
Reconstruction Algorithms
for Sums of Affine Powers

Ignacio García-Marco
LIF, Aix-Marseille Université

Pascal Koiran
LIP, Ecole Normale
Supérieure de Lyon
Université de Lyon

Timothée Pecatte
LIP, Ecole Normale
Supérieure de Lyon
Université de Lyon

ABSTRACT
A sum of affine powers is an expression of the form

f(x) =

s∑
i=1

αi(x− ai)ei .

Although quite simple, this model is a generalization of two well-
studied models: Waring decomposition and Sparsest Shift. For
these three models there are natural extensions to several variables,
but this paper is mostly focused on univariate polynomials. We
propose algorithms that find the smallest decomposition of f in the
first model (sums of affine powers) for an input polynomial f given
in dense representation. Our algorithms only work in situations
where the smallest decomposition is unique, and we provide condi-
tions that guarantee the uniqueness of the smallest decomposition.

1. INTRODUCTION
Let F be any characteristic zero field and let f ∈ F[x] be a uni-

variate polynomial. This work concerns the study of expressions of
f as a linear combination of powers of affine forms.

MODEL 1.1. We consider expressions of f of the form:

f =

s∑
i=1

αi(x− ai)ei

with αi, ai ∈ F, ei ∈ N. We denote by AffPowF(f) the minimum
value s such that there exists a representation of the previous form
with s terms.

This model was already studied in [8], where we gave explicit ex-
amples of polynomials of degree d requiring AffPowR(f) = Ω(d)
terms for the field F = R.

The main goal of this work is to design algorithms that recon-
struct the optimal representation of polynomials in this model, i.e.,
algorithms that receive as input f ∈ F[x] and compute the exact
value s = AffPowF(f) and a set of triplets of coefficients, nodes
and exponents {(αi, ai, ei) | 1 ≤ i ≤ s} ⊆ F × F × N such that
f =

∑s
i=1 αi(x − ai)

ei . We assume that f is given in dense rep-
resentation, i.e., as a tuple of deg(f) + 1 elements of F.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’17, July 25-28, 2017, Kaiserslautern, Germany
c© 2017 ACM. ISBN 978-1-4503-5064-8/17/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3087604.3087605

Model 1.1 extends two already well-studied models. The first
one is the Waring model, where all the exponents are equal to the
degree of the polynomial, i.e., ei = deg(f) for all i.

MODEL 1.2. For a polynomial f of degree d, we consider ex-
pressions of f of the form:

f =
s∑
i=1

αi(x− ai)d

with αi, ai ∈ F. We denote by WaringF(f) the Waring rank of f ,
which is the minimum value s such that there exists a representation
of the previous form with s terms.

Waring rank has been studied by algebraists and geometers since
the 19th century. The algorithmic study of Model 1.2 is usually at-
tributed to Sylvester. We refer to [17] for the historical background
and to section 1.3 of that book for a description of the algorithm
(see also Kleppe [21] and Proposition 46 of Kayal [19]). Most of
the subsequent work was devoted to the multivariate generaliza-
tion1 of Model 1.2, with much of the 20th century work focused
on the determination of the Waring rank of generic polynomials [1,
6, 17]. A few recent papers [23, 4] have begun to investigate the
Waring rank of specific polynomials such as monomials, sums of
coprime monomials, the permanent and the determinant.

The second model that we generalize is the Sparsest Shift model,
where all the shifts ai are required to be equal.

MODEL 1.3. For a polynomial f , we consider expressions of f
of the form:

f =

s∑
i=1

αi(x− a)ei

with αi, a ∈ F, ei ∈ N. We denote by SparsestF(f) the minimum
value s such that there exists a representation of the previous form
with s terms.

This model and its variations have been studied in the computer
science literature at least since Borodin and Tiwari [5]. Some of
these papers deal with multivariate generalizations [14, 16, 10],
with “supersparse” polynomials2 [12] or establish condition for the
uniqueness of the sparsest shift [22]. A much more general model
is studied in [15], namely, arithmetic circuits with addition, mul-
tiplication and powering gates (rational exponents are allowed in
1In the literature, Waring rank is usually defined for homogeneous
polynomials. After homogenization, the univariate model 1.2 be-
comes bivariate and the “multivariate generalization” therefore
deals with homogeneous polynomials in 3 variables or more.
2In that model, the size of the monomial xd is defined to be log d
instead of d as in the usual dense encoding.

http://dx.doi.org/10.1145/3087604.3087605

that paper). It is suggested at the end of [10] to allow “multiple
shifts” instead of a single shift, and this is just what we do in this
paper. More precisely, as is apparent from Model 1.1, we do not
place any constraint on the number of distinct shifts: it can be as
high as the number s of affine powers. It would also make sense
to place an upper bound k on the number of distinct shifts. This
would provide a smooth interpolation between the sparsest shift
model (where k = 1) and Model 1.1, where k = s.

1.1 Our results
We provide both structural and algorithmic results. Our struc-

tural results are presented in Section 3. We study the uniqueness of
the optimal representation as a sum of affine powers. It turns out
that our reconstruction algorithms only work in a regime where the
uniqueness of optimal representations is guaranteed. We provide
more structural results in [9]: we compare the expressive power
of our three models, and study specifically the case where F is the
field of real numbers (it turns out that we have sharper structural
results for R than for other fields).

As already explained, we present algorithms that find the opti-
mal representation of an input polynomial f . We achieve this goal
in several cases, but we do not solve the problem in its full gener-
ality. One typical result is as follows (see Theorem 4.4 in Section 4
for a more detailed statement which includes a description of the
algorithm).

THEOREM 1.4. Let f ∈ F[x] be a polynomial that can be writ-
ten as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0}, and
ei ∈ N. Assume moreover that ni ≤ (3i/4)1/3 − 1 for all i ≥ 2,
where ni denotes the number of indices j such that ej ≤ i.

Then, AffPowF(f) = s. Moreover, there is a polynomial time
algorithm that receives f =

∑d
i=0 fix

i ∈ F[x] as input and com-
putes the s-tuples of coefficients C(f) = (α1, . . . , αs), of nodes
N(f) = (a1, . . . , as) and exponents E(f) = (e1, . . . , es).

