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VALIANT’S MODEL AND THE COST

OF COMPUTING INTEGERS

Pascal Koiran

Abstract. Let τ(n) be the minimum number of arithmetic operations
required to build the integer n ∈ N from the constants 1 and 2. A
sequence xn is said to be “easy to compute” if there exists a polynomial
p such that τ(xn) ≤ p(log n) for all n ≥ 1. It is natural to conjecture that
sequences such as b2n ln 2c or n! are not easy to compute. In this paper
we show that a proof of this conjecture for the first sequence would imply
a superpolynomial lower bound for the arithmetic circuit size of the
permanent polynomial. For the second sequence, a proof would imply a
superpolynomial lower bound for the permanent or P 6= PSPACE.
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1. Introduction

Let τ(n) be the minimum number of arithmetic operations (+, − or ×) re-
quired to build the integer n ∈ N from the constants 1 and 2. For instance,
τ(22n) = n by “repeated squaring.” A sequence xn of integers is said to be
“easy to compute” if there exists a polynomial p such that τ(xn) ≤ p(log n) for
all n ≥ 1 (one can show for example that 2n is easy to compute; De Melo &
Svaiter 1996). Otherwise the sequence is said to be “hard to compute”. The
sequence is said to be “ultimately easy to compute” if there exists another se-
quence an ∈ N such that the sequence anxn is easy to compute. It is natural
to conjecture that n! is not ultimately easy to compute. Shub and Smale have
shown that if this conjecture holds true then P 6= NP over the field of complex
numbers (Shub & Smale 1996; Blum et al. 1998). Unfortunately, the conjecture
is still open and it is not even known that n! is hard to compute. It is very easy
to come up with other examples of sequences which seem hard to compute. For
instance, it is tempting to conjecture that the sequences b2n ln 2c, b2nπc, b2nec,
b2n
√

2c and b(3/2)nc are all hard to compute, but proofs seem to be elusive.
It was shown in De Melo & Svaiter (1996) that for every ε > 0, almost all

integers have the property τ(n) ≥ (log n)/(log log n)1+ε. The improved lower
bound τ(n) ≥ (log n)/log log n, which holds again for almost all integers, was
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established in Moreira (1997). These bounds are reminiscent of Shannon’s lower
bound in boolean complexity theory (see e.g. Vollmer (1999) for a textbook
exposition). We conclude that most integers have a high τ complexity, but
proving good lower bounds for specific sequences seems to be quite difficult.
This situation is again reminiscent of computational complexity theory. In
this paper we argue that for some sequences, proving good lower bounds on
τ is difficult because they would lead to the solution of major open problems
in complexity theory (for instance to a superpolynomial lower bound for the
circuit size of the permanent polynomial).

Main results. A quarter of century ago, Valiant proposed an algebraic ver-
sion of the P versus NP problem (Valiant 1979). His well-known completeness
result for the permanent implies that the class VNP of “easily definable” fam-
ilies of polynomials is equal to the class VP of “easily computable” families
if and only if the permanent family is in VP, i.e., can be computed by poly-
nomial size arithmetic circuits. In this paper we establish relations between
Valiant’s model and the cost of computing integers. The basic idea is quite
simple: if an integer polynomial can be evaluated efficiently, its values at in-
teger points are integers of low cost. One difficulty is that in Valiant’s model
circuits may use arbitrary constants from the underlying field, but we are in-
terested in computing integers “from scratch”. It is therefore natural to work
with a constant-free version of Valiant’s theory. Fortunately, such a theory has
recently been studied in Malod’s (2003) PhD thesis (see Section 2 for a quick
introduction).

The first relations between Valiant’s model and the cost of computing in-
tegers are established in Section 3. For instance, we show in Theorem 3.5
that there exists a polynomial p such that τ(b22n ln 2c) ≤ p(n) for all n under
the assumption VP0 = VNP0 (the subscript 0 is used to denote constant-free
classes). By the completeness property for the family HC of Hamilton cycle
polynomials, this assumption holds true if and only if HC is in VP0.

