci \ Si(X). Then

f(G,∅,∅)(x) =
m∑
`=1

(−1)`
∑

X1,X2⊆{1,...,m}
|X1∩X2|=`

f(G1(X1),∅,∅)(x) · f(G2(X2),∅,∅)(x) .

c) Let both W 6= ∅, D = {D1, . . . , Dm} 6= ∅, then using the same notation as in b) one has for
all x ∈ Kn :

f(G,∅,∅)(x) =∑
z:W→{0,1}

 m∑̀
=1

(−1)`
∑

X1,X2⊆{1,...,m}
|X1∩X2|=`

f(G1(X1),W,z)(x) · f(G2(X2),W,z)(x)

 · ∏
i∈W

xzi
i .

On the expressive power of CNF formulas 9

Proof. a) In [7] it is shown that∑
z′:V→{0,1}

ϕG(z′) =

∑
z:W→{0,1}

(∑
z(1):V1\W→{0,1}

ϕ1(z(1), z)

)
·

(∑
z(2):V2\W→{0,1}

ϕ2(z(2), z)

)
.

In order to extend this to the evaluation of polynomials one has to take care about not including
the factor

∏
i∈W

xzi
i twice. This is the reason why defining f(G,W,z) as above. One gets

f(G,∅,∅)(x) =
∑

z′:V→{0,1}

(
ϕG(z′) ·

∏
i∈V

x
z′i
i

)
=

∑
z:W→{0,1}

(∑
z(1):V1\W→{0,1}

ϕ1(z(1), z) ·
∏

i∈V1\W
x
z
(1)
i
i

)
·

·

(∑
z(2):V2\W→{0,1}

ϕ2(z(2), z) ·
∏

i∈V2\W
x
z
(2)
i
i

)
·
∏
i∈W

xzi
i

=
∑

z:W→{0,1}

(
f(G1,W,z)(x) · f(G2,W,z)(x) ·

∏
i∈W

xzi
i

)
as was claimed. Note that once a z : W → {0, 1} has been fixed the expressions f(Gi,W,z), i = 1, 2
have again the form f(G′i,∅,∅), where G′i results from Gi by plugging the values for z into the
clauses and then formally removing W. We thus can continue similarly for further decomposi-
tions of G.

b) This is basically Lemma 4.6 from [7]. The additional factors
∏
i∈V1

x
z
(1)
i
i and

∏
i∈V2

x
z
(2)
i
i do

not change anything due to the fact that the variable vertex sets V1 and V2 are disjoint in this
case.

c) As in [7] also the mixed case follows from a) and b) above. ut

Proof. (of Theorem 4) Without loss of generality we suppose the tree decomposition (T, {Xt}t)
of a given G to be of depth O(log n), see [1]. This will increase the tree-width by a constant
factor only. 1 In order to find an arithmetic formula for

∑
z:V→{0,1}

ϕn(z) · xz = f(G,∅,∅)(x) we

perform the dynamic programming algorithm provided by Proposition 1 bottom up along T. For
each subgraph represented by a leave node the evaluation easily results in an arithmetic formula
of length 2O(k). When climbing up the tree at each node representing an H-sum operation the
formulas resulting from the three cases of Proposition 1 contribute to the formula size by a
factor of 2O(k). Thus, since T has logarithmic depth the total formula size is of order at most
nO(k). ut

Theorems 1, 3 and 4 imply

Theorem 5. Let (fn)n∈N be a family of polynomials with coefficients in a field K. The following
properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formulas.
(ii) There exists a family (Mn)n∈N of polynomial size, bounded tree-width matrices such that

the entries of Mn are constants from K or variables of fn, and fn = perm(Mn).

1 Though it is de facto unnecessary to first balance T but makes the complexity arguments a bit easier.

10 I. Briquel, P. Koiran, and K. Meer

(iii) There exists a family (ϕn)n∈N of CNF formulas having polynomial size in n and of bounded
tree-width such that fn(x) can be expressed as the projection: fn(x) =

∑̃
e

ϕn(ẽ) · zẽ. Here,

projection means that the zi’s can be taken either as constants from K or as variables among
the xj’s. ut

4 Lower bounds

Given Theorem 3 together with the efficient algorithm resulting from Theorem 4 the following
question arises: How far does the approach of reducing permanent computations to computa-
tions of the form

∑
e,θ

ϕ(e, θ) ·me lead, when ϕ comes from a clause graph of bounded tree- or

bounded clique-width?
Define the boolean function PERMn : {0, 1}n×n → {0, 1} as the function accepting the n×n

permutation matrices, i. e. boolean matrices that have exactly one 1 in each row and one 1 in
each column.

