
Diagonalization against Arithmeti CiruitsPasal Koiran and Sylvain PerifelJuly 11, 2008LIP, Éole Normale Supérieure de Lyon[Pasal.Koiran,Sylvain.Perifel℄�ens-lyon.fr1 IntrodutionIn this note we give an alternative proof of a lower bound due to Kabanetsand Impagliazzo [4℄.Theorem 1. At least one of the following two statements must hold true:(i) NEXPRP 6⊆ P/poly;(ii) The permanent does not have polynomial size arithmeti iruits.In the above result, the arithmeti iruits are onstant-free (or equiva-lently an only use small integer onstants). The proof given by Kabanetsand Impagliazzo is a proof by ontradition. Assuming that NEXPRP ⊆
P/poly and that the permanent has polynomial-size iruits, these authorsshow that the lass EE (doubly exponential time) would have polynomialsize Boolean iruits. It an be shown by diagonalization that this is notthe ase [5℄.Our proof is not shorter than the original one, but we �nd it oneptu-ally simple and it introdues a possibly new proof tehnique: diagonaliza-tion against arithmeti iruits. It remains to be seen whether this prooftehnique an yield new results.Overview of our Proof � Arithmeti iruits naturally ompute polyno-mials, and they an a fortiori be used to ompute integers (whih are on-stant polynomials). Some onnetions between theses two settings were es-tablished in [6,2℄. For instane, it is natural to onjeture that the sequene
⌊2n ln 2⌋ annot be omputed from the onstant 1 within (log n)O(1) arith-meti operations, but a proof of this onjeture would imply a superpoly-nomial lower bound for the permanent polynomial. The same onnetionholds for many �easily de�nable� integer sequenes. For a pessimist, thisindiates that obtaining good lower bounds on the omplexity of expliitinteger sequenes is a hopeless problem. For an optimist, this means onthe ontrary that to obtain a lower bound for the permanent we �simply�have to prove a good lower bound for some expliit integer sequene.



2 Pasal Koiran and Sylvain PerifelOur sympathy goes to the optimist, but we will nevertheless use a moreindiret strategy. Namely, assuming that the onlusion of Theorem 1 doesnot hold, we show that there is an �easily de�nable� integer sequene thatis hard to ompute. This is in ontradition with the results from [6℄presented in the previous paragraph. In other words we design an integersequene whih is not omputable by small arithmeti iruits, but whihmust be omputable by small arithmeti iruits due to [6℄.2 Integer ComputationsA omputation of length l of an integer n is a sequene (n−1, n0, n1, . . . , nl)of integers suh that n−1 = 1, n0 = 2, n = nl and for eah i ≥ 1 thereexists j, k < l and ◦ ∈ {+,−,×} suh that ni = nj ◦ nk. One sets τ(0) =
τ(1) = τ(2) = 0 and for n ≥ 3, τ(n) is by de�nition [3℄ equal to the lengthof a shortest omputation of n. In [1℄ the number 2 is not allowed as a�starting number�, but the two orresponding omplexity measures di�erby at most 1 sine 2 an be obtained from 1 in one arithmeti operation.For tehnial reasons we will work with a related omplexity measure
τ1/2 where the rational onstant 1/2 is also allowed as a starting number.In this setting, a 1/2-omputation of length l of an integer n is a sequene
(n−2,n−1, n0, n1, . . . , nl) of rational numbers suh that n−2 = 1/2, n−1 =
1, n0 = 2, n = nl and for eah i ≥ 1 there exists j, k < l and ◦ ∈ {+,−,×}suh that ni = nj ◦ nk. One sets again τ1/2(0) = τ1/2(1) = τ1/2(2) = 0and for any integer n ≥ 3, τ1/2(n) is equal to the length of a shortest1/2-omputation of n.De�nition 1. A sequene (an) of integers is hard for omputations oflength n if τ1/2(an) > n for all su�iently large n.3 Nonexistene of Easily De�nable Sequenes that AreHard to ComputeThe main tool that we will use to show that ertain �easily de�nable�sequenes are (onditionally) not hard is essentially borrowed from [6℄.Theorem 2. Suppose that n 7→ p(n) is a polynomially bounded funtion,and that p(n) ≥ n for all n ∈ N. Let (an) be an integer sequene suh thatfor some integer b one an write:

an =

p(n)
∑

j=0

f(j, n)bj (1)



