
 1

Report on: Efficient Parallel Evaluation of Straight-line Code

and Arithmetic Circuits

Muhammad Mumtaz AHMAD

Article written by

Gary L. Miller, Vijaya Ramachandran and Erich Kaltofen

1.Introduction

Most of the fast algorithms now known seem to fall into a few general classes. The most

common are ones based on repetition or iteration, classic examples being Euclid's algorithm for

GCD, Newton's method for Find Root and the Gaussian elimination method for Linear Solve.

Starting in the 1950s it began to be realized that fast algorithms could be based on nested or

recursive processes, and such algorithms became increasingly popular in the 1980s. In most

cases, the idea is recursively to divide data into parts, then to do operations on these parts, and

finally reassemble the results.

Dynamic evaluation is a technique for producing multiple results according to a decision tree

that evolves with program execution. Sometimes it is desired to produce results for all possible

branches in the decision tree, while on other occasions it may be sufficient to compute a single

result, which satisfies certain properties. This technique finds use in computer algebra where

computing the correct result depends on recognising and properly handling special cases of

parameters. The term straight-line reflects the fact that evaluating an SLP can be achieved by a

program, which does not branch or loop so its execution is a straight-line. The question of how

quickly arithmetic expressions can be evaluated on a computer with several independent

arithmetic processors is of theoretical and practical interest. In this paper the author provide an

efficient parallel algorithm to evaluate a straight-line program. Parallel computing closely

resemble with well-known rule “divide and conquer”. Now I will discuss algorithm, its analyses,

its mathematical proofs, context, results, conclusions and comments about the paper

respectively starting from an important definition.

 2

2. Definition:

An arithmetic circuit is an edge weighted directed acyclic graph (where the weights on the

edges are from the semi-ring R) such that

1. Each node should be: a leaf, an addition node or a multiplication node.

2. The indegree of: a leaf is 0, an addition node is non-zero, and a multiplication node is 2.

3. Multiplication nodes are not connected with each other.

4. Each leave is assigned a value in R

2.1. Definition:

If v is an addition node with children k1 v,...,v then v),U(v)value(vvalue(v) i

1

i∑
=

⋅=
k

i

 where

v),U(vi is the weight on the edge from iv to v. if v is a multiplication node with children

21 vv and then v),v)U(v,)U(v)value(vvalue(vvalue(v) 2121= , but where any edge entering a

multiplication circuit weight will be considered 1.Leaf will have value according to definition of

Arithmetic circuit.

3. The Algorithm.

The main purpose of the algorithm is to evaluate the arithmetic circuits by removing edges and

shrinking the circuits without changing the actual values.

An arithmetic circuit can be viewed as an upper-triangular matrix U with zero diagonal, where

the entry ijU is the weight on the edge from node iv to node jv if the edge exists and it is zero

otherwise.

Three sub matrices are derived from U





=++
otherwise0

nodesaddition are vand vifU
) ,U(

jiij

ij





=+
otherwise0

nodeaddition an vifU
) U(X,

jij

ij





=
otherwise0

nodeaddition an not is or v vifU
 X) U(X,

jiij

ij

 3

The matrix U (+, +) corresponds to the sub circuit containing only plus-plus edges and U (X, +)

corresponds to the sub circuit containing any edge terminating at an addition node. While the

matrix U (X, X) corresponds to the sub circuit containing only those edges such that at least

one end node is not an addition node.

Thus U (+, +) + U (X, X) = U.

Three procedures are defined initially and then fourth procedure by combining three.

The procedure MM, (U)Eval+ and (U)Evalx applied to an arithmetic circuit return a new circuit

with the same value.

3.1. Procedure MM (U)

 X)U(X,), U()U(X,U +++•+←

The procedure Matrix Multiply (MM) uses one matrix multiplication and one matrix addition over

the semi-ring R. This procedure will remove the edges of the circuit and turn it into smaller one.

An arithmetic circuit before and after application of procedure MM(U)

3.2. Procedure (U)Eval+

for all addition nodes jv whose children are leaves do

ij

1

ij U)value(v)value(v ∑
=

⋅←
n

i

Set jv to a leaf

{ }n1,..., ifor 0U ij ∈←

od

This procedure simply evaluates an addition node if all its children have been evaluated.

3.3. Procedure (U)Evalx

for all multiplication nodes jv with children kv and lv both of which are leaves

 4

do

) value(v)value(v)value(v ikj ⋅←

 Set jv to a leaf

0U0U ljkj ←← and

od

for all jji vU where is a multiplication node with children kv and lv

and kv is a leaf and lv is not

do

jiklji U)value(vF ⋅←

od

for all pair (l, i) do

∑←
j ljili FW

lilili WUU +←

0U ji ←

od

The number of terms ljiF is at most the number of edges.

(U)Evalx removes leaves in the first part and does a partial compress in the second part.

A single procedure Phase is obtained by combining these three procedures. Repeated

application of phase will eventually return the value of the circuit.

3.4. Procedure Phase(U)

 do

 MM(U)U ←

 (U)EvalU +←

 (U)EvalU x←

 5

 od

4. Analysis of the algorithm:

The height of a circuit is used to analyse the number of applications of phase needed to

evaluate a circuit of height h. The procedures can be viewed as maps of circuits to circuits.

The following lemma is the main tool to prove the result mathematically.

4.1. Lemma

If U and U′ are arithmetic circuits as above and v′ is a node of U′ which is not a leaf and not

an output node, then the height of v is at least twice the height of v′ .

Where U is a circuit and U′ its image under the transformation phase. Similarly v is a node of

U and v′ its image.

