A Superpolynomial Lower Bound on the Size of Uniform Non-constant-depth Threshold Circuits for the Permanent

Pascal Koiran
LIP
École Normale Supérieure de Lyon
Lyon, France
pascal.koiran@ens-lyon.fr

Sylvain Perifel
LIAFA
Université Paris Diderot – Paris 7
Paris, France
sylvain.perifel@liafa.jussieu.fr

Abstract—We show that the permanent cannot be computed by DLOGTIME-uniform threshold or arithmetic circuits of depth $o(\log \log n)$ and polynomial size.

Keywords—permanent; lower bound; threshold circuits; uniform circuits; non-constant depth circuits; arithmetic circuits

I. INTRODUCTION

Both in Boolean and algebraic complexity, the permanent has proven to be a central problem and showing lower bounds on its complexity has become a major challenge. This central position certainly comes, among others, from its P-completeness [15], its VNP-completeness [14], and from Toda’s theorem stating that the permanent is as powerful as the whole polynomial hierarchy [13]. More recently, it played a role in the celebrated and subtle result of Kabanets and Impagliazzo [6]: either $\text{NEXP}^{\mathsf{RP}}$ does not have Boolean circuits of polynomial size, or the permanent does not have arithmetic circuits of polynomial size.

However little is known about the circuit complexity of the permanent in the general case. Indeed, the best lower bound so far on its circuit size is no more than the trivial $\Omega(n^2)$ (remember that PER_n has n^2 variables). Despite this rather dark state of affairs, some progress has been made on restricted classes of circuits. For instance, we know lower bounds on monotone circuits (such circuits for the permanent must have exponential size, see [5], [11]), and recently, lower bounds on multilinear circuits were obtained (see e.g. [8], [9], [10]).

A lot of work has also been done on constant-depth circuits, in which gates have unbounded fan-in. This line of research has been quite successful on Boolean circuits and gave deep insights into circuit complexity: see e.g. [3], [12]. However, pushing the limit of lower bounds beyond constant depth for polynomial-size circuits has remained elusive so far.

Another restriction worth studying is uniformity: circuits are not arbitrary any more but are required to be described by a Turing machine. If this description is very efficient (running in time logarithmic in the size of the circuit, we speak of DLOGTIME-uniformity), Allender [1] (see also similar results on circuits with modulo gates in [2]) has shown that the permanent does not have threshold circuits of constant depth and “sub-subexponential” size. In this paper, we obtain a tradeoff between size and depth: instead of sub-exponential size, we only prove a superpolynomial lower bound on the size of the circuits, but now the depth is no more constant. More precisely, we show the following theorem.

Theorem 1: The permanent does not have DLOGTIME-uniform polynomial-size threshold circuits of depth $o(\log \log n)$.

It seems to be the first superpolynomial lower bound on the size of non-constant-depth threshold circuits for the permanent (though a lower bound is proved in [10] on multilinear arithmetic circuits of depth $o(\log n / \log \log n)$). Admittedly, the depth $o(\log \log n)$ is still small but until now the known techniques were only able to prove lower bounds on constant-depth circuits. Note that our techniques are not really very different from those of [1]—but seeing how to step beyond $O(1)$ depth does require a different way of looking at the problem. It is also worth remarking that our technique can readily be adapted to an easier proof of Allender’s result [1] (see Remark 2 at the end of the paper).

Let us very briefly describe our proof technique. In contrast with [1], we do not use the relation between threshold circuits and the counting hierarchy, which implied to consider only constant-depth circuits. Also, the diagonalization in [1] is a variant on the nondeterministic time hierarchy theorem. Here, we use the usual deterministic time hierarchy theorem as an indirect diagonalization: under the assumption that the permanent has DLOGTIME-uniform circuits of polynomial size and depth $o(\log \log n)$, we show

1) the value of a threshold circuit of size s and depth d can be computed in time $(\log s)^{2^{O(d)}}$ (Lemma 3 combined with Lemma 1);
2) every language in E has uniform threshold circuits of size $2^{O(n)}$ and depth $o(\log n)$ (Corollary 4).

These two points together imply that every language in E can
be computed in subexponential time, a contradiction with the time hierarchy theorem.

Since threshold circuits can simulate arithmetic circuits, we also obtain a superpolynomial lower bound on the size of uniform arithmetic circuits of depth $o(\log \log n)$ for the permanent (Corollary 7).

