
On the expressive power of CNF formulas of

bounded Tree- and Clique-Width

Irenée Briquel1, Pascal Koiran1 and Klaus Meer2 ⋆

1 Laboratoire de l’Informatique du Parallélisme
ENS Lyon, France, e–mail: irenee.briquel,pascal.koiran@ens-lyon.fr

2 Lehrstuhl Theoretische Informatik
BTU Cottbus, Germany, e–mail: meer@informatik.tu-cottbus.de

Abstract. We study representations of polynomials over a field K from
the point of view of their expressive power. Three important examples
for the paper are polynomials arising as permanents of bounded tree-
width matrices, polynomials given via arithmetic formulas, and families
of so called CNF polynomials. The latter arise in a canonical way from
families of Boolean formulas in conjunctive normal form. To each such
CNF formula there is a canonically attached incidence graph. Of partic-
ular interest to us are CNF polynomials arising from formulas with an
incidence graph of bounded tree- or clique-width.

We show that the class of polynomials arising from families of poly-
nomial size CNF formulas of bounded tree-width is the same as those
represented by polynomial size arithmetic formulas, or permanents of
bounded tree-width matrices of polynomial size. Then, applying argu-
ments from communication complexity we show that general permanent
polynomials cannot be expressed by CNF polynomials of bounded tree-
width. We give a similar result in the case where the clique-width of the
incidence graph is bounded, but for this we need to rely on the widely
believed complexity theoretic assumption #P 6⊆ FP/poly.

1 Introduction

An active field of research in complexity is devoted to the design of efficient
algorithms for subclasses of problems which in full generality likely are hard
to solve. It is common in this area to define such subclasses via bounding some
significant problem parameters. Typical such parameters are the tree- and clique-
width if a graph structure is involved in the problem’s description.

At the center of the present paper stand problems related to families of
polynomials. These families are given in a particular manner through certain
Boolean formulas in conjunctive normal form, shortly CNF formulas.

⋆ Support of the following institutions is gratefully acknowledged: ENS Lyon; the
French embassy in Denmark, Service de Coopération et d’Action Culturelle,
Ref.:39/2007-CSU 8.2.1; the Danish Agency for Science, Technology and Innovation
FNU.

2 I. Briquel, P. Koiran, and K. Meer

More precisely, we consider a Boolean CNF formula ϕ representing a function
from {0, 1}n → {0, 1}. If no confusion can arise we denote this function again
by ϕ. For n variables x1, . . . , xn ranging over a field K and an e ∈ {0, 1}n define
the monomial xe := xe1

1 · . . . · xen
n , where x0

i := 1 and x1
i := xi. Now define a

function f : K
n → K by

f(x) =
∑

e∈{0,1}n

ϕ(e) · xe for x ∈ K
n (∗).

The function f is a kind of enumerating polynomial for ϕ. We are interested
in the question how expressive such a representation of polynomials by CNF
formulas is, and under which additional conditions the polynomial f(x) in (*)
can be evaluated efficiently. Fischer, Makowksy, and Ravve [6], extending earlier
results from [2], have shown that the counting SAT problem, i.e. computing
∑

e∈{0,1}n

ϕ(e) for a CNF formula ϕ can be solved in time O(n · 4k) if a certain

bipartite graph Gϕ canonically attached to ϕ is of bounded tree-width k. Similar
results concerning clique-width as well are given in [6].

Our first main result (Theorem 5) precisely characterizes the expressive power
of polynomials of form (∗) whenGϕ is of polynomial size and bounded tree-width.
It is shown that the class of these polynomials describes the same functions repre-
sentable by arithmetic formulas of polynomial size and the functions represented
as permanents of matrices of bounded tree-width and polynomially bounded di-
mension. Here, equality of the latter two concepts was known before due to a
result of Flarup, Koiran, and Lyaudet [7].

Recall that in Valiant’s algebraic model of computation for families of poly-
nomials the permanent is VNP complete and thus unlikely to be efficiently
computable. Though an unconditional proof of this conjecture seems extremely
difficult, we can at least show that trying to obtain an efficient algorithm for
computing permanents through formulas of type (∗) with Gϕ of bounded tree-
width must fail. Such an algorithm would exist if the boolean function PERMn

recognizing n× n permutation matrices could be written as a (polynomial size)
CNF formula of bounded tree-width. We show that such a CNF formula does not
exist. This result is unconditional in that it does not rely on any open conjecture
in complexity theory. In an earlier version of this paper [11] this impossibility
result was obtained by reduction to an OBDD lower bound. Here we appeal
instead to arguments from communication complexity (incidentally, this seems
to be the first time that the PERMn function is studied from the point of view
of communication complexity). The present approach provides a new point of
view on this problem; it also has the advantage of providing at little additional
cost some new lower bounds for other functions, derived from communication
complexity lower bounds in the so-called “best case” model.

Finally, we pose the corresponding question for CNF formulas of bounded
clique-width. Using another result from [6] we show that expressing the per-
manent of an arbitrary matrix by formulas of type (∗), this time with Gϕ of
bounded clique-width would imply #P ⊆ FP/poly and thus is unlikely.

On the expressive power of CNF formulas 3

The paper is organized as follows. In Section 2 we recall basic definitions as
well as the needed results from [6] and [7]. Section 3 first shows how functions
represented via permanents of matrices of bounded tree-width can be expressed
via polynomials of form

∑

e∈{0,1}n

ϕ(e)xe with Gϕ of bounded tree-width. Then,

we extend a result from [6] to link such polynomials to arithmetic formulas. The
results in [7] now imply equivalence of all three notions. In Section 4 the above
mentioned negative results concerning expressiveness of (general) permanents by
CNF formulas of bounded tree- or clique-width are proven.

Our results contribute to the comparison of Boolean and algebraic complex-
ity. In particular, we consider it to be interesting to find more results like The-
orem 8 below which states that certain properties cannot be expressed via
(certain) graphs of bounded tree-width.

2 Basic definitions

In this section we collect the basic definitions and results that are needed below.
We try to keep the section as short as possible since most of the notions are well
known. Nevertheless, for the readers’ convenience we collect all notions needed
at one place.

2.1 Arithmetic circuits

Definition 1. a) An arithmetic circuit is a finite, acyclic, directed graph. Ver-
tices have indegree 0 or 2, where those with indegree 0 are referred to as
inputs. A single vertex must have outdegree 0, and is referred to as output.
Each vertex of indegree 2 must be labeled by either + or ×, thus represent-
ing computation. Vertices are commonly referred to as gates. By choosing as
input nodes either some variables x or constants from a field K a circuit in
a natural way represents a multivariate polynomial over K.

b) An arithmetic formula is a circuit for which all gates except the output have
outdegree 1.

c) The size of a circuit is the total number of gates in the circuit.
d) A family {φn}n∈N of arithmetic formulas is said to be of polynomial size if

there is a polynomial function p such that for all n ∈ N the size of φn is at
most p(n).

Note that for formulas the reuse of partial results is not allowed. For more
on different subclasses of arithmetic circuits see [14].

2.2 Tree- and clique-width

Tree-width for undirected graphs is defined as follows:

Definition 2. Let G = 〈V,E〉 be a graph. A k-tree-decomposition of G is a tree
T = 〈VT , ET 〉 such that:

4 I. Briquel, P. Koiran, and K. Meer

(i) For each t ∈ VT there is an associated subset Xt ⊆ V of size at most k + 1.
(ii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.
(iii) For each vertex v ∈ V the set {t ∈ VT |v ∈ Xt} forms a (connected) subtree

of T .

The tree-width twd(G) of G is then the smallest k such that there exists a k-
tree-decomposition for G.

If we require the decomposition trees to be paths, then we obtain the path-
width of the given graph.

The path-width of a graph G with n nodes can be bounded from above by
O(twd(G) · logn), see [12].