From the point of view of the optimality of representations, it is
quite natural to assume an upper bound on the numbers ni. Indeed,
if there is an index j such that nj > j+1 then the powers (x−ai)ei
are linearly dependent, and there would be a smaller expression
of f as a linear combination of these polynomials.3 We would
therefore have AffPowF(f) < s instead of AffPowF(f) = s. It
would nonetheless be interesting to relax the assumption ni ≤
(3i/4)1/3 − 1 in this theorem. Another restriction is the assump-
tion that the shifts ai are all distinct. We relax that assumption
in [9] but we still need to assume that all the exponents ei corre-
sponding to a given shift ai = a belong to a “small” interval (see
[9, Theorem 5.3] for a precise statement). Alternatively, we can as-
sume instead that there is a large gap between the exponents in two
consecutive occurences of the same shift as in [9, Theorem 5.8].

In [9, Section 6] we extend the model of sums of affine powers
to several variables by considering expressions of the form

f(x1, . . . , xn) =

s∑
i=1

αi`i(x1, . . . , xn) ei ,

where ei ∈ N, αi ∈ F and `i is a (non constant) linear form for
all i. We begin a study of reconstruction algorithms for this multi-
variate model.
3It is hardly more difficult to show that one must have nj ≤ d j+1

2
e

for any optimal expression, see [8, Proposition 18].

1.2 Main tools
Most of our results hinge on the study of certain differential

equations satisfied by the input polynomial f . We consider dif-
ferential equations of the form

k∑
i=0

Pi(x)f (i) = 0 (1)

where the Pi’s are polynomials. If the degree of Pi is bounded by i
for every i, we say that (1) is a Shifted Differential Equation (SDE)
of order k. The name SDE is a reference to the method of shifted
partial derivatives [26]. Our algorithmic results can be viewed as an
application of this lower bound method, and more precisely of its
univariate version [20]. Section 2 recalls some (mostly standard)
background on differential equations and the Wronskian determi-
nant.

When f is a polynomial with an expression of size s in Model 1.1
we prove in Proposition 2.6 that f satisfies a “small” SDE, of order
2s − 1. The basic idea behind our algorithms is to look for one of
these “small” SDEs satisfied by f , and hope that the powers (x −
ai)

ei in an optimal decomposition of f satisfy the same SDE. This
isn’t just wishful thinking because the SDE from Proposition 2.6 is
satisfied not only by f but also by the powers (x− ai)ei .

Unfortunately, this basic idea by itself does not yield efficient al-
gorithms. The main difficulty is that f could satisfy several SDE of
order 2s− 1. We can efficiently find such a SDE by linear algebra
(see Remark 2.7), but what if we don’t find the “right” SDE, i.e.,
the SDE which (by Proposition 2.6) is guaranteed to be satisfied
by f and by the powers (x − ai)

ei? One way around this diffi-
culty is to assume that the exponents ei are all sufficiently large
compared to s. In this case we can show that every SDE of order
2s− 1 which is satisfied by f is also satisfied by (x− ai)ei . This
fact is established in Corollary 4.2, and yields the following result
(see Theorem 4.3 in Section 4 for a more detailed statement which
includes a description of the algorithm).

THEOREM 1.5 (BIG EXPONENTS). Let f ∈ F[x] be a poly-
nomial that can be written as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0} and
ei > 5s2/2. Then, AffPowF(f) = s. Moreover, there is a polyno-
mial time algorithm that receives f =

∑d
i=0 fix

i ∈ F[x] as input
and computes the s-tuples of coefficients C(f) = (α1, . . . , αs), of
nodes N(f) = (a1, . . . , as) and exponents E(f) = (e1, . . . , es).

The algorithm of Theorem 1.4 is more involved: contrary to Theo-
rem 1.5, we cannot determine all the terms (x − ai)ei in a single
pass. Solving the SDE only allows the determination of some (high
degree) terms. We must then subtract these terms from f , and iter-
ate.

1.3 Models of computation
Our algorithms take as inputs polynomials with coefficients in an

arbitrary field K of characteristic 0. At this level of generality, we
need to be able to perform arithmetic operations (additions, mul-
tiplications) and equality tests between elements of K. When we
write that an algorithm runs in polynomial time, we mean that the
number of such steps is polynomial in the input size. This is a fairly
standard setup for algebraic algorithms (it is also interesting to an-
alyze the bit complexity of our algorithms for some specific fields
such as the field of rational numbers; more on this at the end of this

subsection and in Section 1.4). An input polynomial of degree d is
represented simply by the list of coefficients of its d+1 monomials,
and its size thus equals d + 1. In addition to arithmetic operations
and equality tests, we need to be able to compute roots of polyno-
mials with coefficients in K. This is in general unavoidable: for
an optimal decomposition of f ∈ K[x] in Model 1.1, the coeffi-
cients αi, ai may lie in an extension field F of K (see Section 3 and
more precisely [9, Example 3.3] for the case K = R,F = C). If
the optimal decomposition has size s, we need to compute roots of
polynomials of degree at most 2s−1. As a rule, root finding is used
only to output the nodes ai of the optimal decomposition,4 but the
“internal working” of our algorithms remains purely rational (i.e.,
requires only arithmetic operations and comparisons). This is sim-
ilar to the symbolic algorithm for univariate sparsest shifts of Gies-
brecht, Kaltofen and Lee ([10], p. 408 of the journal paper), which
also needs access to a polynomial root finder.

The one exception to this rule is the algorithm of Theorem 1.4.
As mentioned at the end of Section 1.2, this is an iterative algo-
rithm. At each step of the iteration we have to compute roots of
polynomials (which may lie outside K), and we keep computing
with these roots in the subsequent iterations. For more details see
Theorem 4.4 and the discussion after that theorem.

We also take some steps toward the analysis of our algorithms in
the bit model of computation. We focus on the algorithm of The-
orem 1.4 since it is the most difficult to analyze due to its iterative
nature. We show in Proposition 4.5 that for polynomials with inte-
ger coefficients, this algorithm can be implemented in the bit model
to run in time polynomial in the bit size of the output. We do not
have a polynomial running time bound as a function of the input
size (more on this in Section 1.4).

1.4 Future work
One could try to extend the results of this paper in several di-

rections. For instance, one could try to handle “supersparse” poly-
nomials like in the Sparsest Shift algorithm of [12]. We begin a
study of the multivariate case in the full version of this paper [9],
but these developments are completely omitted here due to space
limits. In [9] we proceed by reduction to the univariate case, but
one could try to design more “genuinely multivariate” algorithms.
For Waring decomposition, such an algorithm is proposed in “case
2” of [19, Theorem 5]. Its analysis relies on a randomness assump-
tion for the input f (our multivariate algorithm is randomized, but
in this paper we never assume that the input polynomial is random-
ized).

