Diagonalization against Arithmetic Circuits

Pascal Koiran and Sylvain Perifel

July 11, 2008
LIP, Ecole Normale Supérieure de Lyon
[Pascal.Koiran,Sylvain.Perifel] @ens-lyon.fr

1 Introduction

In this note we give an alternative proof of a lower bound due to Kabanets
and Impagliazzo [4].

Theorem 1. At least one of the following two statements must hold true:

(i) NEXPRP ¢ P /poly;

(ii) The permanent does not have polynomial size arithmetic circuits.

In the above result, the arithmetic circuits are constant-free (or equiva-
lently can only use small integer constants). The proof given by Kabanets
and Impagliazzo is a proof by contradiction. Assuming that NEXPRP C
P/poly and that the permanent has polynomial-size circuits, these authors
show that the class EE (doubly exponential time) would have polynomial
size Boolean circuits. It can be shown by diagonalization that this is not
the case [5].

Our proof is not shorter than the original one, but we find it conceptu-
ally simple and it introduces a possibly new proof technique: diagonaliza-
tion against arithmetic circuits. It remains to be seen whether this proof
technique can yield new results.

Owerview of our Proof — Arithmetic circuits naturally compute polyno-
mials, and they can a fortiori be used to compute integers (which are con-
stant polynomials). Some connections between theses two settings were es-
tablished in [6,2]. For instance, it is natural to conjecture that the sequence
|2 In 2] cannot be computed from the constant 1 within (logn)°®) arith-
metic operations, but a proof of this conjecture would imply a superpoly-
nomial lower bound for the permanent polynomial. The same connection
holds for many “easily definable” integer sequences. For a pessimist, this
indicates that obtaining good lower bounds on the complexity of explicit
integer sequences is a hopeless problem. For an optimist, this means on
the contrary that to obtain a lower bound for the permanent we “simply”
have to prove a good lower bound for some explicit integer sequence.

2 Pascal Koiran and Sylvain Perifel

Our sympathy goes to the optimist, but we will nevertheless use a more
indirect strategy. Namely, assuming that the conclusion of Theorem 1 does
not hold, we show that there is an “easily definable” integer sequence that
is hard to compute. This is in contradiction with the results from |[6]
presented in the previous paragraph. In other words we design an integer
sequence which is not computable by small arithmetic circuits, but which
must be computable by small arithmetic circuits due to [6].

2 Integer Computations

A computation of length [of an integer n is a sequence (n_1,ng, ni, ..., n;)
of integers such that n_; = 1, ng = 2, n = n; and for each ¢ > 1 there
exists j,k <l and o € {+, —, x} such that n; = n; ong. One sets 7(0) =
7(1) = 7(2) = 0 and for n > 3, 7(n) is by definition |3] equal to the length
of a shortest computation of n. In [1] the number 2 is not allowed as a
“starting number”, but the two corresponding complexity measures differ
by at most 1 since 2 can be obtained from 1 in one arithmetic operation.

For technical reasons we will work with a related complexity measure
71/2 where the rational constant 1/2 is also allowed as a starting number.
In this setting, a 1/2-computation of length [of an integer n is a sequence
(n_gn_1,n9,n1,...,n;) of rational numbers such that n_o =1/2, n_y =
1,n9 = 2, n = n; and for each ¢ > 1 there exists j,k < land o € {4, —, x}
such that n; = n; o ny. One sets again 7'/2(0) = 7%/2(1) = 71/2(2) = 0
and for any integer n > 3, 71/2(1’L) is equal to the length of a shortest
1/2-computation of n.

Definition 1. A sequence (ay) of integers is hard for computations of
length n if 7'1/2(an) > n for all sufficiently large n.

3 Nonexistence of Easily Definable Sequences that Are
Hard to Compute

The main tool that we will use to show that certain “easily definable”
sequences are (conditionally) not hard is essentially borrowed from [6].

Theorem 2. Suppose that n — p(n) is a polynomially bounded function,
and that p(n) > n for alln € N. Let (ay,) be an integer sequence such that
for some integer b one can write:

Diagonalization against Arithmetic Circuits 3

where the map (j,n) — f(j4,n) is in §P/poly (here, we use binary encod-
ing for j and mn). If the permanent family can be computed by a family
of polynomial size arithmetic circuits then 7Y/%(a,) < q(logn) for some
polynomial q.

The special role of the constant 1/2 in this theorem is inherited from its
role in the completeness proof of the permanent. One could state a similar
theorem for the Hamiltonian instead of the permanent polynomial, with
71/2 replaced by 7. Theorem 2 is an adaptation of Proposition 6.6 from [6]
to the setting of 1/2-computations. That proposition has a stronger con-
clusion (7'1/2 is replaced by 7) and a stronger hypothesis: in addition to
the polynomial size hypothesis on arithmetic circuits for the permanent
we need to assume a polynomial bound on their formal degree. In fact,
Theorem 2 has a simpler proof than Proposition 6.6 from [6] since the
only role of the formal degree bound in that proposition is to help get rid
of the constant 1/2. In the setting of 1/2-computations this is not needed
since that constant is given for free. The reader may consult |6] for more
details.

We will apply Theorem 2 in the case where f(j,n) is simply the bit
of a,, of weight 27. To this end we associate to any integer sequence (a,)
the language

Bit(a) = {(n,j) | the bit of a, of weight 27 is equal to 1}. (2)
Here, n and j are given in binary as in Theorem 2.

Definition 2. Let (a,) be a sequence of integers of bit size polynomial
in n. We say that (ay) is definable in time (logn)®M) with (logn)®W) bits
of advice if Bit(a) is in P/poly.