Diagonalization against Arithmeti Ciruits 3where the map (j, n) 7→ f(j, n) is in ♯P/poly (here, we use binary enod-ing for j and n). If the permanent family an be omputed by a familyof polynomial size arithmeti iruits then τ1/2(an) ≤ q(log n) for somepolynomial q.The speial role of the onstant 1/2 in this theorem is inherited from itsrole in the ompleteness proof of the permanent. One ould state a similartheorem for the Hamiltonian instead of the permanent polynomial, with
τ1/2 replaed by τ . Theorem 2 is an adaptation of Proposition 6.6 from [6℄to the setting of 1/2-omputations. That proposition has a stronger on-lusion (τ1/2 is replaed by τ) and a stronger hypothesis: in addition tothe polynomial size hypothesis on arithmeti iruits for the permanentwe need to assume a polynomial bound on their formal degree. In fat,Theorem 2 has a simpler proof than Proposition 6.6 from [6℄ sine theonly role of the formal degree bound in that proposition is to help get ridof the onstant 1/2. In the setting of 1/2-omputations this is not neededsine that onstant is given for free. The reader may onsult [6℄ for moredetails.We will apply Theorem 2 in the ase where f(j, n) is simply the bitof an of weight 2j . To this end we assoiate to any integer sequene (an)the language

Bit(a) = {〈n, j〉 | the bit of an of weight 2j is equal to 1}. (2)Here, n and j are given in binary as in Theorem 2.De�nition 2. Let (an) be a sequene of integers of bit size polynomialin n. We say that (an) is de�nable in time (log n)O(1) with (log n)O(1) bitsof advie if Bit(a) is in P/poly.We then have the following immediate orollary to Theorem 2 (note thatthe ondition p(n) ≥ n in Theorem 2 is not restritive: if an has a smallerbit size, the high-order bits f(j, n) will simply be equal to 0).Corollary 1. Let (an) be a sequene of integers de�nable in time
(log n)O(1) with (log n)O(1) bits of advie. If the permanent family anbe omputed by a family of polynomial size arithmeti iruits then (an)annot be hard for omputations of length n.



4 Pasal Koiran and Sylvain Perifel4 Existene of Easily De�nable Sequenes that Are Hardto Compute4.1 Existene of Sequenes that are Hard to ComputeIt was shown in [3℄ that for every ǫ > 0, almost all integers satisfythe property τ(n) ≥ (log n)/(log(log n))1+ǫ. The improved lower bound
τ(n) ≥ (log n)/(log(log n)), whih holds again for almost all integers, wasestablished in [7℄. Like Shannon's lower bound in boolean omplexity the-ory, these lower bounds are based on a ounting argument. They aretherefore una�eted by the availability of the onstant 1/2, whih doesnot hange the order of magnitude of the number of programs of a givensize. For our purposes, the following fairly rude bound will su�e.Proposition 1. There exists a sequene (an) that is hard for omputa-tions of length n where an has bit size O(n log n).Proof. If an integer a satis�es τ1/2(a) ≤ n then it has a 1/2-omputationof length exatly n (pad by multipliations by 1 if neessary). There areat most 3n(n + 2)2n 1/2-omputations of length n: for eah arithmetioperation we must hoose the nature of the operation (+, − or ×) andthe left and right operands (there are at most n + 2 possible hoies foreah operand). Taking the log gives the required result. ⊓⊔4.2 Their De�nabilityLet mn be the smallest integer satisfying τ1/2(mn) > n. By Proposition 1,
mn has bit size O(n log n). To this sequene we assoiate the language:

UBit(m) = {1〈n,j〉 | the bit of mn of weight 2j is equal to 1}. (3)Note that we use unary enoding instead of the binary enoding of (2).Proposition 2. The sequene (mn) is de�nable in the polynomial hier-arhy, in the sense that UBit(m) belongs to the polynomial hierarhy.Proof. Membership of 1〈n,j〉 to UBit(m) an be expressed by the ondition:
∃a ∀C ∀b ∃C ′ suh that





output(C) 6= a;
b < a ⇒ output(C ′) = b;the bit of a of weight 2j is equal to 1.Here C and C ′ denote 1/2-omputations of length at most n. The ondi-tion output(C) 6= a asserts that τ1/2(a) > n. The seond ondition asserts



Diagonalization against Arithmeti Ciruits 5that a is the smallest suh integer, and the third ondition heks thatthe bit of a of weight 2j has the right value.Cheking that the output of C is di�erent from a is a problem in NP(the property output(C) 6= a an be erti�ed by evaluating C modulo asuitable polynomial size integer). Likewise, heking that output(C ′) = bis a problem in coNP. We an therefore onlude from the above harater-ization of UBit(m) that this language belongs to the polynomial hierarhy.
⊓⊔In setion 3 we have shown (assuming that the permanent has polynomialsize arithmeti iruits) that easily de�nable sequenes that are hard toompute do not exist. In Proposition 4 we have shown that suh a se-quene does exist. Unfortunately we haven't reahed a ontradition yet:the de�nability ondition in Setion 3 is muh more stringent than inProposition 4 sine the former is based on (nonuniform) polynomial timeomputability using binary enoding, and the latter on omputability inthe polynomial hierarhy using unary enoding. In our proof of Theo-rem 1 we will lose that gap by throwing in the additional assumptionthat NEXPRP ⊆ P/poly. First, we need a lemma from [4℄.Lemma 1. There is a randomized polynomial-time algorithm that testswhether a given arithmeti iruit omputes the permanent. That is,

{(C, 1n) | C(xi,j)1≤i,j≤n = Pern(xi,j)1≤i,j≤n} ∈ coRP.We are now ready for the proof of the Kabanets-Impagliazzo lower bound.Proof (of Theorem 1). Assume that NEXPRP ⊆ P/poly and that the per-manent has polynomial size arithmeti iruits. We will show that the lan-guage Bit(m) is in P/poly, a ontradition with Corollary 1. By our �rstassumption, it su�es to give a NEXPRP algorithm that deides whethera given input 〈n, j〉 belongs to Bit(m).Sine the language UBit(m) is in the polynomial hierarhy (Propo-sition 2), by Toda's theorem we an deide whether 〈n, j〉 ∈ Bit(m) ifwe have aess to iruits for permanents of size polynomial in n. Suhiruits are of size polynomial in n by our seond assumption. Within
NEXPRP we an nondeterministially guess suh a iruit, and hek thatit omputes the permanent orretly thanks to Lemma 1. ⊓⊔



6 Pasal Koiran and Sylvain PerifelReferenes1. L. Blum, F. Cuker, M. Shub, and S. Smale. Complexity and Real Computation.Springer-Verlag, 1998.2. P. Bürgisser. On de�ning integers in the ounting hierarhy and proving lowerbounds in algebrai omplexity. In Pro. STACS 2007, pages 133�144, 2007. Fullversion: ECCC Report No. 113, August 2006.3. W. De Melo and B. F. Svaiter. The ost of omputing integers. Pro. AmerianMathematial Soiety, 124(5):1377�1378, 1996.4. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests meansproving iruit lower bounds. Computational Complexity, 13(1-2):1�46, 2004.5. R. Kannan. Ciruit-size lower bounds and non-reduibility to sparse sets. Informa-tion and Control, 55:40�56, 1982.6. P. Koiran. Valiant's model and the ost of omputing integers. ComputationalComplexity, 13:131�146, 2004.7. C. Moreira. On asymptoti estimates for arithmeti ost funtions. Pro. AmerianMathematial Soiety, 125(2):347�353, 1997.