In Section 4 we show that the same results holds true under the (pre-
sumably) weaker assumption Permanent ∈ VP0. In a very different direction
(derandomization of algebraic algorithms), we note that some consequences of
the hypothesis that the permanent can be computed by arithmetic circuits of
polynomial size have been studied recently in Kabanets & Impagliazzo (2004).
We show in Theorem 5.1 that k! is ultimately easy to compute if VP0 = VNP0

and P = PSPACE. The conjunction of these two equalities is an extremely
strong assumption, but a refutation seems to be currently out of reach (more
on this in Section 5).
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Finally, we give in Section 6 a “generalized Valiant criterion” which makes
it possible to obtain polylogarithmic bounds on the τ function. Namely, we
show that b2n ln 2c is easy to compute if the permanent is in VP0, and with the
additional assumption that P = PSPACE we show that n! is easy to compute.

2. Preliminaries

2.1. Integer computations. A computation of length l of an integer n is a
sequence (n−1, n0, n1, . . . , nl) of integers such that n−1 = 1, n0 = 2, n = nl and
for each i ≥ 2 there exist j, k < l and ◦ ∈ {+,−,×} such that ni = nj ◦ nk.
One sets τ(0) = τ(1) = τ(2) = 0 and for n ≥ 3, τ(n) is by definition (De Melo
& Svaiter 1996) equal to the length of a shortest computation of n. In Blum
et al. (1998) the number 2 is not allowed as a “starting number”, but the two
corresponding complexity measures differ by at most 1 since 2 can be obtained
from 1 in one arithmetic operation. As a side remark, note that if − and ×
are dropped from the set of allowed operations one obtains the classical topic
of additions chains (Scholz 1937; Thurber 1999).

We now list some well-known properties of the τ function (proofs can be
found for instance in De Melo & Svaiter (1996)). For any n, we have log log n ≤
τ(n) ≤ 2 log n (use the binary expansion of n for the second inequality), and
τ(22n) = n by repeated squaring. Moreover, the sequence 2n is easy to compute
since τ(2n) ≤ 2 log n. The sequence 22n is hard to compute for a trivial reason
(it grows too quickly as n increases).

It seems very plausible that n! is not easy to compute: if it is then “factoring
is easy” (see for instance Blum et al. (1998), p. 126, and Cheng (2003)). Note
however that if division (computing remainder and quotient) is allowed, n!
becomes easy to compute (Shamir 1979). There are also connections between
factoring and the computation of polynomials with many rational roots (Lipton
1994). We are not aware of any nontrivial lower bound on τ(n!). A nontrivial
upper bound on the arithmetic complexity of computing certain multiples of n!
has been published recently in Cheng (2003). This upper bound falls short of
showing that n! is ultimately easy to compute, however.

2.2. Valiant’s theory without constants. Valiant’s complexity classes are
defined relatively to a given field K. Throughout the paper we will take K = Q.
We first recall the notion of an arithmetic circuit. In such a circuit all gates
except the input gates have fan-in 2, and are labelled by +, ×, or −. The
input gates are labelled by variables from the set {X1, X2, . . . , Xn, . . .} or by
constants from K. If all these constants belong to the set {−1, 0, 1}, the circuit
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is said to be constant-free. We will assume that there is a single output gate,
so that the circuit computes a polynomial in the input variables defined in
the usual way. We also define by induction the notion of formal degree.1 The
formal degree of an input gate is equal to 1. The formal degree of an addition
or subtraction gate is the maximum of the formal degrees of its two incoming
gates, and the formal degree of a multiplication gate is the sum of these two
formal degrees. Finally, the formal degree of a circuit is equal to the formal
degree of its output gate. This is obviously an upper bound on the degree of
the polynomial computed by the circuit.

Definition 2.1 (Malod). A sequence (fn) of polynomials belongs to VP0 if
there exists a polynomial p(n) and a sequence (Cn) of constant-free arithmetic
circuits such that Cn computes fn and is of size (number of gates) and formal
degree at most p(n).