In this paper we frequently deal with the tree-width of matrices with entries
from a field K. This is defined as follows:

Definition 3. a) The tree-width of an (n × n) matrix M = (mi,j) is defined
as the tree-width of the edge-weighted graph GM = (Vm, EM , w), where VM =
{1, . . . , n}, (i, j) ∈ GM iff mi,j 6= 0 and w(i, j) := mi,j denote the edge weights.

b) A family (Mn)n of matrices is said to be of polynomial size if for all n ∈ N

the dimension of Mn is at most p(n) for some fixed polynomial p.

For the algorithmic treatment of CNF formulas below we recall the definition
of H-sums of graphs, see [6].

Definition 4. Let H,G1, G2 be graphs such that G1 and G2 have induced sub-
graphs H1, H2 which are isomorphic to H by isomorphisms h1, h2, respectively.
Let G′ be the disjoint union of G1 and G2. The H-sum G := G1 ⊕H,h1,h2 G2

of G1 and G2 is the graph obtained from G′ by identifying the two copies (via
h1, h2) of H in the disjoint union.

Given a k-tree decomposition of a graph G with sets of vertices Xt, we can
consider the subgraphHt of G induced by Xt and reconstruct G using a sequence
of Ht-sums.

Next we recall the clique-width notion.

Definition 5. A graph G has clique-width at most k iff there exists a set of k
labels S such that G can be constructed using a finite number of the following
operations:

i) verta, a ∈ S (create a single vertex with label a);
ii) φa→b(H), a, b ∈ S (relabel all vertices having label a by label b);
iii) ηa,b(H), a, b ∈ S, a 6= b (add edges between all vertices having label a and all

vertices having label b);
iv) H1 ⊕H2 (disjoint union of graphs).

To each graph of clique-width k we can attach a (rooted) parse-tree whose
leaves correspond to singleton graphs and whose vertices represent one of the
operations above. The graph G then is represented at the root.

On the expressive power of CNF formulas 5

2.3 Permanent polynomials

Definition 6. The permanent of an (n, n)-matrix M = (mi,j) is defined as

perm(M) :=
∑

σ∈Sn

n
∏

i=1

mi,σ(i) ,

where Sn denotes the set of all permutations of {1, . . . , n}.

We are interested in representing functions via particular polynomials, the
permanents. If M above has as entries either variables or constants from some
field K, then f = perm(M) is a polynomial with coefficients in K (in Valiant’s
terms f is a projection of the permanent polynomial). One main result in [7]
characterizes arithmetic formulas of polynomial size by certain such polynomials.
The tree-width of a matrixM = [mij] is defined to be the tree-width of the graph
including an edge (i, j) iff mij 6= 0.

Theorem 1. ([7]) Let (fn)n∈N be a family of polynomials with coefficients in a
field K. The following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formu-
las.

(ii) There exists a family (Mn)n∈N of polynomial size, bounded tree-width matri-
ces such that the entries of Mn are constants from K or variables of fn, and
fn = perm(Mn).

Note that the complexity of the permanent of matrices of bounded tree-width
was discussed already in [2].

2.4 Clause graphs

One of our goals is to relate Theorem 1 to yet another concept, namely CNF
formulas of bounded tree-width. The latter will be defined in this subsection.
Our presentation follows closely [6].

Definition 7. Let ϕ be a Boolean formula in conjunctive normal form with
clauses C1, . . . , Cm and Boolean variables x1, . . . , xn.

a) The signed clause graph SI(ϕ) is a bipartite graph with the xi and the Cj

as nodes. Edges connect a variable xi and a clause Cj iff xi occurs in Cj .
An edge is signed + or − if xi occurs positively or negated in Cj .

b) The incidence graph I(ϕ) of ϕ is the same as SI(ϕ) except that we omit the
signs +,−.

c) The primal graph P (ϕ) of ϕ has only the xi’s as its nodes. An edge connects
xi and xj iff both occur in one of the clauses.

d) The tree- or clique-width of a CNF formula ϕ is defined to be the tree- or
clique-width of I(ϕ), respectively.
If below we want to speak about the tree-width of P (ϕ) we mention this
explicitly.

6 I. Briquel, P. Koiran, and K. Meer

There is no difference in defining the tree-width for the signed graph. Con-
cerning the tree-width of the primal and the incidence graph it is remarked in
[8] that twd(I(ϕ)) ≤ twd(P (ϕ)) + 1. With respect to clique-width things are a
bit more complicated. There is an own notion of clique-width for signed graphs
which we do not employ here. As to the results we are looking for note that the
counting problem for CNF formulas remains hard even if the clique-width of the
primal graph is bounded. Thus here the incidence graph is considered only. For
a more detailed discussion on this and a proof of the above statements see [6].

In [6] the authors prove as well:

Theorem 2. a) Given ϕ and a tree-decomposition of I(ϕ) of width k one can
compute the number of satisfying assignments

∑

x∈{0,1}n

ϕ(x) of ϕ in 4kn arith-

metic operations.
b) Given a CNF formula ϕ and a parse-tree for the signed clause graph SI(ϕ)
of clique-width ≤ k the number

∑

x∈{0,1}n

ϕ(x) of satisfying assignments of ϕ can

be computed in O(2ckn) many arithmetic operations.

Below, we extend the algorithm proving Theorem 2 a) in order to relate CNF
formulas to arithmetic formulas and to Theorem 1. Note that similar results to
those of part a) of Theorem 2 are given in [15].

3 Expressiveness of CNF polynomials of bounded

tree-width

In this section we prove our first main result. We study how expressive poly-
nomials pn are which are given via CNF formulas ϕn of bounded tree-width. It
turns out that functions represented by permanents of bounded tree-width ma-
trices can as well be represented by such CNF polynomials, whereas functions
represented by the latter in turn are representable by short arithmetic formulas.
Given the equivalence stated in Theorem 1 all three concepts have the same
expressive power.

3.1 From permanents to clause graphs

Theorem 3. Let M = [mij] be an n × n matrix over a field K such that the
corresponding directed weighted graph GM = (VM , EM) is of tree-width k, see
Definition 3.

There is a CNF formula ϕ of tree-width O(k2), of size polynomially bounded
in n and depending on n2 variables ei,j and on O(n) variables θ such that

a)

perm(M) =
∑

e,θ

ϕ(e, θ) ·me.

On the expressive power of CNF formulas 7

Here, e = {ei,j} denotes variables representing the edges of GM ,m = {mi,j}
denotes the entries of M and me :=

∏

i,j

m
ei,j

i,j , where m
ei,j

i,j =

{

mi,j if ei,j = 1
1 if ei,j = 0

.

b) For every e there exists θ such that ϕ(e, θ) = 1 if and only if e is a cycle
cover of GM ; in this case, the corresponding θ is unique.

c) A tree decomposition of I(ϕ) of width O(k2) can be obtained from a decom-
position of GM in time O(n).

Remark 1. 1. The use of the auxiliary variables θ will become clearer in the
proof. Basically, they are needed to keep the tree-width of formula ϕ small.
Towards this aim they store certain truth values when a tree-decomposition
of GM is processed.

2. In the above CNF polynomial
∑

e,θ

ϕ(e, θ) · me there are no monomials cor-

responding to θ. Formally one could introduce another block y of variables
and add to each monomial me another factor yθ. Then perm(M) is obtained
as a projection (in Valiant’s sense) of a CNF-polynomial

∑

e,θ

ϕ(e, θ) ·me · yθ

by plugging in for each y-variable the value 1.

Proof. Let (T, {Xt}t) be a tree decomposition of width k forGM . Without loss of
generality T is a binary tree. The CNF formula ϕ to be constructed contains two
blocks of variable vertices, one being the edge-variables ei,j of GM and another
block θ of auxiliary variables to be explained below. The tree decomposition
(T, {X ′

t}t) that we shall construct for ϕ uses the same underlying tree T as the
tree decomposition of GM , but the boxes X ′

t will be different from the boxes Xt

in the initial decomposition.
A straightforward set of clauses to describe cycle covers in GM is the following

collection:

(i) for each vertex i ∈ VM clauses Outi and Ini containing as its literals all
outgoing edges from and all incoming edges into i, respectively;

(ii) for each i ∈ VM and each pair of outgoing edges ei,j , ei,l a clause ¬ei,j ∨¬ei,l;
similarly for incoming edges to i.