Formulated a bit differently we ask whether there exists a CNF formula ϕ(e, θ) of bounded
tree- or clique-width, respectively, such that ϕ(e, θ) = 1 iff e ∈ {0, 1}n×n is a permutation
matrix and for each permutation matrix e there is exactly one θ s.t. ϕ(e, θ) = 1.

In this section we prove that such a formula does not exist in case of tree-width. A second
result shows that when replacing tree- by clique-width a formula with the above properties does
not exist unless #P ⊆ FP/poly.

4.1 Lower bound for tree-width

Towards our goal we employ results from communication complexity. We will relate it to the
path-width of the primal graphs of formulas. Recall that the path-width of a graph with n
nodes is bounded from above by O(t · log n), where t denotes its tree-width [2].

In order to be able to argue on primal graphs we need the following result that justifies the
replacement of a formula’s incidence graph by its primal graph.

Proposition 2. Let ϕ = C1∧ . . .∧Cm be a CNF formula with n variables x1, . . . , xn such that
its incidence clause graph I(ϕ) has tree-width k. Then there is a CNF formula ϕ̃(x, y) such that
the following conditions are satisfied:

– each clause of ϕ̃ has at most O(k) many literals;
– the primal graph P (ϕ̃) has tree-width O(k). A tree-decomposition can be constructed in

linear time from one of I(ϕ);
– the number of variables and clauses in ϕ̃ is linear in n;
– for all x∗ ∈ {0, 1}n it is ϕ(x∗) iff there exists a y∗ such that ϕ̃(x∗, y∗). Such a y∗ moreover

is unique.

Proof. Let (T, {Xt}t) be a (binary) tree-decomposition of I(ϕ). The construction below com-
bines the use of check variables in the proof of Theorem 3 with the usual way of reducing a
general CNF formula instance to one with bounded number of literals in each clause. Let C
be a clause of ϕ and TC the subtree of T induced by C. We replace C bottom up in TC by
introducing O(n) many new variables and clauses. More precisely, start with a leaf box Xt of
TC . Suppose it contains k + 1 variables that occur in literals of C, without loss of generality
say x1∨ . . .∨xk+1. Introduce a new variable yt together with O(k) many clauses expressing the
equivalence yt ⇔ x1∨ . . .∨xk+1. Each of the new clauses has at most k+ 2 many literals. Next,
consider an inner node t of TC having two sons t1, t2. Suppose x′1, . . . , x

′
k+1 to be those variables

in Xt that occur as literals in C, again without loss of generality in the form x′1 ∨ . . . ∨ x′k+1.

On the expressive power of CNF formulas 11

If yt1 , yt2 denote the new variables related to C that have been introduced for Xt1 , Xt2 , for Xt

define a new variable yt together with clauses expressing yt ⇔ yt1 ∨ yt2 ∨x′1 ∨ . . .∨x′k+1. Again,
there are at most O(k) new clauses containing O(k) literals each. Finally, if t is the root of TC
we define yt as before and add a clause saying yt = 1.

Do the same for all clauses of ϕ. This results in a CNF formula ϕ̃ which depends on O(m ·n)
additional variables y and contains O(m ·n ·k) many clauses. The construction guarantees that
ϕ(x) iff there exists a y such that ϕ̃(x, y) and in that case y is unique.

A tree-decomposition of the primal graph P (ϕ̃) is obtained as follows. For each occurrence
of a clause C in Xt of T replace the clause vertex by the newly introduced y variables related
to the clause and the box Xt. In addition, for boxes Xt, Xt1 , Xt2 such that t1, t2 are sons of t
include the variables yt1 , yt2 also in the upper box Xt. The xi variables that previously occurred
are maintained. Since for a single box Xt at most three yj are included for each clause, and
since there are at most k + 1 clause vertices in an original box, the tree-width of P (ϕ̃) is
≤ 4(k + 1). The decomposition satisfies the requirements of a tree-decomposition since we did
not change occurrences of the xi’s and the only yt-variables that occur in several boxes occur
in two consecutive ones. ut

Our proofs below rely on definitions from communication complexity which we briefly recall.
For more on this see [11].