We then have the following immediate corollary to Theorem 2 (note that
the condition p(n) > n in Theorem 2 is not restrictive: if a,, has a smaller
bit size, the high-order bits f(j,n) will simply be equal to 0).

Corollary 1. Let (a,) be a sequence of integers definable in time
(logn)°M with (logn)®M bits of advice. If the permanent family can
be computed by a family of polynomial size arithmetic circuits then (ay)
cannot be hard for computations of length n.

4 Pascal Koiran and Sylvain Perifel

4 Existence of Easily Definable Sequences that Are Hard
to Compute

4.1 Existence of Sequences that are Hard to Compute

It was shown in [3] that for every ¢ > 0, almost all integers satisfy
the property 7(n) > (logn)/(log(logn))!*¢. The improved lower bound
7(n) > (logn)/(log(logn)), which holds again for almost all integers, was
established in [7]. Like Shannon’s lower bound in boolean complexity the-
ory, these lower bounds are based on a counting argument. They are
therefore unaffected by the availability of the constant 1/2, which does
not change the order of magnitude of the number of programs of a given
size. For our purposes, the following fairly crude bound will suffice.

Proposition 1. There exists a sequence (ay) that is hard for computa-
tions of length n where ay, has bit size O(nlogn).

Proof. If an integer a satisfies 71/2(a) < n then it has a 1/2-computation
of length exactly n (pad by multiplications by 1 if necessary). There are
at most 3"(n + 2)** 1/2-computations of length n: for each arithmetic

operation we must choose the nature of the operation (+, — or x) and
the left and right operands (there are at most n + 2 possible choices for
each operand). Taking the log gives the required result. a

4.2 Their Definability

Let m,, be the smallest integer satisfying 7/2(m,,) > n. By Proposition 1,
my, has bit size O(nlogn). To this sequence we associate the language:

UBit(m) = {177 | the bit of m,, of weight 27 is equal to 1}. (3)

Note that we use unary encoding instead of the binary encoding of (2).

Proposition 2. The sequence (my,) is definable in the polynomial hier-
archy, in the sense that UBit(m) belongs to the polynomial hierarchy.

Proof. Membership of 1¢%7) to UBit(m) can be expressed by the condition:

output(C) # a;
Ja VC Vb 3C’ such that { b < a = output(C’) = b;
the bit of a of weight 27 is equal to 1.

Here C' and C’ denote 1/2-computations of length at most n. The condi-
tion output(C) # a asserts that 7'/2(a) > n. The second condition asserts

Diagonalization against Arithmetic Circuits 5

that a is the smallest such integer, and the third condition checks that
the bit of a of weight 2/ has the right value.

Checking that the output of C' is different from «a is a problem in NP
(the property output(C') # a can be certified by evaluating C' modulo a
suitable polynomial size integer). Likewise, checking that output(C’) = b
is a problem in coNP. We can therefore conclude from the above character-
ization of UBit(m) that this language belongs to the polynomial hierarchy.

g

In section 3 we have shown (assuming that the permanent has polynomial
size arithmetic circuits) that easily definable sequences that are hard to
compute do not exist. In Proposition 4 we have shown that such a se-
quence does exist. Unfortunately we haven’t reached a contradiction yet:
the definability condition in Section 3 is much more stringent than in
Proposition 4 since the former is based on (nonuniform) polynomial time
computability using binary encoding, and the latter on computability in
the polynomial hierarchy using unary encoding. In our proof of Theo-
rem 1 we will close that gap by throwing in the additional assumption
that NEXPRP C P/poly. First, we need a lemma from [4].

Lemma 1. There is a randomized polynomial-time algorithm that tests
whether a given arithmetic circuit computes the permanent. That 1s,

{(C1") | C(zij)1<i,j<n = Pern (i j)1<ij<n} € cORP.

We are now ready for the proof of the Kabanets-Impagliazzo lower bound.

Proof (of Theorem 1). Assume that NEXPRP C P /poly and that the per-
manent has polynomial size arithmetic circuits. We will show that the lan-
guage Bit(m) is in P/poly, a contradiction with Corollary 1. By our first
assumption, it suffices to give a NEXPRP algorithm that decides whether
a given input (n,j) belongs to Bit(m).

Since the language UBit(m) is in the polynomial hierarchy (Propo-
sition 2), by Toda’s theorem we can decide whether (n,j) € Bit(m) if
we have access to circuits for permanents of size polynomial in n. Such
circuits are of size polynomial in n by our second assumption. Within
NEXPRP we can nondeterministically guess such a circuit, and check that
it computes the permanent correctly thanks to Lemma 1. O

6 Pascal Koiran and Sylvain Perifel

References

1. L. Blum, F. Cucker, M. Shub, and S. Smale. Complezrity and Real Computation.
Springer-Verlag, 1998.

2. P. Biirgisser. On defining integers in the counting hierarchy and proving lower

bounds in algebraic complexity. In Proc. STACS 2007, pages 133 144, 2007. Full
version: ECCC Report No. 113, August 2006.

W. De Melo and B. F. Svaiter. The cost of computing integers. Proc. American
Mathematical Society, 124(5):1377 1378, 1996.

V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complezity, 13(1-2):1-46, 2004.

R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Informa-
tion and Control, 55:40-56, 1982.

P. Koiran. Valiant’s model and the cost of computing integers. Computational
Complezity, 13:131 146, 2004.

C. Moreira. On asymptotic estimates for arithmetic cost functions. Proc. American
Mathematical Society, 125(2):347-353, 1997.