Organization of the paper — The next section is devoted to the definition of the notions in use: circuits (Boolean, threshold, arithmetic), uniformity and some complexity classes. Then Section III is dedicated to the proof of Theorem 1 by showing a series of results along the way suggested above.

II. Preliminaries

The notions we use are very standard but, for completeness, we still recall them in this section.

A. Boolean circuits

A Boolean circuit on n variables is a directed acyclic graph, whose vertices are labeled either by a variable among $\{x_1, \ldots, x_n\}$ or by an operation among $\{\lor, \land, \neg\}$. Vertices of indegree 1 are called inputs, the others are called gates. A gate labeled by \neg is required to have indegree 1, whereas gates labeled by \lor or \land have indegree 2. A single gate has outdegree 0 and is called the output gate.

The value computed by a vertex is defined recursively: an input x_i has for value the value of the variable $x_i \in \{0, 1\}$. A \neg gate $g = \neg h$ has for value the negation of the value of h. An \lor gate $g = h_1 \lor h_2$ (respectively an \land gate $g = h_1 \land h_2$) has for value the disjunction (resp. conjunction) of the values of h_1 and h_2. The value of the circuit is by definition the value of its output gate.

The size of the circuit is the number of vertices and the depth is the length of the longest path from an input vertex to the output gate.

Remark that in order to recognize a language, one needs not only one but a whole family (that is, an infinite sequence) of circuits (C_n), as explained below. There is also a variant in which gates \lor and \land have unbounded fan-in: this is useful when defining classes of circuits of constant depth.

B. Threshold circuits

A threshold circuit is similar to a Boolean circuit with \lor and \land gates of arbitrary fan-in, but another type of gate is allowed: threshold gates (also known as majority gates). A threshold gate is also of arbitrary fan-in, and its value is 1 if at least half of its inputs have value 1, and 0 otherwise.

Again, in order to recognize a language, a whole family of circuits is needed. Note that it makes sense to consider families of bounded depth threshold circuits since gates are allowed to have arbitrary fan-in.

C. Arithmetic circuits

An arithmetic circuit is similar to a Boolean circuit but with other kinds of gates. It has $+$, $-$ and \times gates, all of fan-in 2, and besides variables, another input is labeled by the constant 1. The variables are not considered to have Boolean values anymore, but instead they are symbolic and the circuit computes a polynomial (over the ring \mathbb{Z}) in the obvious way: the value of the input gate labeled by 1 is the constant polynomial 1, the value of an input gate labeled by x_i is the polynomial x_i, the value of a $+$ gate (respectively $-$ gate, \times gate) is the sum (resp. difference, product) of the values of its inputs.

An arithmetic circuit C with n input gates computes a multivariate polynomial over \mathbb{Z} with n variables. Circuit families (C_n) are used to compute families of polynomials. The permanent family (also called permanent for short) is the family (PER_n) of polynomials defined as follows:

$$\text{PER}_n(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_{n^2}) = \sum_{\sigma} \prod_{i=1}^{n^2} x_i, \sigma(i)$$

where the sum is taken over all the permutations σ of $\{1, \ldots, n\}$. The n^2 variables $x_{i,j}$ can be viewed as the coefficients of an $n \times n$ matrix, allowing us to speak of the permanent of a matrix.

D. Uniformity

Circuits, be they Boolean, threshold or arithmetic, are finite objects easily encoded in binary (e.g. by the list of their vertices and edges). Hence they can be handled by Turing machines.

As already mentioned, we are interested in sequences (C_n) of circuits in order to recognize languages. In the most general setting, no assumption is made on the structure of these circuits: in particular, the Boolean encodings of the circuits of a family may be uncomputable. However, if a single Turing machine is able to produce the Boolean encoding of all the circuits of the family, then we speak of uniformity. The degree of uniformity depends on the resources needed by the machine.

A family of circuits (C_n) is said P-uniform if there exists a deterministic Turing machine which, on input (n, i) given in binary, outputs the i-th bit of the encoding of C_n in time polynomial in n (that is, in time exponential in the size of the input). Similarly, a family of circuits (C_n) is said DLOGTIME-uniform if there exists a deterministic Turing machine which, on input (n, i) given in binary, outputs the i-th bit of the encoding of C_n in time logarithmic in n (that is, in time linear in the size of the input). Of course, DLOGTIME-uniformity implies P-uniformity. It can be argued that DLOGTIME-uniformity is the right notion of uniformity for small-depth circuits, see [7].