Definition 8. Let f : {0, 1}n 7→ {0, 1} be a Boolean function.

a) Consider a partition of the n variables of f into two disjoint sets x = {x1, . . . , xn1}, y =
{y1, . . . , yn2}, n1 + n2 = n. The communication complexity of f with respect to (x, y) is
the lowest amount of bits that two processors, the first working on the variables x and the
second on the variables y, need to exchange in order to compute f in common.

b) The one-way communication complexity of f with respect to (x, y) is the lowest amount of
exchanged bits needed to compute f if only one processor is allowed to send bits to the other.

c) If above we only allow variable partitions of same cardinality, i.e., n is even and |x| = |y|,
and minimize over all of them we obtain the best-case and best-case one-way communication
complexity, respectively.

d) The non-deterministic communication complexity of f with respect to (x, y) is the lowest
amount of bits that two processors, the first working on the variables x, the second on the
variables y, and each having access to a source of non deterministic bits, need to exchange
in order to compute in common the function f in the following sense :
• If f(x) = 1, at least one of the possible non-deterministic computations must be accept-

ing
• If f(x) = 0, all the non-deterministic computations must be non-accepting.

A useful approach in communication complexity consists in considering for a given function
f(u, v) the matrix associated to it :

Definition 9. Let f : U × V → {0, 1} be a boolean function.

a) We call the matrix of f the matrix (f(u, v)), where the different assignments of u denote
the rows and those to v denote the columns.

b) A rectangle of the matrix (f(u, v)) is a set of entries composed of the intersection of a
certain set of rows and a certain set of columns. That is, a set of entries R is a rectangle
if and only if the following is true : ∃Ũ ⊆ U, Ṽ ⊆ V such that R = Ũ × Ṽ .

c) A rectangle of the matrix (f(u, v)) is called monochromatic if f has the same value on each
entry of the rectangle.

The following two results are classical in communication complexity [11, 14] :

12 I. Briquel, P. Koiran, and K. Meer

Theorem 6. Let f(x, y) be a function over two boolean vectors x and y.

(i) The one-way communication complexity of f equals the logarithm of the number of different
rows in the matrix (f(u, v)).

(ii) The non-deterministic communication complexity of f equals the logarithm of the minimal
number of monochromatic rectangles of the matrix (f(u, v)) needed to cover all values 1 in
the matrix.

For the lower bound proof the non deterministic communication complexity of certain par-
titions is the crucial notion. The following lemma relates it to the path-width of primal graphs.

Lemma 1. Let φ(e, θ) be a CNF formula depending on n+s variables and f : {0, 1}n 7→ {0, 1}
a Boolean function such that :

- if φ(e, θ) = 1, then f(e) = 1
- if f(e) = 1, then there exists a θ such that φ(e, θ) = 1.

Consider an arbitrary path-decomposition (X1, . . . , Xp) of P (φ) of width k. Choose a node Xi

of the decomposition and a partition x, y of the variables e such that all variables of type e that
have already occurred among those in X1, . . . , Xi−1 are distributed to x and all the ones that
never occur in X1, . . . , Xi to y. Then the non-deterministic communication complexity of f with
respect to (x, y) is at most k + 2.

Proof. We split φ as follows into two CNF formulas φ1 and φ2 such that φ = φ1 ∧ φ2 and φ1

and φ2 have at most k + 1 variables in common. Formula φ1 is made of all clauses in φ that
only contain variables that appear in X1, . . . , Xi−1. The remaining clauses are collected in φ2.
Due to the path-width conditions only variables in Xi can be common variables of φ1 and φ2.

One remarks, that all variables in x that appear in φ2 must belong to Xi, and that no
variables in y appear in φ1.

Now given an assignment of the variables (x, y), let the first processor complete its as-
signment x by guessing non-deterministically the values of the remaining variables needed to
compute φ1 - that is, variables of θ since no variables in y appear in φ1. Similarly, the sec-
ond processor completes its assignment of y by guessing the values of the remaining variables
appearing in φ2 - variables of θ, and variables of x appearing in Xi as remarked previously.

Let the first processor send to the second processor the result of its computation of φ1 along
with the values of the variables in its assignment that φ2 also uses. Those are variables in x
appearing in φ2, and variables from θ that are common to φ1 and φ2. Thus they all appear in
Xi. As a result, the first processor sends at most |Xi|+ 1 ≤ k + 2 bits.