One should also keep in mind, however, that the basic univariate
problem studied in the present paper is far from completely solved:
our algorithms all rely on some assumptions for the exponents ei in
a decomposition of f , and some algorithms also rely on a distinct-
ness assumption for the shifts ai. It would be very interesting to
weaken these assumptions, or even to remove them entirely. With a
view toward this question, one could first try to improve the lower
bounds from [20]. Indeed, the same tools (Wronskians, shifted
differential equations) turn out to be useful for the two problems
(lower bounds and reconstruction algorithms) but the lower bound
problem appears to be easier. For real polynomials we have already
obtained optimal Ω(d) lower bounds in [8] using Birkhoff interpo-
lation, but it remains to give an algorithmic application of this lower
bound method.

Another issue that we have only begun to address is the analysis
of the bit complexity of our algorithms. It would be straightforward

4Once the ai’s have been determined, we also need to do some
linear algebra computations with these nodes to determine the co-
efficients αi.

to give a polynomial bit size bound for, e.g., the algorithm of Theo-
rem 4.3 but this issue seems to be more subtle for Theorem 1.4 due
to the iterative nature of our algorithm. It is in fact not clear that
there exists a solution of size polynomially bounded in the input
size (i.e., in the bit size of f given as a sum of monomials). More
precisely, we ask the following question.

QUESTION 1.6. We define the dense size of a polynomial f =∑d
i=0 fix

i ∈ Z[x] as
∑d
i=0[1 + log2(1 + |fi|)]. Assume that f

can be written as

f =

s∑
i=1

αi(x− ai)ei

with ai ∈ Z, αi ∈ Z \ {0}, and that this decomposition satisfies
the conditions of Theorem 1.4: the constants ai are all distinct, and
ni ≤ (3i/4)1/3 − 1 for all i ≥ 2, where ni denotes the number of
indices j such that ej ≤ i.

Is it possible to bound the bit size of the constants αi, ai by a
polynomial function of the dense size of f?

As explained at the end of Section 1.3, under the same conditions
we have a decomposition algorithm that runs in time polynomial in
the bit size of the output. It follows that the above question has a
positive answer if and only if there is a decomposition algorithm
that runs in time polynomial in the bit size of the input (i.e., in time
polynomial in the dense size of f).

One could also ask similar questions in the case where the condi-
tions of Theorem 1.4 do not hold. For instance, assuming that f has
an optimal decomposition with integer coefficients, is there such a
decomposition where the coefficients αi, ai are of size polynomial
in the size of f?

2. PRELIMINARIES
In this section we present some tools that are useful for their

algorithmic applications in Sections 4. Section 3 can be read inde-
pendently, except for the proof of Proposition 3.1 which uses the
Wronskian.

2.1 The Wronskian
In mathematics the Wronskian is a tool mainly used in the study

of differential equations, where it can be used to show that a set of
solutions is linearly independent.

DEFINITION 2.1 (WRONSKIAN). For n univariate functions
f1, . . . , fn, which are n − 1 times differentiable, the Wronskian
Wr(f1, . . . , fn) is defined as

Wr(f1, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
It is a classical result, going back at least to [3], that the Wron-

skian captures the linear dependence of polynomials in F[x].

PROPOSITION 2.2. For f1, . . . , fn ∈ F[x], the polynomials are
linearly dependent if and only if the Wronskian Wr(f1, . . . , fn)
vanishes everywhere.

For every f ∈ F[x] and every a ∈ F we denote by Ma (f) the
multiplicity of a as a root of f , i.e., Ma (f) is the maximum t ∈ N
such that (x− a)t divides f . The following result from [28] gives
a Wronskian-based bound on the multiplicity of a root in a sum of
polynomials.

LEMMA 2.3. Let f1, . . . , fn be some linearly independent poly-
nomials and a ∈ F, and let f(x) =

∑n
j=1 fj(x). Then:

Ma (f) ≤ n− 1 + Ma (Wr(f1, . . . , fn)) ,

where Ma (f) is finite since Wr(f1, . . . , fn) 6≡ 0.

In [25] one can find several properties concerning the Wronskian
(and which have been known since the 19th century). In this work
we will use the following properties, which can be easily derived
from those of [25].

PROPOSITION 2.4. Let f1, . . . , fn ∈ F[x] be linearly indepen-
dent polynomials and let a1, . . . , an ∈ F. If fj = (x−aj)djgj for
all j, then Q :=

∏
dj≥n(x− aj) dj−n+1 divides Wr(f1, . . . , fn).

Moreover, if Q(a) 6= 0, then

Ma (Wr(f1, . . . , fn)) ≤
n∑
j=1

deg(gj) +
n(n− 1)

2
.

Hence, if we set f :=
∑n
j=1 fj , then

Ma (f) ≤
n∑
j=1

deg(gj) +
(n+ 2)(n− 1)

2
.

PROOF. Consider the n × n Wronskian matrix W whose (i +

1, j)-th entry is f (i)
j (x) with 0 ≤ i ≤ n − 1, 1 ≤ j ≤ n. As-

sume that dj ≥ n. Since (x − aj)
dj divides fj , then f (i)

j =

(x− aj)dj−igi,j = (x− aj)dj−n+1(x− aj)n−1−igi,j , for some
gi,j ∈ F[x] of degree deg(gj). Since (x − aj)dj−n+1 divides ev-
ery element in the j-th column of W , we can factor it out from the
Wronskian. This proves that Q divides Wr(f1, . . . , fn). Once
we have factored out (x − aj)

dj−n+1 for all dj ≥ n, we ob-
serve that Wr(f1, . . . , fn) = Q(x)h(x), where h(x) is the de-
terminant of a matrix whose (i + 1, j)-th entry has degree at most
deg(gj)+(n−i−1) for all 0 ≤ i ≤ n−1 and 1 ≤ j ≤ n. Hence,
deg(h) ≤

∑n
j=1 [deg(gj) + (n− 1)] −

(
n
2

)
=
∑n
j=1 deg(gj) +

n(n−1)
2

. Finally, we observe that if Q(a) 6= 0:

Ma (Wr(f1, . . . , fn)) = Ma (Q) + Ma (h) = Ma (h) ≤ deg(h).

For f =
∑n
j=1 fj , the upper bound for Ma (f) follows directly

from Lemma 2.3.

2.2 Shifted Differential Equations
DEFINITION 2.5. A Shifted Differential Equation (SDE) is a

differential equation of the form
k∑
i=0

Pi(x)f (i)(x) = 0

where f is the unknown function and the Pi are polynomials in F[x]
with deg(Pi) ≤ i.
The quantity k is called the order of the equation. We will usually
denote such a differential equation by SDE(k).

