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ABSTRACT
Suppose the polynomials f and g in K[x1, . . . , xr] over the
field K are determinants of non-singular m × m and n × n
matrices, respectively, whose entries are in K∪{x1, . . . , xr}.
Furthermore, suppose h = f/g is a polynomial in K[x1, . . .,
xr]. We construct an s × s matrix C whose entries are in
K ∪ {x1, . . . , xr}, such that h = det(C) and s = γ(m + n)6,
where γ = O(1) if K is an infinite field or if for the finite
field K = Fq with q elements we have m = O(q), and where

γ = (logq m)1+o(1) if q = o(m). Our construction utilizes the
notion of skew circuits by Toda and weakly-skew circuits by
Malod and Portier. Our problem was motivated by resultant
formulas derived from Chow forms.

Additionally, we show that divisions can be removed from
formulas that compute polynomials in the input variables
over a sufficiently large field within polynomial formula size
growth.

Categories and Subject Descriptors: I.1.1 [Symbolic
and Algebraic Manipulation]: Expressions and Their Rep-
resentation; F.1.1 [Theory of Computation]: Models of Com-
putation

General Terms: algorithms, theory

Keywords: Algebraic complexity theory, formula complex-
ity, Strassen’s removal of divisions, Toda’s skew circuits,
Valiant’s universality of determinants

1. INTRODUCTION

1.1 Motivation
The problem that we investigate was motivated by the

question of resultant formulas without division. Originally,
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the resultant of a set of t homogeneous polynomial equa-
tions f1 = · · · = ft = 0 in t variables has been expressed
as a GCD of determinants, whose matrices have the coef-
ficients of the polynomials as entries. Macaulay [13] gave
a formula of a quotient of two such determinants. In spe-
cial cases, one can remove the division and construct a single
determinant that is the resultant [10, 6, 11]. Those construc-
tions use properties of exact sequences of exterior algebras.
However, an algebraic complexity theoretic approach can re-
move the division in the general case in an entirely different
manner. Take Macaulay’s formula resultant(f1, . . . , ft) =
det(A)/ det(B), where the larger matrix A has dimensions
m×m. One converts the determinants to straight-line pro-
grams, removes the division by Strassen’s [18] method, or
computes their GCD [8], parallelizes the straight-line pro-
gram to O((log m)2) depth [20, 15], converts the resulting
division-free straight-line program to a formula of quasi-
polynomial size mO(log m), and finally writes the resultant
formula as the projection of a determinant of a matrix C
of dimensions k × k where k = mO(log m) [21]. Note that C
with det(C) = det(A)/ det(B) has as entries the coefficients
of the original polynomials or constants. Here we shall show
that there is a matrix C̄ of dimensions O(m6) whose entries
are the coefficients of the original polynomials or constants
with det(C̄) = det(A)/ det(B).

1.2 Results and Approach Used
Our main result is the following theorem.

Theorem 1 Let f, g, h ∈ K[x1, . . . , xr] \ {0}, where K is a
field, such that f/g = h and f is a projection à la Valiant
[21] of an m × m determinant and g is a projection of an
n×n determinant (n ≤ m or n > m), meaning that there are
matrices A ∈ K[x1, . . . , xr]

m×m and B ∈ K[x1, . . . , xr]
n×n,

whose entries are in K ∪ {x1, . . . , xr} with f = det(A) and
g = det(B). Then there exists an s × s matrix C whose
entries are in K ∪ {x1, . . . , xr} such that h = f/g = det(C)
and s is polynomial in m + n, that is, the exact quotient
of f and g is a projection of a determinant of polynomial
dimension. More precisely,

(i) if K is infinite or if m = O(|K|) we can take s =
O((m + n)6);

(ii) if K is a small finite field, we can take s = O((m +
n)6 · M(log|K| m)), where M(l) = l · (log l) · (loglog l).

1

http://www.kaltofen.us
http://perso.ens-lyon.fr/pascal.koiran/


We prove our result via the notion of weakly-skew division-
free arithmetic circuits by Malod and Portier [14]. We con-
sider division-free arithmetic circuits (straight-line programs),
which are directed acyclic graphs (DAGs) whose nodes have
fan-in at most two and which perform addition, subtraction
and multiplication. The operands are the values in previ-
ous nodes, constant scalars or input variables. The values
of designated output nodes are multivariate polynomials in
the input variables. The size of the graph is the number
of arithmetic operations (sequential complexity) performed.
This definition of size is consistent with [21], for instance.
Malod and Portier [14] work with a slightly different defi-
nition of size, in which input nodes (variables or constants)
are counted along with arithmetic nodes. To avoid any con-
fusion, we will call this second notion fat size. The fat size
of a circuit is therefore equal to the sum of its size and of
the number of input nodes. It is bounded by 3 times the size
since the number of input nodes is equal to at most twice
the number of arithmetic nodes.