Remark 1: In the remainder of the paper, we shall work with DLOGTIME-uniformity, but everything remains valid if replaced by “polylogtime” uniformity.

\footnote{Indegree and outdegree are also called fan-in and fan-out, respectively.}
E. Complexity classes

Here we present definitions of the complexity classes that concern us. Let \(\text{DTIME}(t(n)) \) denote the set of languages recognized in time \(t(n) \) by a deterministic Turing machine. Then \(\mathbb{P} \) is the class \(\text{DTIME}(n^{O(1)}) = \bigcup_{k>0} \text{DTIME}(n^k) \) (that is, deterministic polynomial time) and \(\mathbb{E} \) is the class \(\text{DTIME}(2^{O(n)}) = \bigcup_{k>0} \text{DTIME}(2^k n^k) \) (that is, deterministic exponential time with linear exponent).

Recall the time hierarchy theorem [4]: for time-constructible functions \(f \) and \(g \), if \(f(n)/g(n) = o(1) \) then \(\text{DTIME}(g(n)) \not\subseteq \text{DTIME}(f(n)) \). In particular, we will use the following consequence: \(\mathbb{E} \not\subseteq \text{DTIME}(n^{2^{O(n)}}) \).

The class \(\#\mathbb{P} \) is the set of functions \(f : \{0,1\}^* \to \mathbb{N} \) defined as follows: there exist a polynomial \(p \) and a language \(A \in \mathbb{P} \) such that \(f(x) = \#\{y \in \{0,1\}^p(|x|) : (x,y) \in A\} \). Computing the permanent of a 0-1 matrix is \(\#\mathbb{P} \)-complete (Valiant [14]). Then \(\mathbb{P} \) is the set of languages \(B \) such that there is \(f \in \#\mathbb{P} \) satisfying \(x \in B \iff f(x) \geq 2^{p(|x|) - 1} \). The class \(\mathbb{P} \) can also be viewed as the languages \(B \) such that there exists a polynomial-time nondeterministic Turing machine \(N \) satisfying \(x \in B \iff \text{at least half of the computation paths of } N \text{ are accepting} \). Remark that if every function in \(\#\mathbb{P} \) can be computed in polynomial time, then \(\mathbb{P} = \mathbb{P} \).

Complexity classes can also be defined in terms of circuits (either Boolean or threshold). An input \(x \) is accepted by a circuit \(C \) if the value of \(C \) on \(x \), denoted by \(C(x) \), is \(1 \). In order to recognize languages, families \((C_n) \) of circuits are considered: circuit \(C_n \) will recognize inputs of size \(n \), hence we make the assumption that \(C_n \) has \(n \) input gates. Now, a language \(A \) is recognized by a family \((C_n) \) of circuits if \(A = \{ x \in \{0,1\}^* : C_n(x) = 1 \} \).

We shall use the well known characterization of \(\mathbb{P} \) in terms of circuits: \(\mathbb{P} \) is the set of languages recognized by \(\mathbb{P} \)-uniform families of polynomial-size Boolean circuits. The class \(\mathbb{P} \mathbb{C}^0 \) is the set of languages recognized by a family of constant-depth Boolean circuits of polynomial size, where the gates \(\vee \) and \(\wedge \) have unbounded fan-in. The class \(\mathbb{B} \mathbb{C}^0 \) is the set of languages recognized by a family of constant-depth threshold circuits of polynomial size. Uniform versions of these classes, \(\text{DLOGTIME-AC}^0 \) and \(\text{DLOGTIME-TC}^0 \) respectively, are defined by requiring \(\text{DLOGTIME} \)-uniformity on the circuit family.

III. Technical developments

This series of results is devoted to the proof of Theorem 1.

Lemma 1: If the permanent has \(\mathbb{P} \)-uniform polynomial-size threshold circuits then \(\mathbb{P} = \mathbb{P} \).