A tree decomposition of the resulting formula then is obtained from T by taking
the same tree and joining in a box X ′

t for every i ∈ Xt all vertices resulting from
(i) and (ii). However, due to the conditions under (ii) this might not result in a
decomposition of bounded width.

To resolve this problem for each box t ∈ T and each i ∈ VM we add additional
variables checkt

i+, check
t
i−. Fix t and the subtree Tt of T that has t as its root.

For any assignment of the ei,j indicating which edges in GM have been chosen for
a potential cycle cover a condition checkt

i+ = 1 indicates that an edge starting
in i has already been chosen with respect to those vertices of GM occurring in
the subtree Tt.

Further clauses are introduced to guarantee that each i finally is covered
exactly once for a satisfying assignment of ϕ(e, θ), where θ is the collection of

8 I. Briquel, P. Koiran, and K. Meer

all check variables. More precisely, we proceed bottom up. Let t be a leaf of T.
For every i ∈ Xt in addition to the variable vertices checkt

i+, check
t
i− introduce

clause variables representing the following clauses:

(1)
∨

j∈Xt

ei,j ∨ ¬checkt
i+;

Interpretation: if none of the ei,j ’s where chosen yet, then checkt
i+ = 0.

(2) ¬ei,j ∨ ¬ei,l for all j, l ∈ Xt;
Interpretation: at most one outgoing edge covers i.

(3) ¬ei,j ∨ ¬checkt
i+ for all j ∈ Xt;

Interpretation: if an ei,j was chosen (i.e. ei,j = 1), then checkt
i+ = 1.

Analogue clause variables are added for checkt
i−.

For the box X ′
t in the decomposition of I(ϕ) that corresponds to box Xt of T

all variable vertices ei,j , check
t
i+, check

t
i−, i, j,∈ Xt as well as the clause variables

resulting from (1)-(3) above are included. These are O(k2) many elements in X ′
t.

Now T ′ is constructed bottom up. The check variables propagate bottom up the
information whether a partial assignment for those ei,j that already occurred in
a subtree can still be extended to a cycle cover of GM . At the same time, the
width of the new boxes of T ′ constructed will not increase too much. Suppose
in T there are boxes t, t1, t2 such that t1 is the left and t2 the right child of t.
Let i ∈ Xt ∩Xt1 ∩Xt2 . The case where i only occurs in two or one of the boxes
is treated similarly. Assuming X ′

t1
, X ′

t2
already been constructed the following

clauses are included in Xt :

(1′)
∨

j∈Xt\{Xt1∪Xt2}

ei,j ∨ checkt1
i+ ∨ checkt2

i+ ∨ ¬checkt
i+;

Interpretation: if all new ei,j ’s and the previous check variables are 0, then
the new check variable checkt

i+ is 0 as well;

(2′) ¬x∨¬y for all x, y ∈ {ei,j : j ∈ Xt \{Xt1 ∪Xt2}}∪{checkt1
i+, check

t2
i+};x 6= y

Interpretation: at most one among the old check variables and the new edge
variables gets the value 1;

(3′) ¬x ∨ ¬checkt
i+ for all x ∈ Xt \ {Xt1 ∪Xt2} ∪ {checkt1

i+, check
t2
i+};

Interpretation: if one among the values ei,j or checkt1
i+, check

t2
i+ is 1, then

checkt
i+ = 1.

Again, analogue clauses are added for the ingoing edges to i. Box X ′
t contains

all related edge vertices ei,j for the new j ∈ Xt\{Xt1∪Xt2}, the six check vertices
and the O(k2) many clause vertices resulting from (1’)-(3’).

This way (T, {X ′
t}t) is obtained. Finally, for each i ∈ T two new clauses

containing the single literals checkr
i+ and checkr

i−, respectively, are included in
that box Xr which represents the root r of the subtree of T generated by all
boxes that contain i. This is to guarantee that i is covered in both directions.

Clearly, (T, {X ′
t}t) is a binary tree with each X ′

t containing at most O(k2)
many vertices. Let θ denote the vector of all check variables. It is obvious from
the construction that

∃θ ϕ(e, θ) ⇔ e represents a cycle cover

On the expressive power of CNF formulas 9

(via those ei,j that have value 1). Moreover, for each assignment of e∗ giving a
cycle cover there is precisely one assignment θ∗ such that ϕ(e∗, θ∗) = 1 because
e∗ uniquely determines which check variables have to be assigned the value 1.
Therefore

perm(M) =
∑

e,θ

ϕ(e, θ) ·me.

Finally, it remains to show that (T ′, {X ′
t}t) actually is a tree decomposition of

the graph I(ϕ). Vertices resulting from check variables at most occur in two
consecutive boxes of T ′ and thus trivially satisfy the connectivity condition.
Clause vertices related to one of the construction rules (1), (3), (1′) − (3′) for a
fixed t ∈ T only occur in the single box X ′

t. Finally, an edge variable ei,j occurs
in a box X ′

t iff both i and j occur in Xt. Thus, the fact that (T, {Xt}t) is a
tree decomposition implies that the connectivity condition also holds for these
vertices and (T ′, {X ′

t}t). ⊓⊔

3.2 From clause graphs to arithmetic formulas

In the next step we link CNF polynomials to arithmetic formulas. More precisely,
the next theorem shows the latter concept to be strong enough to capture the
former.

Theorem 4. Let K be a field and k ∈ N be fixed. Let {ϕn}n be a family of
CNF formulas of tree-width at most k and with n variables. Let {fn}n denote
the family of functions fn : K

n → K represented by these formulas, i.e.,

fn(x) =
∑

z∈{0,1}n

ϕn(z) · xz

for all x ∈ K
n.

Then there is a family of arithmetic formulas over K and of polynomial size
which represents {fn}n.

The proof is based on an extension of results in [6], namely Theorem 1.3. In
the latter it is shown how to count efficiently satisfying assignments for a CNF
formula ϕ, i.e. how to compute

∑

z∈{0,1}n

ϕn(z), where I(ϕn) is of bounded tree-

width and a tree decomposition is given. Our extension is dealing with finding
short arithmetic formulas for polynomials of the form

∑

z∈{0,1}n

ϕ(z)·xz. The proof

of Theorem 1.3. in [6] proceeds along a tree-decomposition of I(ϕn) analyzing
how the evaluation can be done for a clause graph G obtained as an H-sum of
two other clause graphs G1 and G2, see Definition 4.

Our proof of Theorem 4 works as follows. We extend the ideas of [6] in order
to show how one efficiently can evaluate fn(x) for all x ∈ K

n when fn is defined
as in the statement. Note that counting satisfying assignments corresponds to
evaluating fn(1, . . . , 1). Taking the xi’s as variables the efficient algorithm ob-
tained then can be converted into an arithmetic formula that has polynomial
size.

10 I. Briquel, P. Koiran, and K. Meer

Let us first adapt some notation from [6]. Let Σ be a set of clauses over a
variable set V , let W ⊆ V and z : W → {0, 1} an assignment for the variables
in W. Denote by ϕ(Σ) the CNF formula

∧

C∈Σ

C and by Σ(z) the set of clauses

obtained from Σ when replacing each v ∈ W by the value z(v). The main part
of the proof of Theorem 4 is to analyze how the decomposition along H-sums
can be used to obtain short arithmetic formulas for

∑

z

ϕG(z).

We need an additional definition:

Definition 8. Let K be a field, G a clause graph with variable vertices V, |V | =
n, ϕG the corresponding CNF formula, W ⊆ V and z : W → {0, 1} a (partial)
assignment for the variables in W.

Then the polynomial f(G,W,z) is defined as

∀x ∈ K
n f(G,W,z)(x) :=

∑

z′:V \W→{0,1}



ϕG(z′, z) ·
∏

i∈V \W

x
z′

i

i



 .