Proof: Let v′ be a node of U′ which is neither a leaf nor an output node. We use induction on

the size of the sub circuit vU ′′ to prove the Lemma.

• Case 1

when all the children of v′ are leaves.

There are two possibilities

Either v′ is an addition node or

it is a multiplication node.

a) Suppose that v′ is an addition node.

Then we have to prove that the height of v is at least 2, where v is the preimage v′ .

Suppose that the height of v is less than 2.

But v cannot be of height 1 because a height 1 node must either be a leaf or all its children are

leaves.

Hence one application of (U)Eval+ will transform v into a leaf, a contradiction.

Now suppose that the height is 3/2

then all the dominant children of v are addition nodes whose children are leaves.

Thus, after MM (U) and (U)Eval+ the node v will be a leaf, and hence v′ will be a leaf. This

proves the case when v′ is an addition node of height 1.

 6

b) Suppose that v′ is a multiplication node with both its children leaves.

It is sufficient to show that both children of v have height at least 2.

Suppose that one child w has height less than 2.

Then after MM and Eval+ the node w will be a leaf.

Thus, after (U)Evalx the vertex v will be either a leaf or an output node, depending on

whether the other child of v is a leaf or not after Eval+, a contradiction.

This proves the initial cases of the induction.

The inductive case for multiplication nodes is rather straightforward.

• Case 2.

when one of the two children of v′ is a leaf.

For the induction of multiplication node we use the result that if v′ is a multiplication node

which is not an output node and w’ is a child of v′ which is a leaf then the height of w is at least

2.

To prove the induction for addition nodes we proceed as follows

Suppose that v′ is an addition node and w’ be a dominant child of v′ . If w’ is a

multiplication node then it is easy to follow the result.

If w’ is an addition node. Then we use the result that h (w)≤ h (v) –1.

5. Main Theorem

This theorem provides the actual result in mathematical form so that one can test the result

mathematically

Statement: If U is an arithmetic circuit of degree d and size n then the value can be computed

in parallel in time nd))n(logO(log using at most M (n) processors.

Proof.

We use the result that If U is an arithmetic circuit with height h, and then after

  1hlog2 + applications of Phase, all nodes of U are evaluated. The upper bounds are

optimal for the procedure phase that is if h is the height of U then the procedure phase will be

applied only   1hlog2 + times.

 7

Now, if U is an arithmetic circuit of degree d and e is the number of plus-plus edges then the

height of d)d(1/2eU +⋅≤

Therefore)(deOh ⋅=

Thus phase is applied at most O (log nd). That is each application of phase requires only log n

parallel time. The matrix multiplication in MM (U) can be performed using O (M (n)) processors.

6.Context and Consequences:

The result of [1] was the best possible, up to small constant factors. It is compared with the

well-known result of Valiant et al [2] that any multivariate polynomial of degree d that can be

evaluated sequentially in n steps can be evaluated in O (log d)(log n+log d) parallel steps

using)d(n O 63
 processors. The latter result is more general, but weaker, because of the log d

terms in the time bound and the much larger number of processors. Both results apply to

Boolean expressions, so they have implications for the design of circuits with small depth.

This paper shows that circuit of degree d and size n can be evaluated in time O (log n (log nd))

using M (n) processors. Where M (n) is the number of processors required for multiplying nxn

matrices over the semi-ring R in O (log n). This is a generalization of the result of Valiant et al

[2]. The crucial difference between this result and the result in Valiant et al [2] is that this

algorithm need not know the degree of the circuit in advance. The degree of a circuit can also

be computed in the above time and processor bounds.

7.Results:

It is noted that the result provided by the authors is tested and verified to be one of the best

result. This result can be easily applied and verified both theoretically and practically. This is

one of the interesting fields for new researchers as well as for general readers of interest in the

field. Similar results for non-commutative rings are not available and also one can start his

research for ring with division.

8.Conclusion and Comments:

 8

Work exposed here falls under the optics of the efficient parallel algorithms to evaluate a

straight-line program. The knowledge of the parallel computation made it possible to obtain fast

calculations. Moreover, thanks to these authors, one knows now that how the results can be

obtained by developing parallel algorithms. And how it can be verified mathematically. The

researchers throughout in the paper tried their best to represent their result in a best way of

expression. They have succeeded to draw the attention of the reader to read the whole paper.

They explained the result using necessary definitions, figures and references. They focussed to

produce the precise way rather than the quantity of the pages. They avoided discussing

material irrelevant to the paper. They proved their claims using mathematical lemmas and

theorem. In the paper the related algorithms are explained in very simple and easy ways.

Procedures are represented in quite simple way for the readers. A simple language and its

grammar are used in the paper to entertain the reader. Simple notations and mathematical

symbols are used in the paper to make it easy. An equal interest is developed throughout the

paper both for mathematicians and computer scientists. Interest related to graph theory and

Ring theory draw the attention of related researchers in very simple way. The lemmas are

provided along with their proofs using mathematical induction and contradiction. But there are

some very serious technical mistakes in the paper. Perhaps that may occurred in printing but

that are sufficient to put the reader in trouble. The authors must revise the paper.

References

[1] R. P. Brent, “The parallel evaluation of general arithmetic expressions”, Journal of the ACM

21 (1974), 201–206. CR 15#27055, MR 58#31996, Zbl 276.68010. rpb022

[2] L. G. Valiant, S. Skyum, S. Berkowitz and C. Rackoff, “Fast parallel computation of

polynomials using few processors”, SIAM J. Computing 12, 1983, 641–644.

Computer Centre, Australian National University, Canberra, Australia

1991 Mathematics Subject Classification. Primary 68Q22; Secondary 65M15, 65Y05, 68Q25.