The size constraint implies in particular that fn depends on polynomially
many variables. The traditional (“non-constant-free”) class VP is easily defined
in terms of VP0. Indeed, one can show that a sequence (gn) of polynomials is
in VP iff there exists a sequence (fn) in VP0 such that gn is obtained from fn
by replacing some of the variables by constants from K.

VNP0 is another important class in the constant-free theory. It is defined
from VP0 in the natural way.

Definition 2.2. A sequence (fn(X1, . . . , Xu(n))) belongs to VNP0 if there ex-
ists a sequence (gn(X1, . . . , Xv(n))) in VP0 such that

fn(X1, . . . , Xu(n)) =
∑

ε∈{0,1}v(n)−u(n)

gn(X1, . . . , Xu(n), ε).

Next we give a criterion which makes it easy to recognize many VNP0 families
of polynomials. This result basically goes back to Valiant (1979), Remark 1.

Theorem 2.3 (Valiant’s criterion). Suppose that n 7→ p(n) is a polynomially
bounded function, and that f : N×N→ N is such that the map 1n0j 7→ f(j, n)
is in the complexity class ]P/poly. Then the family (fn) of polynomials defined
by

(2.4) fn(X1, . . . , Xp(n)) =
∑

j∈{0,1}p(n)

f(j, n)Xj1
1 · · ·X

jp(n)

p(n)

is in VNP0.
1The formal degree is called degré formel complet in Malod (2003).
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Note that we use a unary encoding for n but a binary encoding for j (jk de-
notes the bit of j of weight 2k−1). In the usual statement of this criterion the
conclusion is that the family (fn) is in VNP rather than VNP0. However, an in-
spection of the proof (e.g., Proposition 2.20 of Bürgisser (2000)) shows that the
corresponding construction is constant-free, so that (fn) is indeed in the smaller
class VNP0. Note also that Theorem 2.3 covers more families (fn) than Propo-
sition 2.20 of Bürgisser (2000), which only deals with the case where f depends
only on its first argument and p(n) = n. The proof is essentially unchanged,
however. Finally, note that Theorem 2.3 is a consequence of Theorem 6.1 of
Section 6.

Recall that the Hamilton cycle polynomial HCn is a function of n2 variables
xij and is defined by the formula

HCn =
∑

σ

n∏

i=1

xiσ(i),

where the sum ranges over all cycles σ of the symmetric group Sn. If X = (xij)
is the adjacency matrix of a directed graph G, this polynomial counts the
number of Hamilton cycles in G. The following result from Malod (2003) gives
a “concrete” consequence of the hypothesis VP0 = VNP0.

Theorem 2.5. VP0 = VNP0 iff the Hamilton family (HCn) is in VP0.

Proof (sketch). The Hamilton family is in VNP0 by Theorem 2.3 (the cor-
responding function φ is polynomial-time computable). It is therefore in VP0 if
VP0 = VNP0. The converse follows from the completeness property of (HCn):
any family (fn) of VNP0 can be expressed as a projection

fn = HCp(n)(y1, . . . , yp(n)2),

where p(n) is polynomially bounded and the yi are either variables or constants
from the set {−1, 0, 1} (Malod 2003). Hence (fn) is in VP0 if (HCn) is in VP0.

�

In this theorem we use Hamilton polynomials rather than permanents because
the completeness proof for the permanent uses divisions by 2 (this is exactly
the reason why its completeness proof fails in characteristic 2). It is nonetheless
possible to give a somewhat weaker result for the permanent: see Theorem 4.3
in Section 4.
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3. An algebraic hypothesis

In this section we explore some consequences of the hypothesis VP0 = VNP0

for the cost of computing integers.

Proposition 3.1. Let (an) be an integer sequence such that for some integer
b and some polynomially bounded function p(n) one can write

(3.2) an =
2p(n)−1∑

j=0

f(j, n)bj,

where the map 1n0j 7→ f(j, n) is in ]P/poly.2 If VP0 = VNP0 then τ(an) is
polynomially bounded.