With those values, the second processor can check if the values of its guesses are consistent
with the values the first processor had, and if both the computations of φ1 and φ2 are accepting.

Thus, if e = (x, y) does not satisfy f , no guesses of the variables θ could complete e in
an assignment that satisfy both φ1 and φ2 and the protocol will never be accepting; and if
f(e) = 1, then if the two processors guess the proper values to compute φ1 and φ2 on the
existing assignment (e, θ) that satisfies φ, both φ1 and φ2 will be satisfied, and the protocol will
be accepting. ut

Remark 2. At the end of this section we obtain a similar lemma in order to obtain some results
of independent interest relating best-case deterministic communication complexity and path-
width.

An outline of the lower bound proof is as follows: Given a CNF formula for the function
PERMn and a variable partition as above we next define certain permutations called balanced.
The number of balanced permutations can be upper bounded in terms of the non-deterministic

On the expressive power of CNF formulas 13

communication complexity, by Lemma 2. Then in Lemma 3 we show that a CNF formula
for the permanent function gives rise to a variable partition with relatively many balanced
permutations. Combining this with Lemma 1 above and the well known relation between path-
and tree-width gives the following lower bound result:

Theorem 7 (lower bound for the permanent). Let (φn)n∈N be a family of CNF formulas
φn(e, θ) in n2 variables e = (eij) and sn auxiliary variables θ such that :

- if φn(e, θ) = 1, then the matrix e ∈ {0, 1}n×n is a permutation matrix
- if e ∈ {0, 1}n×n is a permutation matrix, then there exists θ such that φn(e, θ) = 1.

Then the path-width p(n) of the primal graphs P (φn) verifies p(n) = Ω(n), and the tree-width
t(n) verifies t(n) = Ω(n/ log(n+ sn)).

As a result, the general permanent function cannot be expressed by a family of CNF-formulas
with a polynomial number of auxiliary variables and an incidence graph of bounded tree-width.

Remark 3. The above lower bounds are independent of the size of the CNF formula.

Remark 4. It seems possible to improve the t(n) = Ω(n/ log(n+ sn)) lower bound by working
directly with tree decompositions instead of path decompositions. The proofs would get more
cumbersome but do not seem to require new ideas. We therefore stick to path decompositions
in the remainder of this section.

We proceed as outlined above with

Definition 10. For n ∈ N let φn(e, θ) be a CNF formula in n2 variables (eij)1≤i,j≤n and
s variables θ1, . . . , θs, s arbitrary. Consider a variable partition (x, y) of e. A permutation
π : {1, . . . , n} 7→ {1, . . . , n} is called balanced with respect to the partition (x, y) if among the
n variables ei,π(i), 1 ≤ i ≤ n precisely dn2 e belong to x and bn2 c belong to y.

Thus, if (eij) represents a permutation matrix and π is balanced, then (almost) half of those
eij with value 1 belong to x and the other half to y.

Lemma 2. Let φn(e, θ) be a CNF formula which evaluates to 1 only if e is a permutation matrix
as in the statement of Theorem 7. Suppose φn has n2 variables e = (eij) and sn variables θ,
and let x, y be a variable partition of e. If there are m balanced permutations with respect to
(x, y), then the non-deterministic communication complexity c of the function fn := PERMn

with respect to (x, y) satisfies

m ≤ 2c ·
(
dn

2
e!
)2

.

Proof. Consider the matrix (fn(x, y)) as defined in Theorem 6, where rows and columns are
marked by the possible assignments for x and y, respectively. If π is a permutation which is
balanced with respect to (x, y), we denote by (x(π), y(π)) the corresponding assignments for
the (eij) and we denote by R(π) the row of index x(π) in the communication matrix (fn(x, y)).

We wish to compute an upper bound K such that any monochromatic rectangle covers at
most K balanced permutations. The point then is that the communication matrix will have at
least m/K distinct rectangles since there are m balanced permutations. We can then conclude
that m ≤ 2c ·K by Theorem 6.

Towards this aim let A be a rectangle covering the value 1 corresponding to π in the matrix.
A is the intersection of a certain set of rows and a certain set of columns. Since π is covered by
A, R(π) belongs to that set of rows. Let C be one of the columns.

