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al.Koiran,Sylvain.Perifel℄�ens-lyon.fr1 Introdu
tionIn this note we give an alternative proof of a lower bound due to Kabanetsand Impagliazzo [4℄.Theorem 1. At least one of the following two statements must hold true:(i) NEXPRP 6⊆ P/poly;(ii) The permanent does not have polynomial size arithmeti
 
ir
uits.In the above result, the arithmeti
 
ir
uits are 
onstant-free (or equiva-lently 
an only use small integer 
onstants). The proof given by Kabanetsand Impagliazzo is a proof by 
ontradi
tion. Assuming that NEXPRP ⊆
P/poly and that the permanent has polynomial-size 
ir
uits, these authorsshow that the 
lass EE (doubly exponential time) would have polynomialsize Boolean 
ir
uits. It 
an be shown by diagonalization that this is notthe 
ase [5℄.Our proof is not shorter than the original one, but we �nd it 
on
eptu-ally simple and it introdu
es a possibly new proof te
hnique: diagonaliza-tion against arithmeti
 
ir
uits. It remains to be seen whether this proofte
hnique 
an yield new results.Overview of our Proof � Arithmeti
 
ir
uits naturally 
ompute polyno-mials, and they 
an a fortiori be used to 
ompute integers (whi
h are 
on-stant polynomials). Some 
onne
tions between theses two settings were es-tablished in [6,2℄. For instan
e, it is natural to 
onje
ture that the sequen
e
⌊2n ln 2⌋ 
annot be 
omputed from the 
onstant 1 within (log n)O(1) arith-meti
 operations, but a proof of this 
onje
ture would imply a superpoly-nomial lower bound for the permanent polynomial. The same 
onne
tionholds for many �easily de�nable� integer sequen
es. For a pessimist, thisindi
ates that obtaining good lower bounds on the 
omplexity of expli
itinteger sequen
es is a hopeless problem. For an optimist, this means onthe 
ontrary that to obtain a lower bound for the permanent we �simply�have to prove a good lower bound for some expli
it integer sequen
e.
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al Koiran and Sylvain PerifelOur sympathy goes to the optimist, but we will nevertheless use a moreindire
t strategy. Namely, assuming that the 
on
lusion of Theorem 1 doesnot hold, we show that there is an �easily de�nable� integer sequen
e thatis hard to 
ompute. This is in 
ontradi
tion with the results from [6℄presented in the previous paragraph. In other words we design an integersequen
e whi
h is not 
omputable by small arithmeti
 
ir
uits, but whi
hmust be 
omputable by small arithmeti
 
ir
uits due to [6℄.2 Integer ComputationsA 
omputation of length l of an integer n is a sequen
e (n−1, n0, n1, . . . , nl)of integers su
h that n−1 = 1, n0 = 2, n = nl and for ea
h i ≥ 1 thereexists j, k < l and ◦ ∈ {+,−,×} su
h that ni = nj ◦ nk. One sets τ(0) =
τ(1) = τ(2) = 0 and for n ≥ 3, τ(n) is by de�nition [3℄ equal to the lengthof a shortest 
omputation of n. In [1℄ the number 2 is not allowed as a�starting number�, but the two 
orresponding 
omplexity measures di�erby at most 1 sin
e 2 
an be obtained from 1 in one arithmeti
 operation.For te
hni
al reasons we will work with a related 
omplexity measure
τ1/2 where the rational 
onstant 1/2 is also allowed as a starting number.In this setting, a 1/2-
omputation of length l of an integer n is a sequen
e
(n−2,n−1, n0, n1, . . . , nl) of rational numbers su
h that n−2 = 1/2, n−1 =
1, n0 = 2, n = nl and for ea
h i ≥ 1 there exists j, k < l and ◦ ∈ {+,−,×}su
h that ni = nj ◦ nk. One sets again τ1/2(0) = τ1/2(1) = τ1/2(2) = 0and for any integer n ≥ 3, τ1/2(n) is equal to the length of a shortest1/2-
omputation of n.De�nition 1. A sequen
e (an) of integers is hard for 
omputations oflength n if τ1/2(an) > n for all su�
iently large n.3 Nonexisten
e of Easily De�nable Sequen
es that AreHard to ComputeThe main tool that we will use to show that 
ertain �easily de�nable�sequen
es are (
onditionally) not hard is essentially borrowed from [6℄.Theorem 2. Suppose that n 7→ p(n) is a polynomially bounded fun
tion,and that p(n) ≥ n for all n ∈ N. Let (an) be an integer sequen
e su
h thatfor some integer b one 
an write:

an =

p(n)
∑

j=0

f(j, n)bj (1)
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uits 3where the map (j, n) 7→ f(j, n) is in ♯P/poly (here, we use binary en
od-ing for j and n). If the permanent family 
an be 
omputed by a familyof polynomial size arithmeti
 
ir
uits then τ1/2(an) ≤ q(log n) for somepolynomial q.The spe
ial role of the 
onstant 1/2 in this theorem is inherited from itsrole in the 
ompleteness proof of the permanent. One 
ould state a similartheorem for the Hamiltonian instead of the permanent polynomial, with
τ1/2 repla
ed by τ . Theorem 2 is an adaptation of Proposition 6.6 from [6℄to the setting of 1/2-
omputations. That proposition has a stronger 
on-
lusion (τ1/2 is repla
ed by τ) and a stronger hypothesis: in addition tothe polynomial size hypothesis on arithmeti
 
ir
uits for the permanentwe need to assume a polynomial bound on their formal degree. In fa
t,Theorem 2 has a simpler proof than Proposition 6.6 from [6℄ sin
e theonly role of the formal degree bound in that proposition is to help get ridof the 
onstant 1/2. In the setting of 1/2-
omputations this is not neededsin
e that 
onstant is given for free. The reader may 
onsult [6℄ for moredetails.We will apply Theorem 2 in the 
ase where f(j, n) is simply the bitof an of weight 2j . To this end we asso
iate to any integer sequen
e (an)the language

Bit(a) = {〈n, j〉 | the bit of an of weight 2j is equal to 1}. (2)Here, n and j are given in binary as in Theorem 2.De�nition 2. Let (an) be a sequen
e of integers of bit size polynomialin n. We say that (an) is de�nable in time (log n)O(1) with (log n)O(1) bitsof advi
e if Bit(a) is in P/poly.We then have the following immediate 
orollary to Theorem 2 (note thatthe 
ondition p(n) ≥ n in Theorem 2 is not restri
tive: if an has a smallerbit size, the high-order bits f(j, n) will simply be equal to 0).Corollary 1. Let (an) be a sequen
e of integers de�nable in time
(log n)O(1) with (log n)O(1) bits of advi
e. If the permanent family 
anbe 
omputed by a family of polynomial size arithmeti
 
ir
uits then (an)
annot be hard for 
omputations of length n.
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e of Easily De�nable Sequen
es that Are Hardto Compute4.1 Existen
e of Sequen
es that are Hard to ComputeIt was shown in [3℄ that for every ǫ > 0, almost all integers satisfythe property τ(n) ≥ (log n)/(log(log n))1+ǫ. The improved lower bound
τ(n) ≥ (log n)/(log(log n)), whi
h holds again for almost all integers, wasestablished in [7℄. Like Shannon's lower bound in boolean 
omplexity the-ory, these lower bounds are based on a 
ounting argument. They aretherefore una�e
ted by the availability of the 
onstant 1/2, whi
h doesnot 
hange the order of magnitude of the number of programs of a givensize. For our purposes, the following fairly 
rude bound will su�
e.Proposition 1. There exists a sequen
e (an) that is hard for 
omputa-tions of length n where an has bit size O(n log n).Proof. If an integer a satis�es τ1/2(a) ≤ n then it has a 1/2-
omputationof length exa
tly n (pad by multipli
ations by 1 if ne
essary). There areat most 3n(n + 2)2n 1/2-
omputations of length n: for ea
h arithmeti
operation we must 
hoose the nature of the operation (+, − or ×) andthe left and right operands (there are at most n + 2 possible 
hoi
es forea
h operand). Taking the log gives the required result. ⊓⊔4.2 Their De�nabilityLet mn be the smallest integer satisfying τ1/2(mn) > n. By Proposition 1,
mn has bit size O(n log n). To this sequen
e we asso
iate the language:

UBit(m) = {1〈n,j〉 | the bit of mn of weight 2j is equal to 1}. (3)Note that we use unary en
oding instead of the binary en
oding of (2).Proposition 2. The sequen
e (mn) is de�nable in the polynomial hier-ar
hy, in the sense that UBit(m) belongs to the polynomial hierar
hy.Proof. Membership of 1〈n,j〉 to UBit(m) 
an be expressed by the 
ondition:
∃a ∀C ∀b ∃C ′ su
h that





output(C) 6= a;
b < a ⇒ output(C ′) = b;the bit of a of weight 2j is equal to 1.Here C and C ′ denote 1/2-
omputations of length at most n. The 
ondi-tion output(C) 6= a asserts that τ1/2(a) > n. The se
ond 
ondition asserts
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uits 5that a is the smallest su
h integer, and the third 
ondition 
he
ks thatthe bit of a of weight 2j has the right value.Che
king that the output of C is di�erent from a is a problem in NP(the property output(C) 6= a 
an be 
erti�ed by evaluating C modulo asuitable polynomial size integer). Likewise, 
he
king that output(C ′) = bis a problem in coNP. We 
an therefore 
on
lude from the above 
hara
ter-ization of UBit(m) that this language belongs to the polynomial hierar
hy.
⊓⊔In se
tion 3 we have shown (assuming that the permanent has polynomialsize arithmeti
 
ir
uits) that easily de�nable sequen
es that are hard to
ompute do not exist. In Proposition 4 we have shown that su
h a se-quen
e does exist. Unfortunately we haven't rea
hed a 
ontradi
tion yet:the de�nability 
ondition in Se
tion 3 is mu
h more stringent than inProposition 4 sin
e the former is based on (nonuniform) polynomial time
omputability using binary en
oding, and the latter on 
omputability inthe polynomial hierar
hy using unary en
oding. In our proof of Theo-rem 1 we will 
lose that gap by throwing in the additional assumptionthat NEXPRP ⊆ P/poly. First, we need a lemma from [4℄.Lemma 1. There is a randomized polynomial-time algorithm that testswhether a given arithmeti
 
ir
uit 
omputes the permanent. That is,

{(C, 1n) | C(xi,j)1≤i,j≤n = Pern(xi,j)1≤i,j≤n} ∈ coRP.We are now ready for the proof of the Kabanets-Impagliazzo lower bound.Proof (of Theorem 1). Assume that NEXPRP ⊆ P/poly and that the per-manent has polynomial size arithmeti
 
ir
uits. We will show that the lan-guage Bit(m) is in P/poly, a 
ontradi
tion with Corollary 1. By our �rstassumption, it su�
es to give a NEXPRP algorithm that de
ides whethera given input 〈n, j〉 belongs to Bit(m).Sin
e the language UBit(m) is in the polynomial hierar
hy (Propo-sition 2), by Toda's theorem we 
an de
ide whether 〈n, j〉 ∈ Bit(m) ifwe have a

ess to 
ir
uits for permanents of size polynomial in n. Su
h
ir
uits are of size polynomial in n by our se
ond assumption. Within
NEXPRP we 
an nondeterministi
ally guess su
h a 
ir
uit, and 
he
k thatit 
omputes the permanent 
orre
tly thanks to Lemma 1. ⊓⊔
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