Proof: First turn the threshold circuits into Boolean circuits. To this end, every \(\wedge \) or \(\vee \) gate of unbounded fan-in is replaced by trees of \(\wedge \) or \(\vee \) gates of fan-in \(2 \) (which clearly remains \(\mathbb{P} \)-uniform and of polynomial size), and every threshold gate with \(N = n^{O(1)} \) inputs is replaced by the addition of the inputs followed by a comparison of the result with \(N/2 \). This iterative addition can easily be carried out by a \(\mathbb{P} \)-uniform circuit of size polynomial in \(N \), hence polynomial in \(n \). This proves that the permanent has \(\mathbb{P} \)-uniform polynomial-size Boolean circuits.

Thus, by \(\#\mathbb{P} \)-completeness of the permanent every function in \(\#\mathbb{P} \) can be computed in polynomial time. This implies that \(\mathbb{P} = \mathbb{P} \).

As a preparation to the proof of Lemma 3, let us first rephrase the hypothesis \(\mathbb{P} = \mathbb{P} \) in a convenient way.

Lemma 2: Let \(A \) be a language with a (deterministic) algorithm \(A \) running in time at most \(t(n) \geq n \), where \(t : n \to t(n) \) is a function computable in time \(O(t(n)) \) by an algorithm \(T \). Consider the following problem \(B \): given a word \(x \), a length \(n \) and an integer \(N \leq 2^n \), decide whether at least \(N \) words \(y \in \{0,1\}^n \) satisfy \((x,y) \in A \).

If \(\mathbb{P} = \mathbb{P} \) then \(B \) has an algorithm \(\phi(A,T) \) running in time \(O((n + |x|)) \) for a fixed polynomial \(p \) (independent of \(A \)). Furthermore, the transformation \(\phi \) computing from \((A,T) \) the code of the algorithm for \(B \) is computable in linear time.

Proof: Remark that this is not a completely obvious consequence of \(\mathbb{P} = \mathbb{P} \) since the polynomial \(p \) is required to be independent of \(A \). In fact this comes from the existence of a complete problem for \(\mathbb{P} \). Take indeed the canonical \(\mathbb{P} \)-complete language

\[H = \{(M,x,1^n) : \text{at least half of the computation paths of } M(x) \text{ are accepting in time } n \}, \]

where \(M \) is a nondeterministic Turing machine. The hypothesis \(\mathbb{P} = \mathbb{P} \) implies that \(H \) is decidable in time \(p(n) \) for some polynomial \(p \).

To the problem \(B \) is associated a language \(\tilde{B} = \{(x,n,N,1^{t(n+|x|)}) : \#\{y \in \{0,1\}^n : (x,y) \in A \} \geq N \} \). Then \(\tilde{B} \) is in \(\mathbb{P} \) and a reduction from \(B \) to \(H \) is the mapping \((x,n,N,1^{t(n+|x|)}) \mapsto (M(x,n,N),1^{t(n+|x|)}) \), where \(M(n,x,N) \) has the following behaviour: first guesses \(b \in \{0,1\} \); if \(b = 0 \), then it creates \(2^n - N \) accepting paths among \(2^n \) paths; if \(b = 1 \), then it guesses \(y \in \{0,1\}^n \) and decides whether \((x,y) \in A \) by running the algorithm for \(A \) in time \(t(n+|x|) \). Therefore \(M(n,x,N) \) runs in time \(O(t(n+|x|)) \), has \(2^{n+1} \) paths, and among them \(2^n - N + \#\{y \in \{0,1\}^n : (x,y) \in A \} \) are accepting. This is more than half of the total number of paths if \(\#\{y \in \{0,1\}^n : (x,y) \in A \} \geq N \). Since \(t(n+|x|) \) is computable in time \(O(t(n+|x|)) \) by the algorithm \(T \), this reduction shows that \(\tilde{B} \) is decidable in time \(p(t(n+|x|)) \).

Furthermore, note that the algorithm for \(\tilde{B} \) just consists in the computation of \(t(n+|x|) \) thanks to the algorithm \(T \), and then in the execution of the algorithm for \(H \) in which the algorithm \(A \) is plugged. This proves the claim on \(\phi \).
a description of their gates. That is, instead of giving the threshold circuit \(C \) directly, a Boolean circuit \(B \) is given, whose value \(B(i) \) on input \(i \) is the \(i \)-th bit of the encoding of \(C \). This may enable much shorter representations of the circuit. Circuits given in that way will be called “succinctly given”.