Proof. Consider the family of polynomials

gn(X1, . . . , Xp(n)) =
∑

j∈{0,1}p(n)

f(j, n)Xj1
1 · · ·X

jp(n)

p(n) .

This is a VNP0 family by Theorem 2.3. This family is therefore VP0 under the
the assumption VP0 = VNP0, and the result follows from the observation that
an = gn(x1, . . . , xp(n)), where xi = b2i−1

. �

Here is an immediate application.

Corollary 3.3. Let an =
∑2n

k=1 2k
2−1. If VP0 = VNP0 then τ(an) is polyno-

mially bounded.

Proof. Set b = 2 and p(n) = 2n. Let f(j, n) be the bit of an of weight 2j:
f(j, n) = 1 if and only if j ≤ 22n− 1 and j is of the form k2− 1. This function
is polynomial-time computable, so it is in ]P. �

The applications that follow are a little more involved.

Lemma 3.4. There is a polynomial time algorithm which takes as inputs three
integers k, u and j (j ≤ u) and computes the bit of b2u/kc of weight 2j.

2Peter Bürgisser and Bruno Poizat (personal communications) have suggested calling
such a sequence an “easily definable” sequence. This is the terminology used in Section 8.3
of Bürgisser (2000) for sequences of univariate polynomials.
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Proof. Let N = b2u/kc. The difficulty is of course that the bit size of N
may be exponential in the input size, so we cannot afford to compute all the
bits of N .

We are looking for the bit of weight 2−1 of 2s/k, where s = u−j−1. This is
also the bit of the same weight of r/k, where r is the remainder of the euclidean
division of 2s by k. We are therefore done if r can be computed in polynomial
time. For this we use the fact that τ(2s) ≤ 2 log s (De Melo & Svaiter 1996)
and we perform modulo k all the arithmetic operations in the corresponding
computation of 2s. �

Theorem 3.5. Let ln = b22n ln 2c. If VP0 = VNP0, then τ(ln) is polynomially
bounded.

Proof. We start from the formula ln 2 =
∑∞

k=1(1/2)k/k, which implies

2n∑

k=1

22n−k/k ≤ 22n ln 2 ≤ 1 +
2n∑

k=1

22n−k/k.

It follows that an − 1 ≤ ln ≤ an + 2n + 1, where an =
∑2n

k=1b22n−k/kc. A
polynomial bound for τ(ln) would therefore follow from a polynomial bound
for τ(an). Let f(j, n) be the number of indices k ∈ {1, . . . , 2n} such that the bit
of weight 2j in the radix-2 expansion of b22n−k/kc is equal to 1. By Lemma 3.4,
the map (j, 1n) 7→ f(j, n) is in ]P. We can therefore put an in the form (3.2)
with b = 2 and p(n) = n. The result then follows from Proposition 3.1. �

One can obtain the same result for several other sequences. For instance,
to deal with the sequence b22n ln 3c, observe that ln 3 = 2 ln 2 + ln(3/4), where
ln(3/4) = −∑∞k=1(1/4)k/k. Similar results can be obtained for expansions in
radix different from 2. For instance, to deal with the sequence b32n ln(3/2)c,
observe that ln(3/2) =

∑∞
k=1(1/3)k/k. In order to apply Proposition 3.1 with

b = 3 we then use a version of Lemma 3.4 where the radix-3 digits of b3u/kc
are computed in polynomial time. More surprisingly, our technique can also
be applied to the sequence b22nπc. This follows from the beautiful Bailey–
Borwein–Plouffe formula (Bailey et al. 1997):

π =
∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
.

For sequences such as b22nec, b22n
√

2c or b(3/2)2nc we do not know whether
a polynomial complexity bound can be established under the hypothesis VP0 =
VNP0.
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4. Hamiltonian versus permanent

We denote by Pern the n× n permanent

Pern =
∑

σ∈Sn

n∏

i=1

xiσ(i).