Toda [19] introduces skew division-free arithmetic circuits,
which have the property that at least one of the two operands
in each multiplication node is either a scalar constant or an
input variable. Toda proves that the determinant polyno-
mial of an m×m matrix can be computed by a skew circuit
of size O(m20). In weakly-skew circuits at least one of the
two operands to any multiplication node α must be com-
puted by a separate subcircuit Cα. By separate we mean
that the edge connecting Cα to α is the only edge between
Cα and the remainder of the circuit. Figure 1 shows an ex-
ample of a weakly-skew circuits. The separate subcircuits for
the operands of multiplication nodes are marked by dashed
boxes.
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Figure 1: A weakly-skew circuit

Valiant [21] proves that every formula of size s is the pro-
jection of an (s+2)× (s+2) determinant. In formulas, both
operands to all nodes are computed by separate formulas.
Valiant’s proof can be generalized to show that every pol-
ynomial that is computed by a weakly-skew circuit of fat
size s is the projection of an (s + 1) × (s + 1) determinant
[14, Lemma 6]. In that paper, the nonconstant entries of
the resulting determinant are negated input variables (i.e.,
they are of the form −xi where xi is an input variable). We
explain how to get rid of these negations in Section 2.

Furthermore, the division-free parallel circuits by Berkowitz
[1] for the characteristic polynomial of an m × m matrix
can be converted to weakly-skew circuits of size O(m5) [14,
Proposition 5]. In Section 3 we apply Strassen’s [18] tech-
nique for elimination of divisions directly to the charac-
teristic polynomials derived from A and B in Theorem 1

above, thus obtaining a division-free weakly-skew circuit for
h = det(A)/ det(B). This already establishes (using the
quantities of Theorem 1) the following result:

Lemma 1 The exact quotient h = f/g can be computed by
weakly-skew circuit of size s.

To complete the proof of Theorem 1 we note that the result-
ing circuit is the projection of a determinant. Note that the
technique in [2], which is not directly applicable, assumes
that the diagonals of A and B hold a single separate vari-
able, implying also n < m.

Along the way we show in Section 2 that weakly-skew
circuits can be simulated by skew circuits with an increase
in size by a constant factor only; and that Toda’s O(m20)
bound can be reduced to O(m5).

Since weakly-skew circuits are projections of determinants,
we have the following corollary to Lemma 1 and our trans-
formation results to skew circuits.

Corollary 1 Let f, g, h ∈ K[x1, . . . , xr] \ {0}, where K is a
field with deg(g) = O(|K|) such that f/g = h and f and g
are computed by a weakly-skew circuit of size s with inputs
x1, . . . , xr. Then h can be computed by a skew circuit of size
O(s6).

Suppose in the above corollary that f and g are com-
puted by division-free formulas of size ≤ s. Then h = f/g
is a projection of a determinant of a matrix of dimension
O(s6). In Section 4 we show that there exists a division-free
formula of size (s5) that computes h = f/g. As a conse-
quence of the latter result, we can show that a polynomial
in K[x1, . . . , xr] that is computed by a formula of size s with
additions, subtractions, multiplications and divisions, where
K is a sufficiently large field and x1, . . . , xr are input vari-
ables, can be computed by a division-free formula of size
sO(1) (see Theorem 3 on page 5).

2. FROM WEAKLY-SKEW TO SKEW CIR-
CUITS

In this section we show that weakly-skew circuits can be
efficiently simulated by skew circuits. This fact will be used
in the proof of Theorem 1, part (ii) given in Section 3.2.

Two algorithms for converting weakly-skew circuits into
skew circuits are already described by Malod and Portier [14].
The polynomial computed by a weakly-skew circuit of fat
size m can be converted into a determinant of size m + 1 by
[14, Lemma 6]. One can then apply Toda’s algorithm, which
evaluates a determinant of an m × m matrix by a skew cir-
cuit of size O(m20). It is observed in [14, Section 5.2] that
the role of the determinant in this first algorithm can be
played by the polynomial Fm = Trace(Xm). The method
described below is even simpler, and more efficient. As a
byproduct, we obtain an improvement to O(m5) of Toda’s
original O(m20) bound.