Lemma 3: Let \(A_{\leq d} \) be the problem of deciding the value of a succinctly given threshold circuit of depth \(\leq d \), that is,

\[
A_{\leq d} = \{(B, x) : \text{ } B \text{ represents a threshold circuit } C \text{ of depth } \leq d, \text{ and } C(x) = 1\}
\]

where \(B \) is a Boolean circuit and \(x \) is a Boolean input to \(C \) of appropriate size. The size of the input \((B, x) \) is denoted by \(m \).

If \(\text{PP} = P \), then \(A_{\leq d} \) has an algorithm of running time \(m^{2^{O(d)}} \). Furthermore, the code of this algorithm (that is, the identifier of a Turing machine for it) is computable from \(d \) in time \(2^{O(d)} \) by a fixed Turing machine.

Proof: The idea is to recursively evaluate the values of the gates at each depth of the circuit, using Lemma 2 for threshold gates. In order to apply Lemma 2, one has to consider all the inputs of a particular gate, leading us to define the language \(A_k \) corresponding to the gates being inputs of the \(i \)-th gate of \(C \), whose depth is \(\leq k \), as follows:

\[
A_k = \{(B, x, i, j) : \text{ } B \text{ represents a threshold circuit } C \text{ in which gate } i \text{ is at depth } \leq k, \text{ gate } j \text{ is an input of gate } i, \text{ and the value of gate } j \text{ is } 1 \text{ in the computation } C(x)\}
\]

Note that one can artificially add to \(C \) a final “identity gate” taking as input the output of \(C \), in which case deciding \(A_{\leq d} \) reduces to deciding \(A_{d+1} \).

Let us call \(T(k, d, m') \) the time needed to decide \(A_k \) as a function of the depth \(d \) of \(C \), and of the size \(m' \) of the input \((B, x, i, j)\). Note that \(m' = \Theta(m) \) since the size of \(i \) and \(j \) is less than or equal to that of \(B \) (indeed, \(B \) takes as input an integer representing a gate number, thus of the order of \(i \) and \(j \)). The language \(A_2 \) consists in checking that gate \(j \) is an input of gate \(i \), and in evaluating gate \(j \) on level 1 (an input gate), that is, deciding to which bit of \(x \) it corresponds: this can be done in polynomial time, hence in time \(m^{O(1)} \). Therefore \(T(2, d, m') = m^{O(1)} \).

The purpose is now to decide \(A_{k+1} \) by using the algorithm for \(A_k \). It can be done easily since we can decide the value of a gate at depth \(k \) if we know the values of the gates at depth \(\leq k - 1 \). Indeed, let us decide whether \((B, x, i, j) \in A_{k+1}\), supposing gate \(i \) is at depth \(k + 1 \) and has gate \(j \) as input: we want to compute the value of gate \(j \). Since gate \(j \) is at depth \(\leq k \), the algorithm for \(A_k \) provides the value of all the inputs of gate \(j \), which are used in turn to compute the value of gate \(j \) itself. More precisely we proceed inductively:

- If gate \(j \) is a \(\lor \) gate, that is, \(f = g \lor h \) with \(\lor \in \{\lor, \land\} \), then we perform the corresponding Boolean operation on the values of \(g \) and \(h \).
- If gate \(j \) is a threshold gate, we decide whether at least half of its inputs evaluate to 1.

Let us bound the execution time \(T(k+1, d, m') \) of this algorithm for \(A_{k+1} \) as a function of \(T(k, d, m') \) (the execution time of the algorithm for \(A_k \)). In the first case, we take the negation of one request of the form \((B, x, j, g) \in A_k\), therefore we have the following relation: \(T(k+1, d, m') = T(k, d, m') + O(1) \). Similarly, in the second case we make a Boolean combination of two requests (one for each input), hence \(T(k+1, d, m') \leq 2T(k, d, m') + O(1) \). Finally in the third case, the task is to decide whether more than half of the inputs \(y \) of gate \(j \) evaluate to 1. Applying Lemma 2 to the language \(A_k \), with \(N \) being the number of inputs to gate \(j \) and with requests of the form \((B, x, j, y) \in A_k \) for all gates \(y \), yields \(T(k+1, d, m') \leq p(T(k, d, m')) \) for some fixed polynomial \(p \).