The intersection of R(π) and C belongs also to A, and thus contains a 1. Thus, the assign-
ment yc indexing C completes x(π) in a satisfying assignment of fn. Since π is balanced, there

14 I. Briquel, P. Koiran, and K. Meer

are dn/2e variables set to 1 in x(π). If x(π), yc are to form a permutation matrix, yc must have
exactly bn/2c variables set to 1, distributed in the intersection of the bn/2c rows and columns
without any 1 in the assignment x(π).

Thus, there are at most bn/2c! possible values for yc, and thus at most bn/2c! possible
columns in A. Symmetrically, there are at most dn/2e! possible rows in A. Finally one can take
K = dn/2e! ·bn/2c!, and the conclusion of the lemma follows from the inequality m ≤ 2c ·K. ut

The final ingredient for the lower bound proof is

Lemma 3. Let φn be as in Lemma 2. There exists a partition of e into two variable sets x, y
such that this partition is as in the statement of Lemma 1 and such that there are at least n!·n−2

many balanced permutations with respect to (x, y).

Proof. Let (X1, X2, . . . , Xp) be the nodes of a path-decomposition of P (φn) (in that order).
We define an ordering on the eij ’s as follows: for an eij let X(eij) be the first node in the
path-decomposition containing eij . We put eij < ekl if X(eij) < X(ekj). If both values are
equal for eij and ekl we order them arbitrarily but in a consistent way to achieve transitivity.

Consider a permutation π. There are precisely n among the variables corresponding to an
eiπ(i). We pick according to the above order the dn2 e-st among those and denote it by eπ. Thus,
among the eiπ(i) exactly bn2 c are greater than eπ and dn2 e are less than or equal to eπ with
respect to the defined order. By the pigeonhole principle there is at least one variable e` among
the n2 many eij ’s such that for at least n!

n2 many permutations of {1, . . . , n} we get that same
e` by the above procedure, i.e., eπ = e` for all those π. We choose a partition (x, y) of the eij
as follows. The part x consists of all the variables eij that are less than or equal to e`, and the
part y of the variables that are greater than v`. The partition (x, y) is as stated in Lemma 1,
where the node X(e`) plays the role of the Xi in the Lemma. The above arguments imply that
at least n!

n2 many permutations are balanced with respect to this variable partition. ut

Proof (of Theorem 7). Let φn be as in the theorem’s statement. According to Lemma 3 there
is a variable partition with at least n!

n2 many balanced permutations. According to Lemmas 2
and 1 the path-width k of P (φn) satisfies

n!
n2
≤ 2k+2 × (dn/2e!)2 .

Using Stirling’s formula we deduce that k = Ω(n). Now the tree-width t of φn satisfies
t ∈ Ω(k/ log(n+ sn)) which results in t ∈ Ω(n/ log(n+ sn)). Finally, the statement about the
tree-width of φn’s incidence graph follows from Proposition 2. ut

Remark 5. The lower bound obtained above seems not derivable from the known lower bounds
on computing the permanent with monotone arithmetic circuits, see, e.g., [9]. The tree-width
based algorithms for polynomial evaluation like the one in [7] are not monotone since they rely
on the principle of inclusion and exclusion.

We close this subsection by strengthening slightly Lemma 1 in order to apply it also to
the best-case communication complexity (Definition 8) and obtain some lower bound results of
independent interest.

Lemma 4. Let φ be a CNF formula depending on 2n many variables. Assume that the primal
graph P (φ) has path-width k− 1. Then φ can be split into two CNF formulas φ1 ∧ φ2 such that
both have at most k variables in common and both depend on at least n− k

2 variables which do
not occur in the other formula.

On the expressive power of CNF formulas 15

Proof. We briefly sketch how the splitting of φ done in Lemma 1 can be performed more
carefully such that both formulas φ1 and φ2 depend at least on a certain number of variables.
For notational simplicity assume k to be even. Let (X1, X2, . . . , Xp) be a path-decomposition
of P (φ); order the variables once again as done in the proof of Lemma 3. Denote the ordered
sequence by v1 < . . . < v2n. Choose i := n + k

2 and let X` := X(vi). Define φ1 as conjunction
of those clauses in φ containing only variables among the v1, . . . , vi and φ2 as conjunction of all
remaining clauses. Remark, that the n− k/2 variables vi+1, . . . , v2n do not occur in φ1. Due to
the path-width conditions the common variables in φ1 and φ2 must be variables in X`. Thus,
there are at most k many. Moreover, X` contains at most k among the n + k

2 many variables
x1, . . . , xi. Therefore at least n − k

2 of these occur for the last time in some X`′ , where `′ < `
and φ2 cannot depend on them. ut

As consequence, Lemma 1 now also holds with respect to the best-case communication
complexity (Definition 8) of the function represented by φ.