Remark 1 In the determinant constructed in [14, Lemma 6],
all input variables are negated. This is not a problem for
converting a weakly-skew circuit into a skew circuit with the
algorithm described in the paragraph above. However, the
occurence of negated input variables makes their construc-
tion unsuitable for the proof of Theorem 1. To circumvent
this difficulty, one can modify slightly Malod and Portier’s
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condition to obtain a matrix of size m + 1 without negated
variables. This can be done in two steps:

1. In their proof of Lemma 6 Malod and Portier first
construct a matrix B of size m such that det B =
−f , where f is the polynomial computed by a weakly-
skew circuit of size m. In this matrix all variables are
negated (and all diagonal entries are equal to 1 ex-
cept the first, which is 0). Now let C = −B: we have
det C = ±f , and there are no negated variables in C.

2. If m is odd we have det C = −f . As Malod and
Portier, we can add one last row and one last column
full of 0’s (except for an entry equal to −1 in the bot-
tom right corner) to obtain a matrix of size m+1 whose
determinant is equal to f .

We shall work with acyclic edge-weighted directed graphs.
We recall that the weight of a path in such a graph is defined
as the product of the weights of the edges appearing in the
path. If s and t are two vertices of G, the weight of (s, t) in
G is defined as the sum of the weights of all paths from s to
t.

Lemma 2 Let W be a weakly-skew circuit of fat size m.
There exists an acyclic directed graph G, with two distin-
guished vertices s and t such that:

(i) The weight of (s, t) in G is the polynomial computed
by W , and G is of size at most m + 1.

(ii) Every vertex in G other than s has either a single in-
coming edge, of weight equal to an input of W or to
the constant 2, or two incoming edges, each of weight
1.

This is essentially Lemma 5 of Malod and Portier [14]. In
that lemma the authors prove the existence of a graph G
satisfying (i). An inspection of their proof shows that the
graph that they construct also satisfies the second property.

Proposition 1 Let W be a weakly-skew circuit of fat size
m. There exists a skew circuit W ′ which is equivalent to W
(i.e., computes the same polynomial), has the same number
of input nodes as W , and has at most m arithmetic nodes
(W ′ is therefore of fat size at most 2m).

The algorithmic idea behind this result is quite simple: for
each vertex v in the graph G of Lemma 2 we compute the
weight ω(v) of the pair (s, v). If v has a single incoming edge
of weight x connecting s to v then of course ω(v) = x. If v
has a single incoming edge of weight x connecting a vertex
v′ 6= s to v, we can apply the formula ω(v) = x × ω(v′)
if x is an input of W . If x is the constant 2, we apply the
formula ω(v) = ω(v′)+ω(v′) (one could of course use the the
formula ω(v) = 2× ω(v′) instead, at the cost of introducing
one additional constant input in W ′). Finally, if v has two
incoming edges of weight 1, connecting the vertices v1 and
v2 to v, we have ω(v) = ω(v1)+ω(v2). The resulting circuit
satisfies the requirements of Proposition 1.

Corollary 2 The determinant of a m × m matrix can be
computed by a skew circuit of size O(m5).

This is a significant improvement over the O(m20) bound
given by Toda [19]. Corollary 2 is an immediate consequence
of Proposition 1 since, as pointed out in Section 1, the deter-
minant of a m×m matrix can be computed by a weakly-skew
circuit of size O(m5).

Skew circuits will be useful in Section 3.2 due to the fol-
lowing proposition and the subsequent remarks.

Proposition 2 Let K be a field and let L = K(θ) be an
algebraic extension of K of degree d = [L : K]. Let f ∈
L[x1, . . . , xr] be a polynomial computed by a skew circuit
WL of size m, with input nodes labeled by variables from
{x1, . . . , xr} or constants from L. Let us expand f according

to the powers of θ: one can write f =
Pd−1

j=0 θjfj, where

fj ∈ K[x1, . . . , xr].
There exists a skew circuit WK of size O(d2m) with at

most d output nodes which computes simultaneously all the
polynomials fj. Moreover, WK uses only constants from K.

Proof. Let α be a node of WL computing a polynomial
fα ∈ L[x1, . . . , xr]. We use a standard technique: in WK,
fα will be represented by d nodes computing polynomials
f0,α, . . . , fd−1,α ∈ K[x1, . . . , xr] such that fα =

Pd−1
j=0 θjfj,α.