Above the partial assignments z′, z are plugged into ϕG in the obvious way.
In particular, if W = ∅ (and thus z = ∅) we define

f(G,∅,∅)(x) :=
∑

z′:V →{0,1}

ϕG(z′) · xz′

.

The following technical proposition shows how f(G,∅,∅)(x) can be computed
along an H-sum decomposition of G. Theorem 4 follows as a consequence.

Proposition 1. Let G,G1, G2 be clause graphs with variable vertices V, V1, and
V2, and clause vertices C,C1, and C2, respectively. Suppose that G = G1⊕H G2,
where H is isomorphic to two induced subgraphs H1, H2 of G1, G2, respectively,
see Definition 4. Denote the variable vertices of H by W and the clause vertices
by D.

a) Suppose D = ∅; then for all x ∈ K
n we have

f(G,∅,∅)(x) =
∑

z:W→{0,1}

(

f(G1,W,z)(x) · f(G2,W,z)(x)
)

·
∏

i∈W

xzi

i .

b) Suppose W = ∅ and D = {D1, . . . , Dm},m ∈ N. For an X ⊆ [m] :=
{1, . . . ,m} and i = 1, 2 let Si(X) denote the set of clauses obtained from
all Dj , j ∈ X when only maintaining literals related to Vi. Let Gi(X) be the
clause graph with variable vertices Vi and clause vertices Ci \Si(X). Finally,
let A be the set of all pairs (X1, X2) with X1, X2 ⊆ [m], X1 ∩X2 = ∅.
Then for each (X1, X2) ∈ A there is a relative integer s(X1, X2) such that

f(G,∅,∅)(x) =
∑

(X1,X2)∈A

s(X1, X2) · f(G1(X1),∅,∅)(x) · f(G2(X2),∅,∅)(x) .

On the expressive power of CNF formulas 11

c) Let both W 6= ∅, D = {D1, . . . , Dm} 6= ∅, then using the same notation as in
b) one has for all x ∈ K

n :

f(G,∅,∅)(x) =
∑

z:W→{0,1}

(

∑

(X1,X2)∈A

s(X1, X2) · f(G1(X1),W,z)(x) · f(G2(X2),W,z)(x)

)

· ∏
i∈W

xzi

i .

Proof. a) In [6] it is shown that

∑

z′:V →{0,1}

ϕG(z′) =

∑

z:W→{0,1}

(

∑

z(1):V1\W→{0,1}

ϕ1(z
(1), z)

)

·
(

∑

z(2):V2\W→{0,1}

ϕ2(z
(2), z)

)

.

In order to extend this to the evaluation of polynomials one has to take care not
to include the factor

∏

i∈W

xzi

i twice. This is the reason for defining f(G,W,z) as

above. One gets

f(G,∅,∅)(x) =
∑

z′:V →{0,1}

(

ϕG(z′) · ∏
i∈V

x
z′

i

i

)

=
∑

z:W→{0,1}

(

∑

z(1):V1\W→{0,1}

ϕ1(z
(1), z) · ∏

i∈V1\W

x
z
(1)
i

i

)

·

·
(

∑

z(2):V2\W→{0,1}

ϕ2(z
(2), z) · ∏

i∈V2\W

x
z
(2)
i

i

)

· ∏
i∈W

xzi

i

=
∑

z:W→{0,1}

(

f(G1,W,z)(x) · f(G2,W,z)(x) ·
∏

i∈W

xzi

i

)

as was claimed. Note that once a z : W → {0, 1} has been fixed the expressions
f(Gi,W,z), i = 1, 2 have again the form f(G′

i,∅,∅), where G′
i results from Gi by

plugging the values for z into the clauses and then formally removing W. We
thus can continue similarly for further decompositions of G.

b) For each pair (X1, X2) ∈ A let A(X1, X2) denote those assignments to all
variables in V which satisfy C1 \ S(X1) and C2 \ S(X2). Note that for clauses
Dj in D for which j /∈ X1 ∪X2 an assignment z ∈ A(X1, X2) satisfies both the
part of Dj related to V1 and the one related to V2. The requirement X1∩X2 = ∅
in the definition of A is necessary to guarantee that A(X1, X2) only contains
satisfying assignments of ϕ.

Before we obtain the claimed formula a few more facts about the Gi(Xi), i =
1, 2 have to be derived. Let z : V → {0, 1} be an assignment and denote by
z(1), z(2) the restrictions of z to V1, V2, respectively. Recall that W = V1∩V2 = ∅.
If φG(z) = 1 then there exists (X1, X2) ∈ A such that

ϕG(z) ·
∏

i∈V

xzi

i =

(

ϕG1(X1)(z
(1)) ·

∏

i∈V1

x
z
(1)
i

i

)

·
(

ϕG2(X2)(z
(2)) ·

∏

i∈V2

x
z
(2)
i

i

)

.(1)

12 I. Briquel, P. Koiran, and K. Meer

Moreover, if φG(z) = 0 then the above equation holds for all (X1, X2) ∈ A.
Note that the monomial factors in (1) are independent of X1 and X2. Therefore
one gets a decomposition of the expression for f(G,∅,∅) basically by computing
correctly the number of satisfying assignments for the entire formula ϕG via
counting it for subformulas consisting of clauses of type Ci \ S(Xi).

3

For doing so, first apply the principle of inclusion and exclusion for deter-
mining the number #ϕG of satisfying assignments of ϕG. It is given as

#ϕG =

∣

∣

∣

∣

∣

⋃

(X1,X2)∈A

A(X1, X2)

∣

∣

∣

∣

∣

=
∑

(X1,X2)∈A

|A(X1, X2)| −
∑

(X1,X2)∈A

(X3,X4)∈A

|A(X1, X2) ∩A(X3, X4)| ±

. . . (−1)|A|+1 ·
∣

∣

∣

∣

∣

⋂

(X1,X2)∈A

A(X1, X2)

∣

∣

∣

∣

∣

The following property of the sets A(X1, X2) simplifies a bit the above formula:
If two (or more) such A(X1, X2), A(X3, X4) are intersected one gets as result the
set A(X1 ∩X3, X2 ∩X4) =: A(Y1, Y2) with (Y1, Y2) ∈ A. Applying this remark
we can replace the cardinalities of all intersections by suitable integer multiples
of |A(Y1, Y2)|. If s(Y1, Y2) denotes the (possibly negative) integral factor with
which |A(Y1, Y2)| occurs in the inclusion/exclusion formula it follows

∣

∣

∣

∣

∣

∣

⋃

(Y1,Y2)∈A

A(Y1, Y2)

∣

∣

∣

∣

∣

∣

=
∑

(Y1,Y2)∈A

s(Y1, Y2) · |A(Y1, Y2)| .

For our purposes it is not necessary to know the precise values of s(Y1, Y2).
It is only important that they exist and that the number of elements in A is
bounded by a function in m, and thus in the tree-width only. More precisely,
|A| ≤ 3m ≤ 3k+1.

Finally, the arguments following (1) now imply that

f(G,∅,∅)(x) =
∑

(Y1,Y2)∈A

s(Y1, Y2) · f(G1(Y1),∅,∅)(x) · f(G2(Y2),∅,∅)(x) .

c) The mixed case now follows from a) and b) above in the same manner. ⊓⊔

Proof. (of Theorem 4) Without loss of generality we suppose the tree decompo-
sition (T, {Xt}t) of a given G to be of depth O(log n), see [1]. This will increase
the tree-width from the original one k to at most 3k + 2. 4 In order to find
an arithmetic formula for

∑

z:V →{0,1}

ϕn(z) · xz = f(G,∅,∅)(x) we perform the dy-

namic programming algorithm provided by Proposition 1 bottom up along T.

3 The latter in principle is done in Lemma 4.6 of [6]. However, it seems that the
formula given there is not quite correct, f.e., it gives a negative counting result in
case m = 1. Therefore, we give a more elaborated proof here.