One of the key ingredients for our results is that if AffPow(f) is
small, then f satisfies a “small” SDE. More precisely:

PROPOSITION 2.6. Let f ∈ F[x] be written as

f =

t∑
i=1

αi(x− ai)ei .

where ai ∈ F, ei ∈ N for all i.
Then, f satisfies a SDE(2t − 1) which is also satisfied by the t

terms fi(x) = (x− ai)ei .

PROOF. If we can find a SDE(2t − 1) which is satisfied by all
the fi, by linearity the same SDE is satisfied by f and the result
follows. The existence of this common SDE is equivalent to the
existence of a nonzero solution for the following linear system in
the unknowns aj,k: ∑

j,k

aj,kx
jf

(k)
i (x) = 0,

where 1 ≤ i ≤ t, 0 ≤ k ≤ 2t − 1 and 0 ≤ j ≤ k. There are
1 + 2 + · · ·+ 2t = (2t+ 1)t unknowns, so we need to show that
the matrix of this linear system has rank smaller than (2t + 1)t.
It suffices to show that for each fixed value of i ∈ {1, . . . , t}, the
subsystem:∑

j,k

aj,kx
jf

(k)
i (x) = 0 (0 ≤ k ≤ 2t− 1, 0 ≤ j ≤ k)

has a matrix of rank < 2t + 1. In other words, we have to show
that the subspace Vi spanned by the polynomials xjf (k)

i (x) has
dimension less than 2t + 1. But Vi is included in the subspace
spanned by the polynomials

{(x− ai)ei+j ; −(2t− 1) ≤ j ≤ 0, ei + j ≥ 0}.

This is due to the fact that the polynomials xj belongs to the span
of the polynomials {(x − ai)` | 0 ≤ ` ≤ j},. We conclude that
dimVi ≤ 2t < 2t+ 1.

REMARK 2.7. A polynomial f satisfies a SDE(k) if and only
if the polynomials (xjf (i)(x))0≤i≤k,0≤j≤i are linearly dependent
over F. The existence of such a SDE can therefore be decided effi-
ciently by linear algebra, and when a SDE(k) exists it can be found
explicitly by solving the corresponding linear system (see, e.g., [27,
Corollary 3.3a] for an analysis of linear system solving in the bit
model of computation). Moreover, given a polynomial f , one can
find a SDE(k) satisfied by f with smallest k in time polynomial in
the degree of f . We use this fact repeatedly in the algorithms of
Section 4.

Notice that an SDE is a linear homogeneous differential equa-
tion, hence we can derive the following result from classic property
about sets of solutions of linear differential equations.

LEMMA 2.8. The set of polynomial solutions of a SDE of order
k is a vector space of dimension at most k.

3. STRUCTURAL RESULTS
In this section we study the uniqueness of optimal representa-

tions. It turns out that the algorithms of Section 4 only work in a
regime where the uniqueness of optimal representations is guaran-
teed.

PROPOSITION 3.1. Consider a polynomial identity of the form:

k∑
i=1

αi(x− ai)d =

l∑
i=1

βi(x− bi)ei

where the ai ∈ F are distinct, the αi ∈ F are not all zero, βi, bi ∈
F are arbitrary, and ei < d for every i. Then we must have k+ l >√

2(d+ 1).

One can find in [9, Theorem 3.1] a sharper version of this result for
the field of real numbers.

PROOF. We assume α1 6= 0 and we have the following equality:

α1(x− a1)d = −
k∑
i=2

αi(x− ai)d +

l∑
i=1

βi(x− bi)ei

Consider an independent subfamily on the right hand side of this
equality. We obtain a new identity of the form: g =

∑p
i=1 λi`

ri
i ,

with `i(x) = x − ci, g(x) = α1(x − a1)d, and p ≤ k + l − 1.
Since deg(g) = d and ei < d for all i; then there exists i such that
ri = d. We assume without loss of generality that `1 = x−a2 and
r1 = d.

We take the derivatives of this equality to obtain the following
system of equations for j = 0 . . . p− 1:

g(j) =

p∑
i=1

λi [`rii](j)

Using Cramer’s rule, we obtain:

λ1 =
Wr(g, `r22 , . . . , `

rp
p)

Wr(`r11 , `
r2
2 , . . . , `

rp
p)

We define ∆ = {i : 2 ≤ i ≤ p, ri ≥ p} and, following Proposi-
tion 2.4, we factorise the Wronskians:

λ1 =
(x− a1)d−(p−1)∏

i∈∆ `
ri−(p−1)
i ·W1

(x− a2)d−(p−1)
∏
i∈∆ `

ri−(p−1)
i ·W2

where W1,W2 are the remaining determinants.
After some simplifications, we obtain the following identity:

λ1(x− a2)d−(p−1)W2 = (x− a1)d−(p−1)W1

Notice now that since we have factorised the large ri’s, the ith row
ofW1 andW2 contains polynomials with degree bounded by p− i,
thus degW1, degW2 ≤ p(p− 1)/2.

Moreover, since a1 6= a2, we compute the multiplicity of a1 on
both sides of the identity and obtain that

Ma1

(
(x− a1)d−(p−1)W1

)
= Ma1

(
λ1(x− a2)d−(p−1)W2

)
= Ma1 (W2) ≤ deg(W2)

The previous remark on the degree of W2 therefore implies that
d − (p − 1) ≤ p(p−1)

2
. Finally, we set s = l + k and we use the

fact that p ≤ s− 1 to obtain the desired lower bound: 2(d+ 1) <
s2.

REMARK 3.2. The order of this bound is tight when F = C,
the field of complex numbers. Indeed, the following equality was
exhibited in [8, Proposition 19]:

k∑
j=1

ξj(x+ ξj)d =
∑

0≤i≤d
i≡−1 (mod k)

k

(
d

i

)
xd−i

where k ∈ N and ξ ∈ C is a k-th primitive root of unity. In
particular, choosing k =

√
d leads to an equality which has 2

√
d

terms.

As a consequence of Proposition 3.1 we obtain that whenever
AffPowF(f) is sufficiently small, the terms of highest degree in an
optimal expression of f as f =

∑s
i=1 αi(x − ai)

ei are uniquely
determined.