If α is an input node labeled by some variable xi we can
take (f0,α, . . . , fd−1,α) = (xi, 0, . . . , 0); if α is labeled by

the constant
Pd−1

j=0 ajθ
j we can take (f0,α, . . . , fd−1,α) =

(a0, a1, . . . , ad−1). Assume now that α is an addition node
with inputs coming from nodes β and γ. In this case we sim-
ply perform componentwise additions since fj,α = fj,β+fj,γ .

Finally, the case where α is a multiplication node can be
split in two subcases since WL is skew: multiplication by
a variable xi, or multiplication by a constant from L. In
the first subcase, assume that α multiplies the output of
node β by xi. We have fj,α = xifj,β . Observe that the
d resulting multiplications are skew. In the second subcase,
assume that α multiplies the output of node β by a constant
η ∈ L. Multiplication by a constant is a K-linear operation.
The tuple (f0,α, . . . , fd−1,α) can therefore be obtained from
(f0,β , . . . , fd−1,β) by multiplication by an appropriate d × d
matrix Aη with entries in K. The corresponding matrix-
vector product can be computed in O(d2) arithmetic oper-
ations, and once again the resulting multiplications are all
skew.

Remark 2 We will apply this result in Section 3.2 in a
situation where we know that the output of WL lies in fact
in K[x1, . . . , xr]. In this case, the subcircuit associated to
the first output node of WK computes the same polynomial
as WL.

Remark 3 Proposition 2 also applies to weakly-skew rather
than skew circuits. First one converts the weakly-skew cir-
cuit into a skew circuit using Proposition 1. One can then
apply Proposition 2 to the skew circuit.

Remark 4 The size of WK in Proposition 2 can be reduced
to O(m d (log d) loglog d) by fast polynomial multiplication
algorithms [3] and fast division with remainder algorithms
[7, Section 9.1].

3. ELIMINATION OF DIVISIONS
In this section we provide a proof of Lemma 1. As ex-

plained before, Theorem 1 then follows by applying [14,
Lemma 6] and Remark 1 to the resulting circuit.
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3.1 Large Coefficient Fields
Our symbolic determinants live in a multivariate polyno-

mial domain K[x1, . . . , xr], where K is a sufficiently large
field. Consider we have non-singular matrices

A(x1, . . . , xr) ∈ K[x1, . . . , xr]
m×m

and

B(x1, . . . , xr) ∈ K[x1, . . . , xr]
n×n,

whose entries are either variables or constants, i.e.,

∀i, j, k, l with 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ n :

(A)i,j , (B)k,l ∈ K ∪ {x1, . . . , xr}.

Here (M)i,j denotes the element in row i and column j in
the matrix M .

We suppose now that det(A)/ det(B) ∈ K[x1, . . . , xr], that
is the polynomial division by det(B) is exact. We con-
struct a division-free weakly-skew arithmetic circuit W of
size O((m+n)6), i.e, polynomial in the dimensions of A and
B, that computes the polynomial det(A)/ det(B).

The construction follows Strassen’s [18], using Berkowitz’s
[1]‡ and Chistov’s [4] weakly-skew arithmetic circuits for the
characteristic polynomial. Let u1, . . . , ur ∈ K be such that
both UA = A(u1, . . . , ur) and UB = B(u1, . . . , ur) are non-
singular. Such values always exist if |K| > m ≥ deg(det(A))
[17, 22].

Now consider

det(UB − λ(UB − B))

= det(UB) · det(In − U−1
B λ(UB − B)

| {z }

λB̄

)

∈ K[x1, . . . , xr][λ],

9

>>>=

>>>;

(1)

where In denotes an n-dimensional identity matrix. Now the
coefficient of λi in (1) is the homogeneous part, homT (det(B), i),
of total degree i of det(B) represented in the term basis

T = {(u1 − x1)
d1 · · · (ur − xr)

dr | dj ≥ 0}, (2)

namely

det(B) =

nX

i=0

X

d1+···+dr=i

cd1,...,dr (u1 − x1)
d1 · · · (ur − xr)

dr

| {z }

homT (det(B), i)

where cd1,...,dr ∈ K. Note that evaluating (1) at λ = 1 gives
det(B). We compute 1/ det(UB −λ(UB −B)) as a truncated
power series in K(u1 − x1, . . . , ur − xr)[[λ]]. Because the
constant coefficient of (1) as a polynomial in λ is in K, the
coefficients of λi in the power series for the reciprocal are
homogeneous polynomials of degree i in the basis (2). We
present a weakly-skew circuit for the coefficients of λi.