4 Though it is de facto unnecessary to first balance T but makes the complexity
arguments a bit easier.

On the expressive power of CNF formulas 13

For each subgraph represented by a leaf node the evaluation easily results in
2O(k) arithmetic formulas of length 2O(k). When climbing up the tree at each
node representing an H-sum operation the formulas resulting from the three
cases of Proposition 1 contribute to the formula size by a factor of 2O(k). Thus,
since T has logarithmic depth the total formula size is of order at most nO(k). ⊓⊔

Theorems 1, 3 and 4 imply

Theorem 5. Let (fn)n∈N be a family of polynomials with coefficients in a field
K. The following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formu-
las.

(ii) There exists a family (Mn)n∈N of polynomial size, bounded tree-width matri-
ces such that the entries of Mn are constants from K or variables of fn, and
fn = perm(Mn).

(iii) There exists a family (ϕn)n∈N of CNF formulas of size polynomial in n
and of bounded tree-width such that fn(x) can be expressed as a projection:
fn(x) =

∑

d

ϕn(d)·zd. Here, projection means that the zi’s can be taken either

as constants from K or as variables among the xj’s. ⊓⊔
As one of the referees kindly pointed out to us the following result by Gurski

and Wanke gives a possibility for characterizing when a family of bounded clique-
width graphs is of bounded tree-width.

Theorem 6 (Gurski and Wanke [9]). Let k, s ∈ N. Every graph of clique-
width k which does not contain the complete bipartite graph Ks,s as a subgraph
has tree-width at most 3k · (s− 1) − 1.

A direct consequence of this theorem is the following characterization for
families of graphs of bounded clique-width to be of bounded tree-width:

Corollary 1. Let k ∈ N and (Gn)n∈N be a family of graphs each of clique-width
at most k. Then the family is of bounded tree-width if and only if there exists an
s ∈ N such that no Gn contains Ks,s as subgraph.

Proof. Follows from the above theorem by noting that the tree-width of Ks,s is
s and thus grows to infinity with increasing s. ⊓⊔

The corollary gives a possibility to rephrase Theorem 5 in terms of clique-
width.

Theorem 5 (Clique-width version). Let (fn)n∈N be a family of polynomials
with coefficients in a field K. The following properties are equivalent:

(i) (fn)n∈N can be represented by a family of polynomial size arithmetic formu-
las.

(ii) There exist an s ∈ N and a family (Mn)n∈N of polynomial size, bounded
clique-width matrices such that the entries of Mn are constants from K or
variables of fn, none of the graphs GMn

has the complete bipartite graph
Ks,s as a subgraph, and fn = perm(Mn).

14 I. Briquel, P. Koiran, and K. Meer

(iii) There exist an s′ ∈ N and a family (ϕn)n∈N of CNF formulas of size polyno-
mial in n and of bounded clique-width such that none of the graphs I(ϕn) has
the complete bipartite graph Ks′,s′ as subgraph, and fn(x) can be expressed
as a projection: fn(x) =

∑

d

ϕn(d) · zd. Here, projection means that the zi’s

can be taken either as constants from K or as variables among the xj ’s. ⊓⊔

Note however that a ’pure’ clique-width version of the theorem seems unlikely
since for a matrix M with all entries different from 0 the clique-width of GM is
bounded by 2 whereas the computation of the permanent is hard.

4 Lower bounds

Given Theorem 3 together with the efficient algorithm resulting from Theorem 4
the following question arises: How far does the approach of reducing permanent
computations to computations of the form

∑

e,θ

ϕ(e, θ) · me lead, when ϕ comes

from a clause graph of bounded tree- or bounded clique-width?
Define the boolean function PERMn : {0, 1}n×n → {0, 1} as the characteristic

function for n×n permutation matrices, i.e., PERMn takes the value 1 on boolean
matrices that have exactly one 1 in each row and one 1 in each column, and 0
otherwise. Note that the permanent of an (n × n)−matrix M = (mi,j) is given
by

∑

e∈{0,1}n2

PERMn(e) ·me. Formulated a bit differently we ask the following:

Is there a CNF formula ϕ(e, θ) of bounded tree- or clique-width, respectively,
such that ϕ(e, θ) = 1 iff e ∈ {0, 1}n×n is a permutation matrix; in addition, we
would like for each permutation matrix e to have exactly one θ s.t. ϕ(e, θ) = 1.

In this section we prove that such a formula does not exist in the bounded
tree-width case. A second result shows that when replacing tree- by clique-width
a formula with the above properties does not exist unless #P ⊆ FP/poly.

4.1 Lower bound for tree-width

Towards our goal we employ results from communication complexity. We will
relate it to the path-width of the primal graphs of formulas. Recall that the
path-width of a graph with n nodes is bounded from above by O(t · log n), where
t denotes its tree-width [12].

In order to be able to argue on primal graphs we need the following result
that justifies the replacement of a formula’s incidence graph by its primal graph.

Proposition 2. Let ϕ = C1 ∧ . . . ∧ Cm be a CNF formula with n variables
x1, . . . , xn such that its incidence clause graph I(ϕ) has tree-width k. Then there
is a CNF formula ϕ̃(x, y) such that the following conditions are satisfied:

– each clause of ϕ̃ has at most k + 3 many literals;
– the primal graph P (ϕ̃) has tree-width at most 4(k+1). A tree-decomposition

can be constructed in linear time from one of I(ϕ);

On the expressive power of CNF formulas 15

– the number of variables and clauses in ϕ̃ is linear in n;
– for all x∗ ∈ {0, 1}n we have ϕ(x∗) = 1 iff there exists a y∗ such that
ϕ̃(x∗, y∗) = 1. Such a y∗ moreover is unique.

Proof. Let (T, {Xt}t) be a (binary) tree-decomposition of I(ϕ). The construction
below combines the use of check variables in the proof of Theorem 3 with the
usual way of reducing a general CNF formula instance to one with a bounded
number of literals in each clause. Let C be a clause of ϕ and TC the subtree of
T induced by C. We replace C bottom up in TC by introducing O(n) many new
variables and clauses. More precisely, start with a leaf box Xt of TC . Suppose
it contains k variables that occur in literals of C, without loss of generality say
x1∨ . . .∨xk. Note that since C itself is contained in Xt there are at most k many
variables included. Introduce a new variable yt together with k+1 many clauses
expressing the equivalence yt ⇔ x1 ∨ . . . ∨ xk. Each of the new clauses has at
most k + 1 many literals. Next, consider an inner node t of TC having two sons
t1, t2. Suppose x′1, . . . , x

′
k to be those variables in Xt that occur as literals in C,

again without loss of generality in the form x′1 ∨ . . . ∨ x′k. If yt1 , yt2 denote the
new variables related to C that have been introduced for Xt1 , Xt2 , for Xt define
a new variable yt together with clauses expressing yt ⇔ yt1 ∨ yt2 ∨ x′1 ∨ . . .∨ x′k.
Again, there are at most k + 3 new clauses containing at most k + 3 literals
each. Finally, if t is the root of TC we define yt as before and add a clause saying
yt = 1. Thus, we add for each node Xt at most k + 4 new clauses as well as one
new variable.

Do the same for all clauses of ϕ. This results in a CNF formula ϕ̃ which
depends on O(m · n) additional variables y and contains O(m · n · k) many
clauses. The construction guarantees that ϕ(x) iff there exists a y such that
ϕ̃(x, y), and in that case y is unique.

A tree-decomposition of the primal graph P (ϕ̃) is obtained as follows. For
each occurrence of a clause C in Xt of T replace the clause vertex by the newly
introduced y variables related to the clause and the box Xt. In addition, for
boxes Xt, Xt1 , Xt2 such that t1, t2 are sons of t include the variables yt1 , yt2 also
in the upper box Xt. The xi variables that previously occurred are maintained.
Since for a single box Xt at most three yj are included for each clause, and since
there are at most k+1 clause vertices in an original box, the tree-width of P (ϕ̃) is
≤ 4(k+1). The decomposition satisfies the requirements of a tree-decomposition
since we did not change occurrences of the xi’s and the only yt-variables that
occur in several boxes occur in two consecutive ones. ⊓⊔

Our proofs below rely on the notion of communication complexity. The model
generally considered in communication complexity was introduced by Yao [16].
In this model, an input is divided between two parties, that we call processors.
Those processors must compute a given function of this input. To do so, since
each processor has only a partial input, they need to share information: they
will send bits to each other until one processor, say the second one, returns the
value of the function on the given input. We then say, that the processors have
computed the function in common. We briefly recall some definitions. For more
on this see [13].