COROLLARY 3.3. Let f ∈ F[x] be a polynomial of the form :

f =

k∑
i=1

αi(x− ai)d +

l∑
j=1

βj(x− bj)ej

with ej < d. If k + l ≤
√

d+1
2

, then the highest degree terms are
unique. In other words, for every expression of f as

f =

k′∑
i=1

α′i(x− a′i)d +

l′∑
j=1

β′j(x− b′j)e
′
j

with e′j < d and k′ + l′ ≤
√

d+1
2

, then {(αi, ai)} = {(α′i, a′i)}.

PROOF. Let us assume that we have another different decompo-
sition for f :

f =

k′∑
i=1

α′i(x− a′i)d +

l′∑
j=1

β′j(x− b′j)e
′
j

with k′ + l′ ≤
√

(d+ 1)/2. Hence, we have the following equal-
ity:

k∑
i=1

αi(x−ai)d−
k′∑
i=1

α′i(x−a′i)d =

l∑
j=1

βj(x−bj)ej−
l′∑
j=1

β′j(x−b′j)e
′
j

Since k+k′+ l+ l′ ≤
√

2(d+ 1), the result follows from Propo-
sition 3.1.

Finally, as a direct consequence of Corollary 3.3, we obtain a
a sufficient condition for a polynomial to have a unique optimal
expression in the AffPow model:

COROLLARY 3.4. Let f ∈ F[x] be a polynomial of the form:

f =

s∑
i=1

αi(x− ai)ei

For every e ∈ N we denote by ne the number of exponents smaller

than e, i.e., ne = #{i : ei ≤ e}. If ne ≤
√

e+1
2

for all e ∈ N,
then AffPowF(f) = s and the optimal representation of f is unique.

Another consequence of Proposition 3.1 is the following upper
bound on the degree of the terms involved in an optimal expression
of f in the model AffPowF.

COROLLARY 3.5. Let f ∈ F[x] be a polynomial of degree d
written as

f =
s∑
i=1

αi(x− ai)ei

with αi, ai ∈ F, ei ∈ N and s = AffPowF(f). We set e :=

max{ei : 1 ≤ i ≤ s}, then e < d + s2

2
and, if F = R, then

e ≤ d + 2s − 2. In particular, we have that e < d + (d+2)2

8
and,

if F = R, then e ≤ 2d.

PROOF. If e = d, then the result is trivial. Assume therefore
that e > d. Now, we differentiate d+ 1 times the expression for f
to obtain the identity:

0 = f (d+1) =
∑
ei>d

αi
ei!

(ei − d− 1)!
(x− ai)ei−d−1.

By Proposition 3.1 we have s >
√

2(e− d) and we conclude that
e < d + s2

2
. When F = R, by Theorem [8, Theorem 13] we have

s ≥ (e−d+2)/2 and we conclude that e ≤ d+2s−2. To finish the
proof it suffices to recall that s = AffPowF(f) ≤ d(d + 1)/2e ≤
(d+ 2)/2; see [8, Proposition 18].

REMARK 3.6. On can find examples that are close to the bound
of Corollary 3.5. Indeed, if we take k =

√
d in Remark 3.2, we get

an expression of the 0 polynomial with 2k terms. If we integrate this
expression 7d times we get a polynomial f of degree < 7d with
s := AffPowF(f) = 2k (by Corollary 3.4) and whose maximum
exponent in the optimal expression is 8d = 7d + d = deg(f) +
(s2/4).

REMARK 3.7. As a byproduct of Corollary 3.5, we obtain a
naive brute force algorithm to find one optimal expression for any
polynomial f . Indeed, for a fixed integer s, there are only a finite
number of sequences of exponents (e1, . . . , es) with ei ≤ d+s2/2.
For one sequence, one can try to find an expression with these expo-
nents by solving a system of polynomial equations in 2s variables.
The smallest s with a solution gives the value of AffPowF(f).

4. ALGORITHMS FOR DISTINCT NODES
The goal of this section is to provide algorithms that receive

as input a polynomial f and computes s = AffPowF(f) and the
triplets (αi, ai, ei) for i ∈ {1, . . . , s} such that f =

∑s
i=1 αi(x−

ai)
ei . We will not able to solve the problem in all its generality but

under certain hypotheses. This section concerns the case where the
nodes ai in the optimal expression of f are all distinct (we study
repeated nodes in [9, Section 5]). In this setting, our main result
is Theorem 4.4 where we solve the problem when the number ne
of exponents in the optimal expression that are ≤ e is ’small’. A
key point to obtain the algorithms is given by the following Propo-
sition. Roughly speaking, this result says that if f satisfies a SDE,
then every term in the optimal expression of f with exponent ei big
enough also satisfies the same SDE.

PROPOSITION 4.1. Let f ∈ F[x] be written as

f =

s∑
i=1

αi(x− ai)ei ,

with αi ∈ F nonzero, the ai ∈ F are all distinct, and ei ∈ N.
Whenever f satisfies a SDE(k), then for all ei ≥ ks+

(
s
2

)
we have

that (x− ai)ei satisfies the same SDE.

PROOF. We assume that e1 ≥ ks +
(
s
2

)
and that f satisfies the

following SDE(k) in the unknown g:

k∑
i=0

Pi(x) g(i)(x) = 0,

with deg(Pi) ≤ i. By contradiction, we assume that (x − a1)e1

does not satisfy this equation. For every j ∈ {1, . . . , s}, we denote
by fj and Rj the polynomials such that

fj =

k∑
i=0

Pi(x) ((x− aj)ej)(i) = Rj(x) (x− aj)dj ,

where dj := max{ej − k, 0}. We observe that deg(fj) ≤ ej ,
so deg(Rj) ≤ k, and that −f1 =

∑s
j=2 fj 6= 0. We consider a

linearly independent subfamily of f2, . . . , fs, namely {fj | j ∈ J}
with J = {j1, . . . , jp} ⊆ {2, . . . , s}. Then by Proposition 2.4 we
have that

e1 − k = d1 ≤ Ma1 (f1) ≤
∑p
j=1 deg(Rj) + (p+2)(p−1)

2

Since p ≤ s − 1, we get that e1 ≤ k + k(s − 1) + (s+1)(s−2)
2

<

ks+
(
s
2

)
, a contradiction.

As a consequence of Proposition 4.1, we get Corollary 4.2 and
Theorem 4.3. They provide an effective method to obtain the opti-
mal expression of a polynomial f in the Affine Power model when-
ever all the terms involved have big exponents and all the nodes are
different.