As a whole, we have the following relation, for a fixed polynomial \(p \):

\[T(k+1, d, m') \leq p(T(k, d, m')) \]

In other words, there exists an exponent \(\alpha \in \mathbb{N} \) such that \(T(k+1, d, m') \leq T(k, d, m')^\alpha \), hence \(T(k, d, m') \leq T(2, d, m')^\alpha^k \). Since \(T(2, d, m') = m^{O(1)} \) and deciding \(A \) requires to go up to \(k = d + 1 \), there is an algorithm for \(A_{\leq d} \) running in time

\[T(d+1, d, m') \leq m^{2^{O(d)}} \leq m^{2^{O(d)}} \]

Note that this upper bound for \(T \) is easily computable in time \(O(T(d+1, d, m')) \) by a fast Turing machine \(T \).

Furthermore, the algorithm for \(A_{k+1} \) consists in one or two calls to the algorithm for \(A_k \) in the two first cases, and in one call to the algorithm for \(\phi(A_k, T) \) in the third case, where \(\phi \) is the transformation given by Lemma 2 and \(A_k \) is the algorithm for \(A_k \). Therefore the algorithm for \(A_{k+1} \) is computable from the algorithms for \(A_k \) and \(T \) in linear time. This proves that the algorithm for \(A_{\leq d} \) is computable by a fixed Turing machine in time \(2^{O(d)} \).

The limitation on the depth can now be removed. Note that if we worked at constant depth, Lemma 3 would be enough (see Remark 2); the requirement on the constructibility of the algorithm for \(A_{\leq d} \) would even be useless. However, the following lemma is needed for nonconstant depth.

Lemma 4: Let \(A \) be the problem of deciding the value of a succinctly given threshold circuit, that is,

\[
A = \{(B, x) : \text{ } B \text{ represents a threshold circuit } C \text{ and } C(x) = 1\}
\]

where \(B \) is a Boolean circuit and \(x \) is a Boolean input to \(C \) of appropriate size. The depth of the threshold circuit \(C \) is denoted by \(d \) and the size of the input \((B, x)\) by \(m \).

If \(\text{PP} = P \), then \(A \) has an algorithm of running time \(m^{2^{O(d)}} \).
to compute the matrix of the permanent of a matrix M in linear time (that is, the depth is $O(n)$).

Combining Corollary 4, Lemma 1 and Corollary 1 yields the following.

Corollary 5: If the permanent has DLOGTIME-uniform polynomial-size threshold circuits of depth $d(n)$, then $E \subseteq \text{DTIME}(2^{2^{O(d(n))}})$.

This is in contradiction with the time hierarchy theorem as soon as $d(n) = o(\log \log n)$, hence we have proved our main result:

Corollary 7: The permanent does not have DLOGTIME-uniform polynomial-size arithmetic circuits of depth $o(\log \log n)$.

Remark 2: The same proof with minor modifications yields the following result of Allender [1]: the permanent does not have DLOGTIME-uniform constant-depth threshold circuits of size $S(n)$, as soon as $\forall k, S^{(k)}(n) = o(2^n)$ (the k-th iterate of S on n is $o(2^n)$). This includes for instance functions such as $S(n) = n^{\log n}$ or $S(n) = n\log n \log \log n$.

To see this, the following modifications should be adopted: Lemma 1 should concern circuits of size $S(n)$ (as everywhere else in the paper) and have the conclusion $\mathsf{PP}(S(n)) = \text{DTIME}(S(n))$ (this equality should replace $\mathsf{PP} = \mathsf{P}$ everywhere). The running time of the algorithm of Lemma 2 should be changed to $S(t(n + |x|))$, and in Lemma 3 to $S(2^{O(d)})$. Lemma 4 is no more needed since Lemma 3 for constant d already provides an algorithm of fixed length. For Corollary 1, the time should be $S^{(O(d))}(\log s(n))$, where $s(n)$ is the size of the circuits. In Corollary 4, the size should be replaced by $S(2n)$ and the depth by $O(1)$. Finally, in Corollary 5, E would be included in $\text{DTIME}(S^{(O(1))}(n))$.

Acknowledgments — The authors are indebted to Eric Allender and Dieter van Melkebeek for their comments and corrections and want to thank them warmly, as well as the (anonymous) referees.

References