Let M1...l,1...l denote the top left l× l principal submatrix

‡
Sasaki and Murao [16] compute the characteristic polynomial of an

n × n matrix with entries in a commutative ring in n
ω+1+o(1) ring

operations, and Berkowitz [1, Section 4] conjectures that there ex-
ists a division-free arithmetic circuits of size O(nω) for the char-
acteristic polynomial, given that n × n matrices can be multiplied
with O(nω) operations. We can set ω = 2.375477 [5]. The
Sasaki&Murao/Berkowitz problem remains open. The best division-
free complexity for the characteristic polynomial is O(n2.697263) [9].

of a matrix M . Chistov’s algorithm is based on the identities

1

det(In − λB̄)

=

nY

j=1

det(Ij−1 − λB̄1...j−1,1...j−1)

det(Ij − λB̄1...j,1...j)

=
nY

l=1

`
(Il − λB̄1...l,1...l)

−1´

l, l

=

nY

l=1

 
∞X

k=0

λkB̄k
1...l,1...l

!

l, l

≡
nY

l=1

 
mX

k=0

(B̄k
1...l,1...l)l, lλ

k

!

(mod λm+1) (3)

≡ 1 + q1λ + · · · + qmλm (mod λm+1). (4)

We use weakly-skew circuits to compute the coefficients qk.
Each (B̄k

1...l,1...l)l, l in (3) is computed as

“

B̄1...l,1...l · (B̄1...l,1...l · (· · · (B̄1...l,1...l

2

6
4

0
...
0
1

3

7
5) . . .))

”

l

by weakly-skew circuits of size O(mn2). The weakly-skew
circuits for carrying out the modular product (4) require
no more than m + 1 copies of the circuits for each coeffi-
cient (B̄k

1...l,1...l)l, l. Thus a weakly-skew circuit W1 of size

O(m2n3) computes all qk in (4).
Malod and Portier [14, Proposition 5] compute the coeffi-

cients of

1 + p1λ + · · · + pmλm = det(Im − U−1
A λ(UA − A))

via a weakly-skew circuit W2 of size O(m5) by Berkowitz’s
algorithm. Alternatively and less efficiently, one could as
above compute

1

det(Im − U−1
A λ(UA − A))

≡ 1 + p̄1λ + · · · + p̄mλm (mod λm+1),

and compute the truncated power series of the reciprocal as

1

1 + p̄1λ + · · · + p̄mλm

≡
mX

l=0

(−p̄1λ − · · · − p̄mλm)l (mod λm+1) (5)

≡ 1 + p1λ + · · · + pmλm (mod λm+1),

again repeating the circuits which compute the coefficients
p̄i in the truncated polynomial powers.

A weakly-skew circuit then carries out the multiplication

det(UA − λ(UA − A))

det(UB − λ(UB − B))

≡
det(UA)

det(UB)
(1 + p1λ + · · · + pmλm)

· (1 + q1λ + · · · + qmλm) (mod λm+1) (6)

≡ ̺0 + ̺1λ + · · · + ̺mλm (mod λm+1).

Here and before, the truncation could be performed at order
deg(det(A)/ det(B)) + 1 ≤ m + 1. Again, we need no more
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than m +1 copies of the circuit W1 for the coefficients qk or
of W2 for pk. Because h = det(A)/ det(B) has total degree
≤ det(A) ≤ m and ρi = homT (h, i), we can compute

det(A)

det(B)
= ̺0 + ̺1 + · · · + ̺m

by a division-free weakly-skew arithmetic circuit of size

O(min{m3n3 + m5, m2n3 + m6}).

Remark 5 The above techniques also yield a single deter-
minant of a matrix of polynomially-sized dimensions for a
fraction of products of determinants (

Q

i A[i])
‹
(
Q

j B[j]) ∈

K[x1, . . . , xr], with and without using block diagonal matri-
ces. Such fractions occur when computing the resultant via
Koszul complexes [Ágnes Szántó has pointed this applica-
tion out to us].

3.2 Small Coefficient Fields
When the coefficient field K has few elements, divisions

by zero may occur at all values u1, . . . , ur ∈ K and there is
no no-singular UB in Section 3. We can nonetheless obtain
the bound of Theorem 1.(ii) using a field extension.