COROLLARY 4.2. Let f ∈ F[x] be written as f =
∑s
i=1 αi(x−

ai)
ei , with αi ∈ F \ {0}, ai ∈ F all distinct, and ei ≥ 5s2/2 for

all i. Then,

a) {(x− ai)ei | 1 ≤ i ≤ s} are linearly independent,

b) If f =
∑t
i=1 βi(x−bi)

di with t ≤ s, then t = s and we have
the equality {(αi, ai, ei) | 1 ≤ i ≤ s} = {(βi, bi, di) | 1 ≤
i ≤ s}; in particular, AffPowF(f) = s,

c) f satisfies a SDE(2s− 1),

d) if f satisfies a SDE(k) with k ≤ 2s− 1 then (x− ai)ei also
satisfies it for all i ∈ {1, . . . , s}, and

e) f does not satisfy any SDE(k) with k < s.

PROOF. Notice first that (b) implies (a). Assume now that (b)
does not hold, we can write f as f =

∑t
i=1 βi(x − bi)

di with
t ≤ s. Hence, by Proposition 3.1, we get that

2s ≥ t+ s >
√

2(min({e1, . . . , es}) + 1) ≥
√

5s2,

a contradiction. From Proposition 2.6 we get (c). If f satisfies a
SDE(k) with k ≤ 2s− 1, then for all i ∈ {1, . . . , s} we have that

ei ≥ 5s2/2 ≥ (2s− 1)s+

(
s

2

)
≥ ks+

(
s

2

)
.

Hence, Proposition 4.1 yields that (x − ai)
ei is also a solution

of this equation for all i, proving (d). Finally, f cannot satisfy a
SDE(k) with k < s; otherwise by (a) and (d), the vector space
of solutions to this equation has dimension ≥ s, which contradicts
Lemma 2.8.

THEOREM 4.3 (BIG EXPONENTS). Let f ∈ F[x] be a poly-
nomial that can be written as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0} and
ei > 5s2/2. Then, AffPowF(f) = s. Moreover, there is a poly-
nomial time algorithm Build(f) that receives f =

∑d
i=0 fix

i ∈
F[x] as input and computes the s-tuples of coefficients C(f) =
(α1, . . . , αs), of nodesN(f) = (a1, . . . , as) and exponentsE(f) =
(e1, . . . , es). The algorithm Build(f) works as follows:

Step 1. Take r the minimum value such that f satisfies a SDE(r)
and compute explicitly one of these SDE.

Step 2. Compute B = {(x − bi)
di | 1 ≤ i ≤ r}, the set of

all the solutions of the SDE of the form (x − b)e with
(r + 1)2/2 ≤ e ≤ deg(f) + (r2/2).

Step 3. Determine β1, . . . , βr such that f =
∑r
i=1 βi(x− bi)

di

Step 4. Set I := {i |βi 6= 0} and output the setsC(f) = (βi | i ∈
I), N(f) = (bi | i ∈ I) and E(f) = (di | i ∈ I).

PROOF. Corollary 4.2 proves the correctness of this algorithm.
Indeed, by Corollary 4.2.(c) and (e), the value r computed in Step
1 satisfies that s ≤ r ≤ 2s− 1. We claim that the set B computed
in Step 2 satisfies that:

(1) it contains the set {(x− ai)ei | 1 ≤ i ≤ s)},

(2) it has at most r elements, and

(3) all its elements are F-linearly independent.

The first claim follows from Corollary 4.2.(d), the fact that (r +
1)2/2 ≤ (2s)2/2 < 5s2/2, and from Corollary 3.5, since ei ≤
deg(f) + (s2/2) ≤ deg(f) + (r2/2) for all i. To prove the
second claim assume that B has more than r elements, then we
take t1, . . . , tr+1 ∈ B. To reach a contradiction, by Lemma 2.8
it suffices to prove that t1, . . . , tr+1 are linearly independent. If
this were not the case, by Proposition 3.1, we would have that
r + 1 >

√
(r + 1)2 + 2, which is not possible. A similar argu-

ment and the fact that B has at most r elements proves the third
claim. By (1) and (3), the expression of f as a combination of the
elements of B is unique and is the desired one.

Finally, the four steps can be perfomed in polynomial time. Only
the first two steps require a justification. See Remark 2.7 in Sec-
tion 2 regarding Step 1. In Step 2 we substitute for each value of
e the polynomial (x − b)e in the SDE. This yields a polynomial
g(x) whose coefficients are polynomials in b of degree at most
r ≤ 2s − 1. We are looking for the values of b which make g
identically 0, so we find b as a root of the gcd of the coefficients of
g.

Now, we can proceed with the main result of this section:

THEOREM 4.4 (DIFFERENT NODES). Let f ∈ F[x] be a poly-
nomial that can be written as

f =

s∑
i=1

αi(x− ai)ei ,

where the constants ai ∈ F are all distinct, αi ∈ F \ {0}, and
ei ∈ N. Assume moreover that ni ≤ (3i/4)1/3 − 1 for all i ≥ 2,
where ni denotes the number of indices j such that ej ≤ i.

Then, AffPowF(f) = s. Moreover, there is a polynomial time
algorithm Build(f) that receives f =

∑d
i=0 fix

i ∈ F[x] as input
and computes the s-tuples of coefficients C(f) = (α1, . . . , αs), of
nodes N(f) = (a1, . . . , as) and exponents E(f) = (e1, . . . , es).
The algorithm Build(f) works as follows:

Step 1. We take t the minimum value such that f satisfies a SDE(t)
and compute explicitly one of these SDE.

Step 2. Consider B := {(x − bi)
di | 1 ≤ i ≤ l}, the set of

all the solutions of the SDE of the form (x − b)e with
(t + 1)2/2 ≤ e ≤ deg(f) + (deg(f)+2)2

8
and assume

that d1 ≥ d2 ≥ · · · ≥ dl ≥ dl+1 := (t+ 1)2/2.

Step 3. We take r ∈ {1, . . . , l} such that dr − dr+1 > r2/2 and
dr+1 < deg(f).

Step 4. We set j := dr − (r2/2) and express f (j) as f (j) =∑r
i=1 βi

di!
(di−j)!

(x − bi)di−j with β1, . . . , βr ∈ F. We
set I := {i |βi 6= 0}.

Step 5. We set f̃ :=
∑r
i=1 βi(x− bi)

di and h := f − f̃ .

If h = 0, then C(f) = (βi | i ∈ I), N(f) = (bi | i ∈ I)
and E(f) = (di | i ∈ I).

Otherwise, we set h := f − f̃ and we have that C(f) =
(βi | i ∈ I) ∪ C(h), N(f) = (bi | i ∈ I) ∪ N(h)
and E(f) = (di | i ∈ I) ∪ E(h), where the triplet
(C(h), N(h), E(h)) is the output of Build(h).