16 I. Briquel, P. Koiran, and K. Meer

Definition 9. Let f : {0, 1}n 7→ {0, 1} be a Boolean function.

a) Consider a partition of the n variables of f into two disjoint sets x =
{x1, . . . , xn1}, y = {y1, . . . , yn2}, n1+n2 = n. The communication complexity
of f with respect to (x, y) is the lowest amount of bits that two processors,
the first working on the variables x and the second on the variables y, need
to exchange in order to compute f in common.

b) The one-way communication complexity of f with respect to (x, y) is the
lowest amount of exchanged bits needed to compute f if only one processor
is allowed to send bits to the other.

c) If above we only allow partitions of the variables of same cardinality, i.e., n
is even and |x| = |y|, and minimize over all of them we obtain the best-case
and best-case one-way communication complexity, respectively.

d) The non-deterministic communication complexity of f with respect to (x, y)
is the lowest amount of bits that two processors, the first working on the
variables x, the second on the variables y, and each having access to a source
of non deterministic bits, need to exchange in order to compute in common
the function f in the following sense :

• If f(x) = 1, at least one of the possible non-deterministic computations
must be accepting

• If f(x) = 0, all the non-deterministic computations must be non-accepting.

A useful approach in communication complexity consists in considering for
a given function f(u, v) the matrix associated to it :

Definition 10. Let f : U × V → {0, 1} be a boolean function.

a) We call the matrix of f the matrix (f(u, v)), where the different assignments
of u denote the rows and those to v denote the columns. Note that the matrix
is a |U | × |V | matrix.

b) A rectangle of the matrix (f(u, v)) is a set of entries composed of the inter-
section of a certain set of rows and a certain set of columns. That is, a set of
entries R is a rectangle if and only if the following is true : ∃Ũ ⊆ U, Ṽ ⊆ V
such that R = Ũ × Ṽ . Equivalently, a set of entries R is a rectangle if and
only if the following is true :

∀(u1, u2, v1, v2) ∈ U2 × V 2, (u1, v1) ∈ R ∧ (u2, v2) ∈ R⇒ (u1, v2) ∈ R.

c) A rectangle of the matrix (f(u, v)) is called monochromatic if f has the same
value on each entry of the rectangle.

The following two results are classical in communication complexity [13, 16]:

Theorem 7. Let f(x, y) be a function over two boolean vectors x and y.

(i) The one-way communication complexity of f equals the logarithm of the num-
ber of different rows in the matrix (f(u, v)).

On the expressive power of CNF formulas 17

(ii) The non-deterministic communication complexity of f equals the logarithm
of the minimal number of monochromatic rectangles of the matrix (f(u, v))
needed to cover all values 1 in the matrix.

For the lower bound proof, the non-deterministic communication complexity
with respect to certain partitions is the crucial notion. The following lemma
relates it to the path-width of primal graphs.

Lemma 1. Let φ(e, θ) be a CNF formula depending on n + s variables and
f : {0, 1}n 7→ {0, 1} a Boolean function such that :

- if φ(e, θ) = 1, then f(e) = 1
- if f(e) = 1, then there exists a θ such that φ(e, θ) = 1.

Consider an arbitrary path-decomposition (X1, . . . , Xp) of P (φ) of width k. Choose
a node Xi of the decomposition and a partition x, y of the variables e such that
all variables of type e that have already occurred among those in X1, . . . , Xi−1

are distributed to x and all the ones that never occur in X1, . . . , Xi to y. Then
the non-deterministic communication complexity of f with respect to (x, y) is at
most k + 2.

Proof. We split φ as follows into two CNF formulas φ1 and φ2 such that φ =
φ1 ∧ φ2 and φ1 and φ2 have at most k + 1 variables in common. Formula φ1 is
made of all clauses in φ that only contain variables that appear in X1, . . . , Xi−1.
The remaining clauses are collected in φ2. Due to the path-width conditions only
variables in Xi can be common variables of φ1 and φ2.

Note that all variables in x that appear in φ2 must belong to Xi, and that
no variables in y appear in φ1.

Now given an assignment of the variables (x, y), let the first processor com-
plete its assignment x by guessing non-deterministically the values of the remain-
ing variables needed to compute φ1 - that is, variables of θ since no variables in
y appear in φ1. Similarly, the second processor completes its assignment of y by
guessing the values of the remaining variables appearing in φ2 - variables of θ,
and variables of x appearing in Xi as remarked previously.

Let the first processor send to the second processor the result of its com-
putation of φ1 along with the values of the variables in its assignment that φ2

also uses. Those are variables in x appearing in φ2, and variables from θ that
are common to φ1 and φ2. Thus they all appear in Xi. As a result, the first
processor sends at most |Xi| + 1 ≤ k + 2 bits.

With those values, the second processor can check if the values of its guesses
are consistent with the values the first processor had, and if both the computa-
tions of φ1 and φ2 are accepting.

Thus, if e = (x, y) does not satisfy f , no guesses of the variables θ could
complete e in an assignment that satisfies both φ1 and φ2 and the protocol will
never be accepting; and if f(e) = 1, then if the two processors guess the proper
values to compute φ1 and φ2 on the existing assignment (e, θ) that satisfies φ,
both φ1 and φ2 will be satisfied, and the protocol will be accepting. ⊓⊔

18 I. Briquel, P. Koiran, and K. Meer

Remark 2. At the end of this section we obtain a similar lemma in order to obtain
some results of independent interest relating best-case deterministic communi-
cation complexity and path-width.

An outline of the lower bound proof is as follows: Given a CNF formula for
the function PERMn and a partition of the variables as above we next define
certain permutations called balanced. The number of balanced permutations can
be upper bounded in terms of the non-deterministic communication complexity,
by Lemma 2. Then in Lemma 3 we show that a CNF formula for the permanent
function gives rise to a partition of the variables with sufficiently many balanced
permutations. Combining this with Lemma 1 above and the well known relation
between path- and tree-width gives the following lower bound result:

Theorem 8 (lower bound for the permanent). Let (φn)n∈N be a family of
CNF formulas φn(e, θ) in n2 variables e = (eij) and sn auxiliary variables θ
such that :

- if φn(e, θ) = 1, then the matrix e ∈ {0, 1}n×n is a permutation matrix

- if e ∈ {0, 1}n×n is a permutation matrix, then there exists θ such that
φn(e, θ) = 1.

Then the path-width p(n) of the primal graphs P (φn) verifies p(n) = Ω(n), and
the tree-width t(n) verifies t(n) = Ω(n/ log(n+ sn)).

As a result, the general permanent function cannot be expressed by a family of
CNF formulas with a polynomial number of auxiliary variables and an incidence
graph of bounded tree-width.

Remark 3. The above lower bounds are independent of the size of the CNF
formulas.

Remark 4. It seems possible to improve the t(n) = Ω(n/ log(n+sn)) lower bound
by working directly with tree decompositions instead of path decompositions.
The proofs would get more cumbersome but do not seem to require new ideas.
We therefore stick to path decompositions in the remainder of this section.

We proceed as outlined above with

Definition 11. For n ∈ N let φn(e, θ) be a CNF formula in n2 variables (eij)1≤i,j≤n

and s variables θ1, . . . , θs, s arbitrary. Consider a partition (x, y) of the variables
e into two disjoint blocks x and y. A permutation π : {1, . . . , n} 7→ {1, . . . , n}
is called balanced with respect to the partition (x, y) if among the n variables
ei,π(i), 1 ≤ i ≤ n precisely ⌈n

2 ⌉ belong to x and ⌊n
2 ⌋ belong to y.