Corollary 1. The best-case communication complexity of a function f : {0, 1}2n → {0, 1} is
lower than k+1, where k−1 is the path-width of the primal graph of any CNF formula computing
f .

Proof. Let φ be a formula computing f , and k−1 be its path-width. By Lemma 4, one can write
φ as a conjunction φ1 ∧ φ2, where φ1 and φ2 have each n − k/2 variables not shared with the
other formula. Let us consider a variable partition (x, y), where x contains the n−k/2 variables,
that belong to φ1 exclusively, and y the n − k/2 variables, that belong to φ2 exclusively, the
remaining variables being distributed arbitrarily so that |x| = |y| = n.

With this variable partition, the communication complexity of f(x, y) is lower than k + 1.
Indeed, two processors, one having the variables x and the other one the variables y, can
exchange the at most k/2 variables that the first need to compute φ1, and the at most k/2
variables that the second need to compute φ2. Then, if the first processor sends the result of
its computation on φ1 - which is a single bit - the second can return the value of f .

Thus, the best case communication complexity is lower than k + 1.

If for a function f the best-case communication complexity is known, then we can use the
corollary to deduce lower bounds for the path- and tree-width of CNF formulas representing f .

Example 1. For x, y ∈ {0, 1}n, 1 ≤ i ≤ n consider the boolean function SEQ(x, y, i) which gives
result 1 iff the string x = x0x1 . . . xn equals the string y shifted circularly by i bits to the right,
that is to yiyi+1 . . . yn−1y0 . . . yi−1. It is known [11] that SEQ has a best case communication
complexity which is at least linear in the size of the input. Thus, the path-width of the primal
graph of any CNF formula computing SEQ is at least linear in the input.

The same argument holds as well for the function PROD(a, b, i) which computes the i-th bit
of the product a · b, for the function MATCH which on a 3m-string x and a m-string y returns
1 iff y is a substring of x, and for the function USTCON which on a graph with ` vertices
and two given vertices s and t outputs 1 if there exists a path from s to t. As noted in [11]
the best-case communication complexity of those function is, respectively, linear, Ω(m/ log(m))
and Ω(

√
n). Consequently, they do not admit CNF formulas of path-width, respectively, linear,

Ω(m/ log(m)) and Ω(
√
n).

Since the path-width p and the tree-width t are related via p = O(t · log n), all above
mentioned examples do not admit CNF formulas with a primal graph of bounded or even
logarithmic tree-width.

16 I. Briquel, P. Koiran, and K. Meer

4.2 Hardness for clique-width

The question answered negatively by Theorem 7 for tree-width can be posed as well in relation
to the clique-width parameter. That is: Can the permanent function be described via CNF
formulas of bounded clique-width and polynomial size? Next we relate this question to Theorem
2 b) and show that such a representation is only possible if the conjecture #P 6⊆ FP/poly fails
to be true.

Theorem 8. Suppose there is a family {ϕn}n of CNF formulas of polynomial size such that
all I(ϕn) are of clique-width at most k for some fixed k and for each Y ∈ {0, 1}n2

we have that
ϕn(Y) holds iff Y is a permutation matrix. Then #P ⊆ FP/poly.

Proof. Suppose {ϕn} is given as in the assumption. For a matrix X ∈ {0, 1}n2
we shall construct

from ϕn and a parse-tree of it (given as non-uniform advice) another CNF formula ψXn (Y) of
bounded clique-width together with a parse-tree for ψXn such that

Perm(X) =
∑

Y ∈{0,1}n2

ψXn (Y).

Theorem 2 b) implies that the latter can be computed in polynomial time. Given #P -
completeness of the permanent function on 0-1-matrices the claim follows.

The construction of ψXn works as follows. It is Perm(X) =
∑

Y ∈{0,1}n2
ϕn(Y) · XY , where

XY =
∏
i,j

x
yi,j

i,j and xyi,j

i,j =
{
xi,j if yi,j = 1
1 else . We replace the monomial XY by the conjunctions∧

i,j

(xi,j ∨ ¬yi,j). The clause graph I(ψn) of the CNF formula

ψn(X,Y) ≡ ϕn(Y) ∧
∧
i,j

(xi,j ∨ ¬yi,j)

can easily be seen to have clique-width ≤ k+2. Each time when in the clique-width construction
of I(ϕn) along the parse-tree a node yi,j is created, in the corresponding construction for I(ψn)
two new nodes for xi,j and the clause Di,j := xi,j ∨ ¬yi,j are created with an own label each.
Then Di,j is connected to both xi,j and yi,j (respecting the necessary signs of the edges). Finally
the labels for Di,j and xi,j are removed again.