Indeed, from Section 3 we know that the quotient h = f/g
can be computed by a polynomial size weakly-skew circuit
WL with constants from L if L is an extension of K with
at least m + 1 elements. We can therefore work with an
extension of degree O(log|K|(m)). Since h is actually a poly-
nomial with coefficients in K, by applying Proposition 2 and
the two subsequent remarks to WL we obtain a skew circuit
WK which computes h using constants from K only.

4. FORMULAS WITH DIVISIONS
We shall prove the following theorem.

Theorem 2 Let f, g, h ∈ K[x1, . . . , xr] \ {0}, where K is a
field with |K| > deg(f) + deg(g) deg(h), such that f/g = h
and f is computed by a division-free formula of size sf and g
is computed by a division-free formula of size sg with inputs
x1, . . . , xr. Then h can be computed by division-free formula
of size O((sf + sg)5).

Proof. We use interpolation (cf. [8, Section 5]). Denote
by δf , δg, δh the total degrees of f , g and h. Note that
δf ≤ sf and δg ≤ sg. As in Section 3, let u1, . . . , ur ∈ K

be such that g0 = g(u1, . . . , ur) 6= 0. Again as in (5) and
(6) using the term basis (2), we compute (7) in Figure 2.
We compute the polynomial H in (7) of degree in λ of no
more than D = δf + δgδh by interpolation at λ = v0, . . .,
vD ∈ K as an exact polynomial before truncating modulo
λδh+1. Note that for all j we have

δfX

i=0

homT (f, i)vi
j

= f(u1 − vj(u1 − x1), . . . , ur − vj(u1 − xr))

and

δgX

i=1

homT (g, i)vi
j

= g(u1 − vj(u1 − x1), . . . , ur − vj(u1 − xr)) − g0, (8)

δhX

i=0

homT (h, i)λi

≡

δfX

i=0

homT (f, i)λi

δgX

i=0

homT (g, i)λi

(mod λδh+1)

≡
1

g0

“ δfX

i=0

homT (f, i)λi
”

·

δhX

l=0

`
−

1

g0

´l
“ δgX

i=1

homT (g, i)λi
”l

| {z }

H(x1, . . . , xr, λ)

(mod λδh+1). (7)

Figure 2: Formula division

and therefore can obtain the values in the inputs x1, . . . , xr

by formulas. We have formulas for each H(x1, . . . , xr, vj) by
repeating the formulas (8) no more than δh(δh + 1)/2 many
times. Interpolation is a matrix times vector product. The
vector under consideration is the vector

(H(x1, . . . , xr, vj))1≤j≤D+1,

and the matrix is the inverse of the Vandermonde matrix
Vand(v1, . . . , vD+1). The product again is done by repeating
the formulas for H(x1, . . . , xr, vj) no more than D+1 times.
Finally, we add the thus obtained first δh + 1 coefficients in
λ of H. Note that all divisions are by scalars independent
on x1, . . . , xr.

Theorem 2 together with the well-known parallel circuits
for formula evaluation allows the removal of divisions in for-
mulas altogether. When there are division nodes in formu-
las with inputs x1, . . . , xr, it is assumed that all rational
functions in K(x1, . . . , xr) by which is divided are non-zero.
Formulas with a divisions by a generic 0 are naturally ex-
cluded. For certain values in K for the inputs x1, . . . , xr a
zero division can occur.

Theorem 3 There exists a real constant γ > 0 with the
following properties. Let h ∈ K[x1, . . ., xr] be computed by
a formula (with divisions) of size s with inputs x1, . . . , xr.
Assume K is a field with |K| > sγ . Then h can be computed
by division-free formula of size O(sγ).

In the following proof γ1, γ2 and γ3 are fixed positive
real constants. The proof observes that h is computed by
a circuit V1 of fan-in at most 2 with divisions of depth
≤ γ1 log(s) ([12] and the references there). By comput-
ing unreduced numerator and denominator polynomials for
each node separately, we have two division-free circuits V2

and V3 of depth ≤ γ2 log(s) that compute polynomials f
and g such that f/g = h. We can convert V2 and V3 into
division-free formulas of depth ≤ γ2 log(s), hence of size

< 2γ2 log(s)+1 = O(sγ3), which also bounds the degrees of
f and g. Applying Theorem 2 to both formulas yields The-
orem 3.
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