Thus, if (eij) represents the matrix of a permutation π and if π is balanced
with respect to (x, y), then (almost) half of those eij with value 1 belong to x
and the other half to y.

On the expressive power of CNF formulas 19

Lemma 2. Let φn(e, θ) be a CNF formula which evaluates to 1 only if e is
a permutation matrix as in the statement of Theorem 8. Suppose φn has n2

variables e = (eij) and sn variables θ, and let x, y be a partition of e. If there
are m balanced permutations with respect to (x, y), then the non-deterministic
communication complexity c of the function fn := PERMn with respect to (x, y)
satisfies

m ≤ 2c · (⌈n/2⌉!)2 .

Proof. Consider the matrix (fn(x, y)) as defined in Theorem 7, where rows and
columns are marked by the possible assignments for x and y, respectively. If π is
a permutation which is balanced with respect to (x, y), we denote by (x(π), y(π))
the corresponding assignments for the (eij) and we denote by R(π) the row of
index x(π) in the communication matrix (fn(x, y)).

We wish to compute an upper bound K such that any monochromatic rect-
angle covers at most K balanced permutations. The point then is that the com-
munication matrix will have at least m/K distinct rectangles since there are m
balanced permutations. We can then conclude that m ≤ 2c ·K by Theorem 7.

Towards this aim let A be a rectangle covering the value 1 corresponding to
π in the matrix. This rectangle is the intersection of a certain set of rows and
a certain set of columns. Since π is covered by A, R(π) belongs to that set of
rows. Let C be one of the columns.

The intersection of R(π) and C belongs also to A, and thus contains a 1.
Thus, the assignment yc indexing C completes x(π) in a satisfying assignment
of fn. Since π is balanced, there are ⌈n/2⌉ variables set to 1 in x(π). If x(π), yc

are to form a permutation matrix, yc must have exactly ⌊n/2⌋ variables set to
1, distributed in the intersection of the ⌊n/2⌋ rows and columns without any 1
in the assignment x(π).

Thus, there are at most ⌊n/2⌋! possible values for yc, and thus at most ⌊n/2⌋!
possible columns in A. Symmetrically, there are at most ⌈n/2⌉! possible rows in
A. Finally one can take K = ⌈n/2⌉! · ⌊n/2⌋!, and the conclusion of the lemma
follows from the inequality m ≤ 2c ·K. ⊓⊔

The final ingredient for the lower bound proof is

Lemma 3. Let φn be as in Lemma 2. There exists a partition of e into two
variable sets x, y such that this partition is as in the statement of Lemma 1 and
such that there are at least n! · n−2 many balanced permutations with respect to
(x, y).

Proof. Let (X1, X2, . . . , Xp) be the nodes of a path-decomposition of P (φn) (in
that order). We define an ordering on the eij ’s as follows: for an eij let X(eij)
be the first node in the path-decomposition containing eij . We put eij < ekl

if X(eij) < X(ekj). If both values are equal for eij and ekl we order them
arbitrarily but in a consistent way to achieve transitivity.

Consider a permutation π. There are precisely n variables of the form eiπ(i).
We pick according to the above order the ⌈n

2 ⌉-th among those and denote it by
eπ. Thus, among the eiπ(i) exactly ⌊n

2 ⌋ are greater than eπ and ⌈n
2 ⌉ are less than

20 I. Briquel, P. Koiran, and K. Meer

or equal to eπ with respect to the defined order. By the pigeonhole principle
there is at least one variable eℓ among the n2 many eij ’s such that for at least
n!
n2 many permutations of {1, . . . , n} we get that same eℓ by the above procedure,
i.e., eπ = eℓ for all those π. We choose a partition (x, y) of the eij as follows. The
part x consists of all the variables eij that are less than or equal to eℓ, and the
part y of the variables that are greater than vℓ. The partition (x, y) is as stated
in Lemma 1, where the node X(eℓ) plays the role of the Xi in the Lemma. The
above arguments imply that at least n!

n2 many permutations are balanced with
respect to this partition. ⊓⊔
Proof (of Theorem 8). Let φn be as in the theorem’s statement. According to
Lemma 3 there is a partition of the variables with at least n!

n2 many balanced
permutations. According to Lemmas 2 and 1 the path-width k of P (φn) satisfies

n!

n2
≤ 2k+2 × (⌈n/2⌉!)2 .

Using Stirling’s formula we deduce that k = Ω(n). Now the tree-width t
of φn satisfies t ∈ Ω(k/ log(n + sn)) which results in t ∈ Ω(n/ log(n + sn)).
Finally, the statement about the tree-width of φn’s incidence graph follows from
Proposition 2. ⊓⊔
Remark 5. The lower bound obtained above seems not derivable from the known
lower bounds on computing the permanent with monotone arithmetic circuits,
see, e.g., [10]. The tree-width based algorithms for polynomial evaluation like
the one in [6] are not monotone since they rely on the principle of inclusion and
exclusion.

We close this subsection by strengthening slightly Lemma 1 in order to apply
it also to the best-case communication complexity (Definition 9) and obtain some
lower bound results of independent interest.

Lemma 4. Let φ be a CNF formula depending on 2n variables. Assume that
the primal graph P (φ) has path-width k− 1. Then φ can be expressed as φ1 ∧φ2

for CNF formulas φ1, φ2 such that both have at most k variables in common and
both depend on at least n− k

2 variables which do not occur in the other formula.

Proof. We briefly sketch how the splitting of φ done in Lemma 1 can be per-
formed more carefully such that both formulas φ1 and φ2 depend at least on a
certain number of variables. For notational simplicity assume k to be even. Let
(X1, X2, . . . , Xp) be a path-decomposition of P (φ); order the variables once again
as done in the proof of Lemma 3. Denote the ordered sequence by v1 < . . . < v2n.
Choose i := n+ k

2 and let Xℓ := X(vi). Define φ1 as conjunction of those clauses
in φ containing only variables among the v1, . . . , vi and φ2 as conjunction of all
remaining clauses. Remark, that the n−k/2 variables vi+1, . . . , v2n do not occur
in φ1. Due to the path-width conditions the common variables in φ1 and φ2 must
be variables in Xℓ. Thus, there are at most k many. Moreover, Xℓ contains at
most k among the n+ k

2 many variables x1, . . . , xi. Therefore at least n − k
2 of

these occur for the last time in some Xℓ′ , where ℓ′ < ℓ and φ2 cannot depend on
them. ⊓⊔

On the expressive power of CNF formulas 21

As consequence, Lemma 1 now also holds with respect to the best-case com-
munication complexity (Definition 9) of the function represented by φ.

Corollary 2. The best-case communication complexity of a function f : {0, 1}2n →
{0, 1} is lower than k + 1, where k − 1 is the path-width of the primal graph of
any CNF formula computing f .

Proof. Let φ be a formula computing f , and k−1 be its path-width. By Lemma 4,
one can write φ as a conjunction φ1 ∧ φ2, where φ1 and φ2 have each n − k/2
variables not shared with the other formula. Let us consider a partition (x, y),
where x contains the n− k/2 variables, that belong to φ1 exclusively, and y the
n − k/2 variables, that belong to φ2 exclusively, the remaining variables being
distributed arbitrarily so that |x| = |y| = n.

With this partition, the communication complexity of f(x, y) is lower than
k + 1. Indeed, two processors, one having the variables x and the other one
the variables y, can exchange the at most k/2 variables that the first need to
compute φ1, and the at most k/2 variables that the second need to compute φ2.
Then, if the first processor sends the result of its computation on φ1 - which is
a single bit - the second can return the value of f .

Thus, the best case communication complexity is lower than k + 1.

If for a function f the best-case communication complexity is known, then
we can use the corollary to deduce lower bounds for the path- and tree-width of
CNF formulas representing f .