The results of the previous section rely on the hypothesis VP0 = VNP0, which
by Theorem 2.5 is equivalent to the hypothesis that the Hamilton family is in
VP0. This hypothesis implies that the permanent family is in VP0, since it
is in VNP0. The goal of this section is to show that the weaker hypothesis
Permanent ∈ VP0 implies the same results. We just need to adapt Proposi-
tion 3.1 as follows.

Proposition 4.1. Let (an) be an integer sequence such that for some integer
b and some polynomially bounded function p(n) one can write

(4.2) an =
2p(n)−1∑

j=0

f(j, n)bj,

where the map 1n0j 7→ f(j, n) is in ]P/poly. If the permanent family is in VP0

then τ(an) is polynomially bounded.

The remainder of Section 3 is unchanged. For instance, to obtain the counter-
part of Theorem 3.5 one just has to invoke Proposition 4.1 instead of Propo-
sition 3.1. The proof of Proposition 4.1 relies on one theorem and one lemma.

Theorem 4.3. Assume that the permanent family is in VP0. For every family
(fn) in VNP0, there exists a polynomially bounded function p(n) such that the
family (2p(n)fn) is in VP0.

Proof. By the completeness property of the permanent, any family (fn) of
VNP0 can be expressed as a projection

fn = Perq(n)(y1, . . . , yq(n)2),

where q(n) is polynomially bounded and the yi are either variables or constants
from Q. An inspection of the completeness proof (see for instance Bürgisser
(2000)) reveals that the constants may all be taken from the set {−1,−1/2, 0,
1/2, 1}. Assuming that the permanent family is in VP0, we can therefore write
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fn = Cn(y1, . . . , yq(n)2), where Cn is a constant-free circuit of size and formal
degree bounded by a polynomial function of n.

We will now construct a circuit Dn which computes 2p(n)fn, where p(n)
is the formal degree of Cn. In order to construct Dn from Cn, we replace
each gate g of Cn by a subcircuit Cg which will output 2dg, where d is the
formal degree of g. This construction goes by induction, starting from the
input gates. For such a gate the formal degree is equal to 1 by definition, so
that Cg needs to output 2xij if g is labelled by the variable xij, or a constant
from the set {−2,−1, 0, 1, 2} if g is labelled by a constant. Assume now that
g is a computation gate with inputs g1 of formal degree d1, and g2 of formal
degree d2. We first consider the case where g is a multiplication gate. In this
case Cg is made of a single multiplication gate with inputs from Cg1 and Cg2

since (2d1g1)(2d2g2) = 2dg. If g is an addition gate, then d = max(d1, d2).
Assume for instance that d = d2. Then Cg needs to output 2d2−d1Cg1 + Cg2 .
Assuming that we have already computed all the powers of 2 up to 2p(n), we
only need one addition and one multiplication gate. The case of subtraction
gates is similar. The resulting circuit Dn is of polynomial size, and one shows
easily by induction that the formal degree of the output gate of Cg is equal
to the formal degree of g (for a multiplication gate, use the fact that the gate
which outputs 2d2−d1 is of formal degree d2 − d1). We have therefore shown
that the family (2p(n)fn) is in VP0. �

Lemma 4.4. The inequality τ(u) ≤ (2 log v + 3)τ(uv) holds true for any pair
of integers u, v ≥ 1.

Proof. Let w = uv and let (1, 2, x1, . . . , xl) be a computation of w (hence
xl = w). We will explain how to compute the sequence (qi) of the quotients
of the euclidean division of xi by v. Let ri be the remainder of this division.
Since x0 = 2, we have q0 ≤ 2 and r0 ≤ 2. For i ≥ 1, we have xi = xj ◦ xk,
where j, k < i and ◦ ∈ {+,−,×}.

Consider first the case ◦ = +. We have qi = qj + qk if rj + rk < v and
qi = qj + qk + 1 otherwise. If ◦ = −, then qi is equal either to qj − qk or to
qj − qk− 1. In both cases, we need at most 2 arithmetic operations to compute
qi from the preceding quotients.