Now for a fixed given matrix X we plug the values of the xi,j into the CNF formula ψn(X,Y).
Clauses that are satisfied by the assignment are removed. In clauses that are not satisfied by
the assignment all occurences of xi,j literals are removed. That way a new CNF formula ψXn is
obtained. The clause graph I(ψXn) results from I(ψn) by

(i) removing certain nodes (the xi,j as well as some clause nodes) and
(ii) identifying certain clause nodes.

Both operations do not increase the clique-width. Being clear for (i) it is also true for (ii)
since two or several clauses that are identified after having assigned values to the xi,j ’s must
contain the same yi,j ’s. Thus, this part has been dealt with in the parse-tree construction for
I(ψn) already and can be taken as well for the parse-tree construction of I(ψXn). ut

The result holds as well if we allow additional variables in ϕn(Y) as in the statement of
Theorem 7. It remains an open question whether Theorem 8 can be strengthened to hold
unconditionally, like Theorem 7:

Conjecture: There is no family {ϕn}n of CNF formulas of polynomial size with all I(ϕn) of
bounded clique-width such that ϕn(Y)⇔ Y is a permutation matrix.

On the expressive power of CNF formulas 17

References

1. H.L. Bodlaender: NC-algorithms for graphs with small tree-width, in: Proc. Graph-theoretic con-
cepts in computer science, Lecture Notes in Computer Science 344, Springer, pp. 1–10 (1989).

2. H.L. Bodlaender: A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer
Science, vol. 209 (1-2), pp. 1–45 (1998).

3. B. Courcelle, J.A. Makowsky, U. Rotics: Linear Time Solvable Optimization Problems on Graphs
of Bounded Clique Width, Theory of Computing Systems, vol. 33(2),pp. 125–150 (2000).

4. B. Courcelle, M. Mosbah: Monadic second-order evaluations on tree decomposable graphs, Theo-
retical Computer Science 109, pp. 49–82 (1993).

5. B. Courcelle, S. Olariu: Upper bounds to the clique-width of graphs, Discrete Applied Mathematics
101, pp. 77–114 (2000).

6. R. Diestel: Graph Theory, Springer Graduate Texts in Mathematics, 2nd edition (2000).
7. E. Fischer, J. Makowsky, E.V. Ravve: Counting Truth Assignments of Formulas of Bounded Tree-

Width or Clique-Width, Discrete Applied Mathematics 156(49; pp. 511–529 (2008).
8. U. Flarup, P. Koiran, L. Lyaudet: On the expressive power of planar perfect matching and per-

manents of bounded tree-width matrices, in: Proc. 18th International Symposium ISAAC, Lecture
Notes in Computer Science 4835, Springer, pp. 124–136 (2007).

9. M. Jerrum and M. Snir: Some Exact Complexity Results for Straight-Line Computations over
Semirings, Journal of the ACM, vol. 29(3), pp. 874–897 (1982).

10. P. Koiran and K. Meer: On the expressive power of CNF formulas of bounded tree- and clique-
width, in: Proc. 34th International Workshop on Graph-Theoretic Concepts in Computer Science
WG, Lecture Notes in Computer Science 5344 , Springer, pp. 252–263 (2008).

11. E. Kushilevitz and N. Nisan: Communication Complexity, Cambridge University Press (1997).
12. G. Malod and N. Portier: Characterizing Valiant’s Algebraic Complexity Classes, in: Proc. 31st

International Symposium on Mathematical Foundations of Computer Science MFCS, Lecture
Notes in Computer Science 4162, Springer, pp. 704–716 (2006).

13. M. Samer, S. Szeider: Algorithms for Propositional Model Counting, in: Proc. LPAR 2007,Lecture
Notes of Computer Science 4790, Springer, pp. 484–498 (2007).

14. A. Yao: Some complexity questions related to distributive computing, in: Proceedings of the 11th
Annual ACM Symposium on Theory of Computing STOC, pp. 209–213 (1979).