PROOF. By Corollary 3.4 we have that AffPowF(f) = s. Con-
cerning the algorithm, first we observe that the value t computed in
Step 1 is ≤ 2s − 1 by Proposition 2.6. Moreover, we claim that
the set B computed in Step 2 has l ≤ t elements. Otherwise, by
Lemma 2.8, there exists a set I ⊆ {1, . . . , l} of size ≤ t + 1 and
there exist {γi | i ∈ I} ⊆ F\{0} such that

∑
i∈I γi(x−bi)

di = 0.
Settingm := max{di | i ∈ I} ≥ (t+1)2/2, Proposition 3.1 yields
that t+ 1 ≥ |I| >

√
2(m+ 1) > t+ 1, a contradiction.

Now we set L := 5s2/2 and consider the set C := {(x −
ai)

ei | ei ≥ L} where the ai’s are the nodes in the optimal ex-
pression of f . We have that C 6= ∅; indeed, if we set emax :=
max{ei | 1 ≤ i ≤ s}, then s = nemax ≤ (3emax/4)1/3 − 1 and
L ≤ 4(s+ 1)3/3 ≤ emax.

Since

ts+

(
s

2

)
≤ (2s− 1)s+

(
s

2

)
≤ 5s2/2,

Proposition 4.1 yields that all the elements of C are solution of
the SDE and, by Corollary 3.5 we know that ei ≤ deg(f) +
(deg(f)+2)2

8
for all i ∈ {1, . . . , s}. Hence C ⊆ B. In particu-

lar, there exists a τ ∈ {1, . . . , l} such that d1 ≥ dτ = emax ≥
4
3
(s+ 1)3.
Now we take k := max{i | di > L} (we have that 1 ≤ k ≤ l ≤

t ≤ 2s− 1) and we are going to prove that

• there exists r ∈ {τ, . . . , k−1} such that dr−dr+1 > r2/2,
or

• dk − L > k2/2.

Indeed, if this is not the case, then we get the following contradic-
tion:

4s3

3
≤ 4(s+1)3

3
− L ≤ emax − L = dτ − L =

=
∑k−1
i=τ (di − di+1) + dk − L ≤ 1

2

∑k
i=τ i

2 ≤
≤ 1

2

∑k
i=1 i

2 = k(k+1)(2k+1)
12

≤ (2s−1)2s(4s−1)
12

< 4s3

3
.

We take r ∈ {1, . . . , k − 1} such that dr − dr+1 > r2/2, or
r = k if such a value does not exist (and dk − L > k2/2). We
claim that emax ≥ dr if and only if dr+1 < deg(f) and, thus,
the r described in Step 3 always exists. If dr+1 < deg(f), since
deg(f) ≤ e and C ⊆ B, then dr ≤ emax (since emax = dτ , it
cannot be sandwiched between two consecutive elements dr, dr+1

of this sequence).
Conversely, assume now that emax ≥ dr and let us prove that

dr+1 < deg(f). To prove this we first observe that setting j :=

dr − (r2/2), then f (j) can be uniquely expressed as a linear com-
bination of B′ := {(x − bi)di−j | 1 ≤ j ≤ r} . Indeed, f (j) =∑
ei≥j αi

ei!
(ei−j)!

(x−ai)ei−j with αi 6= 0 and (x−ai)ei−j ∈ B′

for all ei ≥ j, and if there is another way of expressing f (j) as
a linear combination of B′, then by Proposition 3.1 we get that
r >

√
2(min{di | 1 ≤ i ≤ r} − j + 1) ≥

√
r2 + 2 > r, a con-

tradiction. So, if dr+1 ≥ deg(f), then f (j) = 0 and the only
expression of f (j) as a linear combination of B′ would be the one
in which every coefficient is 0, a contradiction. Hence, the value r
computed in Step 3 exists.

We have seen that f (j) can be uniquely expressed as a linear
combination ofB′ as f (j) =

∑
ei≥j αi

ei!
(ei−j)!

(x−ai)ei−j . Hence,
in Step 4, one finds all the (αi, ai, ei) such that ei ≥ j. In Step
5, either h = 0 and we have finished or h =

∑
ei<j

αi(x − ai)ei
is written as a linear combination of strictly less than s terms and
satisfies the hypotheses of the Theorem, so by induction we are
done.

We define the size of the set of triplets {(αi, ai, ei) | 1 ≤ i ≤
s} ⊂ Z×Z×N as

∑s
i=1[1+log2(1+ |ai|)+log2(1+ |αi|)+ei].

As mentioned in the introduction, it is not clear that the size of
the output of the algorithm proposed in Theorem 4.4 is polynomi-
ally bounded in the input size (i.e., in the bit size of f given as a
sum of monomials). However, since the exponents are encoded in
unary, it is straightforward to check that the input size is polynomi-
ally bounded by the output size. Indeed, the degree of f is upper
bounded by the maximum value of the ei and every coefficient of f
can be seen as the evaluation of a small polynomial in the αi, ai’s.
In the following result we prove that the algorithm works in poly-
nomial time in the size of the output. Hence, a positive answer to
Question 1.6 together with Corollary 3.5 would directly yield that
the algorithm works in polynomial time (in the size of the input).

PROPOSITION 4.5. Let f ∈ Z[x] be written as

f =

s∑
i=1

αi(x− ai)ei

with ai ∈ Z, αi ∈ Z \ {0}, ei ∈ N and assume that this decom-
position satisfies the conditions of Theorem 4.4: the constants ai
are all distinct, and ni ≤ (3i/4)1/3 − 1 for all i ≥ 2, where ni
denotes the number of indices j such that ej ≤ i.

Then, the algorithm in Theorem 4.4 works in polynomial time in
the size of the output {(αi, ai, ei) | 1 ≤ i ≤ s}.

PROOF. We write f =
∑d
j=0 fjx

j with fj ∈ Z and d =

deg(f) ≤ max{e1, . . . , es}. Since fj =
∑
ei≥j αi

(
ei
j

)
aei−ji for

all j ∈ {0, . . . , d}, the size of f is polynomially bounded by the
size of the output. To perform Step 1 we follow Remark 2.7. We
note that the coefficients of the polynomials appearing in the SDE
are polynomially bounded by the size of f . In Step 2 we have to
compute the integral roots of polynomials of degree t ≤ s with in-
tegral coefficients, which can also be done in polynomial time (see,
e.g., [24]). Step 4 can also be performed in polynomial time by
solving a linear system of equations (see, e.g., [27, Corollary 3.3a])
. The result follows from the fact that the polynomial h defined in
Step 5 can be written as h =

∑
j∈J αj(x − aj)

ej for some set
J ⊂ {1, . . . , s} of at most s− 1 elements. After the first iteration,
the algorithm is therefore called recursively on polynomials h with
an output size bounded by the output size of the original f .