If ◦ = ×, then xi = xjxk = piv + rjrk, where pi = qjqkv + qjrk + qkrj
and qi = pi + brjrk/vc. Since brjrk/vc < v, brjrk/vc can be computed from
scratch in at most 2 log v arithmetic operations. In this case qi can be computed
from the preceding quotients in at most 2 log v+ 3 arithmetic operations. This
completes the proof since u = ql. �
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Proof of Proposition 4.1. Consider again the family of polynomials

gn(X1, . . . , Xp(n)) =
∑

j∈{0,1}p(n)

f(j, n)Xj1
1 · · ·X

jp(n)

p(n) .

We have seen in the proof of Proposition 3.1 that this is a VNP0 family. As-
sume that the permanent is in VP0. By Theorem 4.3, there exists a poly-
nomially bounded function q such that the family (2q(n)gn) is in VP0. Since
an = gn(x1, . . . , xp(n)), where xi = b2i−1

, it follows that τ(2q(n)an) is polynomi-
ally bounded. Now apply Lemma 4.4 with u = an and v = 2q(n). �
It is probably possible to obtain the same results under even weaker hypotheses
than Permanent ∈ VP0. For instance, one might try to allow rational constants
of controlled bit size in arithmetic circuits for the permanent.

5. Boolean and algebraic hypotheses

The results of the previous two sections were obtained under hypotheses from
algebraic complexity theory (VP0 = VNP0, or Permanent ∈ VP0). In this
section we show that n! is ultimately easy to compute by adding a hypothesis
from boolean complexity theory.

Theorem 5.1. If VP0 = VNP0 and P = PSPACE the sequence k! is ulti-
mately easy to compute, and in fact (2n)! has polynomially bounded complex-
ity.

Proof. Let an = (2n)!. If τ(an) ≤ q(n) for some polynomial q, it is clear
that k! is ultimately easy to compute: given k let 2n be the smallest power of
2 greater than or equal to k. Then an is a multiple of k!, and τ(an) ≤ q(n) ≤
q(log k).

Let us therefore assume that VP0 = VNP0 and P = PSPACE. It re-
mains to show that an has polynomially bounded complexity. We would like to
apply Proposition 3.1 with f(j, n) equal to the bit of an of weight 2j, just
as in Corollary 3.3. In order to do this it suffices to show that the map
1n0j 7→ f(j, n) can be computed in polynomial time, or even in polynomial
space since P = PSPACE. We sketch below a parallel algorithm for computing
an in time polynomial in n (with exponentially many processors). The required
polynomial space bound then follows from the equivalence between space and
parallel time (see for instance Vollmer (1999), Corollary 2.33).

The parallel algorithm is quite straightforward. We construct a multiplica-
tion tree of depth n, where the 2n leaves are labelled by the integers between
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1 and 2n. Each node is supposed to compute the product of the values com-
puted by its two children. The root, which will contain the final result, can be
evaluated in n parallel stages. The size of the numbers involved will grow ex-
ponentially, but the whole algorithm still runs in polynomial time because the
product of two M -bit numbers can be computed in parallel in time (logM)O(1)

(see for instance Vollmer (1999), Theorem 1.23). �

This technique can be applied to other sequences, and in particular to the
sequence un = b(3/2)2nc (note that the bit of un of weight 2j is equal to the
bit of 32n of weight 2j+2n).

The hypothesis that VP0 = VNP0 and P = PSPACE is extremely strong,3

but apparently cannot be refuted with the known methods of complexity the-
ory. To understand just how strong this hypothesis is, note that VP0 = VNP0

implies NC/poly = PH/poly. This follows from Theorem 4.5 and Corol-
lary 4.6 in Bürgisser (2000). These results as stated in Bürgisser (2000) as-
sume Riemann’s hypothesis (it is needed in order to eliminate constants). Here
we do not need to assume Riemann’s hypothesis since we are already work-
ing in a constant-free model. Taking into account the additional hypothesis
P = PSPACE, we conclude that NC/poly = PSPACE/poly. Note that if we
worked with a uniform version of Valiant’s model we would conclude instead
that NC = PSPACE, an equality which is in contradiction with the space
hierarchy theorem.