Example 1. For x, y ∈ {0, 1}n, 1 ≤ i ≤ n consider the boolean function SEQ(x, y, i)
which gives result 1 iff the string x = x0x1 . . . xn equals the string y shifted cir-
cularly by i bits to the right, that is to yiyi+1 . . . yn−1y0 . . . yi−1. It is known [13]
that SEQ has a best case communication complexity which is at least linear
in the size of the input. Thus, the path-width of the primal graph of any CNF
formula computing SEQ is at least linear in the input.

The same argument holds as well for the function PROD(a, b, i) which com-
putes the i-th bit of the product a · b, for the function MATCH which on a
3m-string x and a m-string y returns 1 iff y is a substring of x, and for the func-
tion USTCON which on a graph with ℓ vertices and two given vertices s and t
outputs 1 if there exists a path from s to t. As noted in [13] the best-case com-
munication complexity of those function is, respectively, linear, Ω(m/ log(m))
and Ω(

√
n). Consequently, they do not admit CNF formulas of path-width, re-

spectively, linear, Ω(m/ log(m)) and Ω(
√
n).

Since the path-width p and the tree-width t are related via p = O(t · logn),
all above mentioned examples do not admit CNF formulas with a primal graph
of bounded or even logarithmic tree-width.

4.2 Hardness for clique-width

The question answered negatively by Theorem 8 for tree-width can be posed
as well in relation to the clique-width parameter. That is: Can the permanent

22 I. Briquel, P. Koiran, and K. Meer

function be described via CNF formulas of bounded clique-width and polyno-
mial size? Next we relate this question to Theorem 2 b) and show that such a
representation is only possible if the conjecture #P 6⊆ FP/poly fails to be true.

Theorem 9. Suppose there is a family {ϕn}n of CNF formulas of polynomial
size such that all I(ϕn) are of clique-width at most k for some fixed k and for

each Y ∈ {0, 1}n2

we have that ϕn(Y) holds iff Y is a permutation matrix. Then
#P ⊆ FP/poly.

The result holds similarly if we allow additional variables in ϕn(Y) as in the
statement of Theorem 8.

Proof. Suppose {ϕn} is given as in the assumption. For a matrix X ∈ {0, 1}n2

we shall construct from ϕn and a parse-tree of it (given as non-uniform advice)
another CNF formula ψX

n (Y) of bounded clique-width together with a parse-tree
for ψX

n such that

Perm(X) =
∑

Y ∈{0,1}n2

ψX
n (Y).

Theorem 2 b) implies that the latter can be computed in polynomial time.
Given #P -completeness of the permanent function on 0-1-matrices the claim
follows.

The construction of ψX
n works as follows. It is Perm(X) =

∑

Y ∈{0,1}n2

ϕn(Y) ·

XY , where XY =
∏

i,j

x
yi,j

i,j and x
yi,j

i,j =

{

xi,j if yi,j = 1
1 otherwise

.

We replace the monomial XY by the conjunctions
∧

i,j

(xi,j ∨¬yi,j). The clause

graph I(ψn) of the CNF formula

ψn(X,Y) ≡ ϕn(Y) ∧
∧

i,j

(xi,j ∨ ¬yi,j)

can easily be seen to have clique-width ≤ k + 2. Each time when in the clique-
width construction of I(ϕn) along the parse-tree a node yi,j is created, in the
corresponding construction for I(ψn) two new nodes for xi,j and the clause
Di,j := xi,j ∨ ¬yi,j are created with an own label each. Then Di,j is connected
to both xi,j and yi,j (respecting the necessary signs of the edges). Finally the
labels for Di,j and xi,j are removed again.

Now for a fixed given matrix X we plug the values of the xi,j into the CNF
formula ψn(X,Y). Clauses that are satisfied by the assignment are removed. In
clauses that are not satisfied by the assignment all occurrences of xi,j literals
are removed. That way a new CNF formula ψX

n is obtained. The clause graph
I(ψX

n) results from I(ψn) by

(i) removing certain nodes (the xi,j as well as some clause nodes) and
(ii) identifying certain clause nodes.

On the expressive power of CNF formulas 23

Both operations do not increase the clique-width. Being clear for (i) it is also
true for (ii) since two or several clauses that are identified after having assigned
values to the xi,j ’s must contain the same yi,j ’s. Thus, this part has been dealt
with in the parse-tree construction for I(ψn) already and can be taken as well
for the parse-tree construction of I(ψX

n).
The proof when including additional variables in ϕn(Y) works the same. ⊓⊔
It remains an open question whether Theorem 9 can be strengthened to hold

unconditionally, like Theorem 8:

Conjecture: The hypothesis of Theorem 9 is impossible.

5 Acknowledgement

We thank the two anonymous referees for their very careful reading of the
manuscript and the many useful comments.

References

1. H. Bodlaender, T. Hagerup: Parallel Algorithms with Optimal Speedup for

Bounded Treewidth, SIAM J. on Computing, vol. 27(6), pp. 1725–1746 (1998).

2. B. Courcelle, J.A. Makowsky, U. Rotics: On the fixed parameter complexity of

graph enumeration problems definable in monadic second-order logic, Discrete Ap-
plied Mathematics, vol. 108(1-2),pp. 23–52 (2001).

3. B. Courcelle, M. Mosbah: Monadic second-order evaluations on tree decomposable

graphs, Theoretical Computer Science 109, pp. 49–82 (1993).

4. B. Courcelle, S. Olariu: Upper bounds to the clique-width of graphs, Discrete Ap-
plied Mathematics 101, pp. 77–114 (2000).

5. R. Diestel: Graph Theory, Springer Graduate Texts in Mathematics, 2nd edition
(2000).

6. E. Fischer, J. Makowsky, E.V. Ravve: Counting Truth Assignments of Formulas

of Bounded Tree-Width or Clique-Width, Discrete Applied Mathematics 156, pp.
511–529 (2008).

7. U. Flarup, P. Koiran, L. Lyaudet: On the expressive power of planar perfect match-

ing and permanents of bounded tree-width matrices, in: Proc. 18th International
Symposium ISAAC, Lecture Notes in Computer Science 4835, Springer, pp. 124–
136 (2007).

8. G. Gottlob, R. Pichler: Hypergraphs in model checking: Acyclicity and hypertree-

width. In: Proc. 28th International Colloquium on Automata, Languages and
Programming ICALP, Lecture Notes in Computer Science 2077, Springer, pp.
237–248 (2003)

9. F. Gurski, E. Wanke: The tree-width of clique-width bounded graphs without Kn,n.
In: Proc. Graph-Theoretical Concepts in Computer Science, Lecture Notes in
Computer Science 1938, Springer, pp. 196-205 (2000).

10. M. Jerrum and M. Snir: Some Exact Complexity Results for Straight-Line Com-

putations over Semirings, Journal of the ACM, vol. 29(3), pp. 874–897 (1982).

24 I. Briquel, P. Koiran, and K. Meer

11. P. Koiran and K. Meer: On the expressive power of CNF formulas of bounded

tree- and clique-width, in: Proc. 34th International Workshop on Graph-Theoretic
Concepts in Computer Science WG, Lecture Notes in Computer Science 5344 ,
Springer, pp. 252–263 (2008).

12. E. Korach and N. Solel: Tree-width, path-width, and cutwidth, in Discrete Applied
Mathematics 43, Issue 1, pp. 97–101 (1993).

13. E. Kushilevitz and N. Nisan: Communication Complexity, Cambridge University
Press (1997).

14. G. Malod and N. Portier: Characterizing Valiant’s Algebraic Complexity Classes,
in: Proc. 31st International Symposium on Mathematical Foundations of Com-
puter Science MFCS, Lecture Notes in Computer Science 4162, Springer, pp.
704–716 (2006).

15. M. Samer, S. Szeider: Algorithms for Propositional Model Counting, in: Proc.
LPAR 2007,Lecture Notes of Computer Science 4790, Springer, pp. 484–498
(2007).

16. A. Yao: Some complexity questions related to distributive computing, in: Proceed-
ings of the 11th Annual ACM Symposium on Theory of Computing STOC, pp.
209–213 (1979).