Acknowledgments
Work supported by ANR project CompA (code ANR-13-BS02-0001-01).
The first author was also partially supported by project MTM2016-78881-
P. The reconstruction problem for sums of affine powers was suggested to
one of us (P.K.) by Erich Kaltofen at a Dagstuhl workshop where P.K. gave
a talk on lower bounds for this model. We thank the anonymous referees
for several useful suggestions.

5. REFERENCES
[1] J. Alexander, A. Hirschowitz. Polynomial interpolation in several

variables. Journal of Algebraic Geometry, 4(2):201–222, 1995.
[2] M. Ben-Or, P. Tiwari. A deterministic algorithm for sparse

multivariate polynomial interpolation. In Proc. 20th annual ACM
Symposium on Theory of Computing. ACM, 1988.

[3] M. Bocher. The theory of linear dependence. Annals of Mathematics,
2(1/4): 81–96, 1900-1901.

[4] M. Boij, E. Carlini, A. V. Geramita. Monomials as sums of powers:
the real binary case. Proc. Amer. Math. Soc. 139(9):3039–3043, 2011.

[5] A. Borodin, P. Tiwari. On the decidability of sparse univariate
polynomial interpolation. Computational Complexity, 1(1):67-90,
1991.

[6] M. C. Brambilla, G. Ottaviani. On the Alexander –Hirschowitz
theorem. Journal of Pure and Applied Algebra, 212(5):1229–1251,
2008.

[7] D. A. Cox, Galois theory. Second edition. Pure and Applied
Mathematics (Hoboken). John Wiley & Sons, Inc., 2012.

[8] I. García-Marco, P. Koiran. Lower bounds by Birkhoff interpolation.
Journal of Complexity 39:38-50, 2017.

[9] I. García-Marco, P. Koiran, T. Pecatte. Reconstruction Algorithms for
Sums of Affine Powers, arXiv:1607.05420v2, 2016.

[10] M. Giesbrecht, E. Kaltofen, W.-S. Lee. Algorithms for computing
sparsest shifts of polynomials in power, Chebyshev and Pochhammer
bases. International Symposium on Symbolic and Algebraic
Computation (ISSAC’2002) (Lille). Journal of Symbolic
Computation 36(3-4):401–424, 2003.

[11] M. Giesbrecht, G. Labahn, W.-S. Lee. Symbolic-numeric sparse
interpolation of multivariate polynomials. Journal of Symbolic
Computation 44(8):943–959, 2009.

[12] M. Giesbrecht, D. S. Roche. Interpolation of shifted-lacunary
polynomials. Computational Complexity 19(3):333–354, 2010.

[13] J. H. Grace, A. Young. The algebra of invariants. Cambridge
University Press, 1903.

[14] D. Grigoriev, M. Karpinski. A zero-test and an interpolation
algorithm for the shifted sparse polynomials. In Proc. Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, 10th
International Symposium (AAECC-10). LNCS 673, pp. 162-169,
Springer, 1993.

[15] D. Grigoriev, M. Karpinski. Computability of the additive
complexity of algebraic circuits with root extracting. Theoretical
computer science 157(1):91-99, 1996.

[16] D. Grigoriev, Y. Lakshman. Algorithms for computing sparse shifts
for multivariate polynomials. Applicable Algebra in Engineering,
Communication and Computing 11(1):43-67, 2000.

[17] A. Iarrobino, V. Kanev. Power sums, Gorenstein algebras, and
determinantal loci. Appendix C by Iarrobino and Steven L. Kleiman.
Lecture Notes in Mathematics, 1721. Springer-Verlag, Berlin, 1999.

[18] E. Kaltofen, B. Trager. Computing with polynomials given by black
boxes for their evaluations: Greatest common divisors, factorization,
separation of numerators and denominators. Journal of Symbolic
Computation 9(3):301-320, 1990.

[19] N. Kayal. Affine projections of polynomials. In Proc. 44th annual
ACM Symposium on Theory of Computing (STOC 2012), pp.
643-662. ACM, 2012.

[20] N. Kayal, P. Koiran, T. Pecatte, C. Saha. Lower bounds for sums of
powers of low degree univariates. In Proc. 42nd International
Colloquium on Automata, Languages and Programming (ICALP
2015), part I, LNCS 9134, pages 810–821. Springer, 2015. Available
from http://perso.ens-lyon.fr/pascal.koiran.

[21] J. Kleppe. Representing a Homogenous Polynomial as a Sum of
Powers of Linear Forms. Thesis for the degree of Candidatus
Scientiarum (University of Oslo), 1999. Available at
http://folk.uio.no/johannkl/kleppe-master.pdf.

[22] Y. N. Lakshman, B. D. Saunders. Sparse shifts for univariate
polynomials. Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 5,
351–364.

[23] J. M. Landsberg, Z. Teitler. On the ranks and border ranks of
symmetric tensors. Foundations of Computational Mathematics,
10(3):339–366, 2010.

[24] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann. 261 (1982), no. 4, 515–534.

[25] G. Pólya, G. Szegö. Problems and theorems in analysis. Vol. II.
Theory of functions, zeros, polynomials, determinants, number
theory, geometry. Revised and enlarged translation by C. E.
Billigheimer of the fourth German edition. Springer Study Edition.
Springer-Verlag, New York-Heidelberg, 1976. xi+391 pp.

[26] R. Saptharishi. A survey of lower bounds in arithmetic circuit
complexity. github.com/dasarpmar/lowerbounds-survey/releases.

[27] A. Schrijver. Theory of linear and integer programming. John Wiley
& Sons, 1986. xii+471 pp.

[28] M. Voorhoeve, A.J. Van Der Poorten. Wronskian determinants and
the zeros of certain functions. Indagationes Mathematicae, 37 (1975),
no. 5, 417–424.

http://perso.ens-lyon.fr/pascal.koiran
http://folk.uio.no/johannkl/kleppe-master.pdf
https://github.com/dasarpmar/lowerbounds-survey/releases

	Introduction
	Our results
	Main tools
	Models of computation
	Future work

	Preliminaries
	The Wronskian
	Shifted Differential Equations

	Structural results
	Algorithms for distinct nodes
	References