6. From polynomial to polylogarithmic bounds

The first result of this section is a “generalized Valiant criterion”. This name
is justified by Remark 1, which shows that Valiant’s criterion as stated in
Theorem 2.3 indeed follows from Theorem 6.1.

Theorem 6.1 (generalized Valiant criterion). Let f : N×N→ N be such that
the map (j, n) 7→ f(j, n) is in the complexity class ]P/poly. Let

(6.2) fn(X1, . . . , Xq(n)) =

p(n)∑

j=0

f(j, n)Xj1
1 · · ·X

jq(n)

q(n) ,

where ji denotes the bit of j of weight 2i−1, q(n) = 1 + blog p(n)c and p(n) ≥ n

3It is clear from the proof that we can replace the hypothesis P = PSPACE by the
somewhat weaker hypothesis P/poly = PSPACE/poly.
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for all n. There exists a VNP0 family (gr(X1, . . . , Xr, N1, . . . , Nr, P1, . . . , Pr))
with the following property: for any n,

(6.3) fn(X1, . . . , Xq(n)) = gq(n)(X1, . . . , Xq(n), n1, . . . , nq(n), p1, . . . , pq(n)),

where ni denotes the bit of n of weight 2i−1, and pi denotes the bit of p(n) of
weight 2i−1.

In contrast to Theorem 2.3, we use here binary encoding for j and n. To
be completely precise, we fix the following encoding: a pair (j, n) of integers is
represented by a binary string of the form j1 · · · jrn1 · · ·nr (i.e., j is represented
by the first half of the string, and n by the second half).

Remark 6.4. Theorem 2.3 follows from Theorem 6.1.

Proof (sketch). Let (fn) be a family of polynomials of the form (2.4). We
will assume without loss of generality that p(n) ≥ n+ 2 (if not, we can reduce
the problem to this situation by adding dummy variables and coding the actual
value of p(n) in the advice function). Let F (j, n) = f(j, blog nc). The map
(j, n) 7→ F (j, n) is in ]P/poly because the map 1n0j 7→ f(j, n) is in ]P/poly.
Let P (n) = 2p(blognc) − 1, and Q(n) = 1 + blogP (n)c = pblog nc). Note that
the assumption p(n) ≥ n+ 2 implies that P (n) ≥ n. Finally, let

Fn(X1, . . . , XQ(n)) =

P (n)∑

j=0

F (j, n)Xj1
1 · · ·X

jQ(n)

Q(n) ,

and let (Gr) be the VNP0 family associated to (Fn) by Theorem 6.1. Since
fn(X1, . . . , Xp(n)) = F2n(X1, . . . , Xp(n)), it follows that the family (fn) is in
VNP0: fn appears as a projection of Gp(n). �
Proof of Theorem 6.1. The assumption that the map (j, n) 7→ f(j, n) is
in ]P/poly implies that there exists a polynomially bounded function m(r) and
a family (pr) in VP0 such that for all j, n ∈ {0, 1}r,

f(j, n) =
∑

y∈{0,1}m(r)

pr(j, n, y)

(here we identify the strings j, n ∈ {0, 1}r with the integers they represent).
This is shown for instance in the proof of Valiant’s criterion in Bürgisser (2000),
whose outline we shall follow. Let X be a tuple of r additional variables, and

Hr(X, J,N, Y ) = pr(J,N, Y )
r∏

i=1

(JiXi + 1− Ji).
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Note that when j1, . . . , jr, n1, . . . , nr take binary values,

f(j, n)Xj1
1 · · ·Xjr

r =
∑

y∈{0,1}m(r)

Hr(X, j, n, y).

We will also need the existence of a family (Cr(J1, . . . , Jr, P1, . . . , Pr)) in VP0

such that Cr(j, p) = 1 if j ≤ p, and Cr(j, p) = 0 if j > p. This can be shown
by induction on r, using the fact that for boolean values of the variables and
r > 1, Cr(j, p) is equivalent to

(pr = 1 ∧ jr = 0) ∨ (pr = jr ∧ Cr−1(j1, . . . , jr−1, p1, . . . , pr−1)).

Then one represents boolean operations by polynomials in the standard way
(for instance u ∧ v is represented by UV , and u ∨ v by U + V − UV ).

Let Gr(X, J,N, Y, P ) = Cr(J, P )Hr(X, J,N, Y ). The family

gr(X,N, P ) =
∑

j∈{0,1}r

∑

y{0,1}m(r)

Gr(X, J,N, Y, P )

is in VNP0 since Gr is in VP0. By construction, we have gr(X,n, p) =∑p
j=0 f(j, n)Xj1

1 · · ·Xjr
r and (6.3) follows immediately by setting p = p(n) and

r = q(n) (here we use the assumption p(n) ≥ n to ensure that the binary
encoding of n fits within r bits). �

Corollary 6.5. Let (fn) be the family of polynomials defined by (6.2), and
assume additionally that n 7→ p(n) is a polynomially bounded function. If
VP0 = VNP0, then (fn) can be computed by a family of constant-free circuits
of size (log n)O(1).

If we assume only that the permanent is in VP0 then there exists a poly-
logarithmically bounded function s(n) such that 2s(n)fn can be computed by a
family of constant-free circuits of size (log n)O(1).

Proof. If VP0 = VNP0, the family (gr) of Theorem 6.1 is in VP0, and can
thus be computed by a family of constant-free circuits of size rO(1). In view
of (6.3), we obtain a family of constant-free circuits of size (log n)O(1) for fn.

Let us now assume only that the permanent is in VP0. By Theorem 4.3
there exists a polynomially bounded function p such that the family (2p(r)gr)
is in VP0, and the result follows again from (6.3). �
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Proposition 6.6. Suppose that n 7→ p(n) is a polynomially bounded func-
tion, and that p(n) ≥ n for all n ∈ N. Let (an) be an integer sequence such
that for some integer b one can write

(6.7) an =

p(n)∑

j=0

f(j, n)bj,

where the map (j, n) 7→ f(j, n) is in ]P/poly. If the permanent family is in
VP0 then (an) is easy to compute.

Proof. It is a variation on the proof of Proposition 4.1. Let (fn) be the
family of polynomials defined by (6.2). If the permanent is in VP0, by Corol-
lary 6.5 there exists a polylogarithmically bounded function s(n) and a family
(Cn) of constant-free circuits of size (log n)O(1) which compute 2s(n)fn. Since
an = fn(x1, . . . , xq(n)), where xi = b2i−1

, we have τ(2s(n)an) = (log n)O(1). Now
apply Lemma 4.4 with u = an and v = 2s(n). �

Finally, we give two results which respectively improve Theorem 3.5 and The-
orem 5.1.

Theorem 6.8. If the permanent is in VP0, then the sequence Ln = b2n ln 2c
is easy to compute.

Proof. It is a variation on the proof of Theorem 3.5. Now we use the fact
that

n∑

k=1

2n−k/k ≤ 2n ln 2 ≤ 1 +
n∑

k=1

2n−k/k.

It follows that An − 1 ≤ Ln ≤ An + n + 1, where An =
∑n

k=1b2n−k/kc. Let
f(j, n) be the number of indices k ∈ {1, . . . , n} such that the bit of weight
2j in the radix-2 expansion of b2n−k/kc is equal to 1. This is a ]P function
by Lemma 3.4. We can therefore write An in the form (6.7) with b = 2 and
p(n) = n. It follows from Proposition 6.6 that (An) is easy to compute, and
the same is therefore true of (Ln). �

Theorem 6.9. If the permanent is in VP0 and P = PSPACE, then n! is easy
to compute.

Proof. By Proposition 6.6, it suffices to show that the bit of n! of weight
2j can be computed in space polynomial in the bit size of the pair (j, n). This
is done essentially as in the proof of Theorem 5.1. �
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