Upper bounds on real roots
and lower bounds for the permanent

Pascal Koiran
LIP, Ecole Normale Supérieure de Lyon

ISSAC 2012 Tutorial
Grenoble, July 22, 2012
The material:

- Upper bounds on number of real roots for certain sparse polynomial systems.
- Depth reduction for arithmetic circuits.

The motivating problem:
What is the arithmetic complexity of the permanent polynomial?

This is:

- An algebraic version of $P=NP$ (Valiant’79).
- Roughly equivalent to determinant versus permanent.

Reminder: \(\text{per}(X) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} X_{i\sigma(i)}. \)
The material:
- Upper bounds on number of real roots for certain sparse polynomial systems.
- Depth reduction for arithmetic circuits.

The motivating problem:
What is the arithmetic complexity of the permanent polynomial?
This is:
- An algebraic version of P=NP (Valiant’79).
- Roughly equivalent to determinant versus permanent.

Reminder: \(\text{per}(X) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} X_{i\sigma(i)}. \)
Determinant versus permanent (1/2)

Representing a permanent by a determinant:

\[
\text{per} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \text{det} \begin{bmatrix} a & -b \\ c & d \end{bmatrix}
\]

\[
\text{per} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \text{det} \begin{bmatrix} 0 & a & d & g & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & i & f & 0 \\ 0 & 0 & 1 & 0 & 0 & c & i \\ 0 & 0 & 0 & 1 & c & 0 & f \\ e & 0 & 0 & 0 & 1 & 0 & 0 \\ h & 0 & 0 & 0 & 0 & 1 & 0 \\ b & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
\]

The general case: A permanent of size \(n \) can be represented by a determinant of size \(2^n - 1 \) (B. Grenet).
Determinant versus permanent (1/2)

Representing a permanent by a determinant:

\[
\text{per} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \text{det} \begin{bmatrix} a & -b \\ c & d \end{bmatrix}
\]

\[
\text{per} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \text{det} \begin{bmatrix} 0 & a & d & g & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & i & f & 0 \\ 0 & 0 & 1 & 0 & 0 & c & i \\ 0 & 0 & 0 & 1 & c & 0 & f \\ e & 0 & 0 & 0 & 1 & 0 & 0 \\ h & 0 & 0 & 0 & 0 & 1 & 0 \\ b & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
\]

The general case: A permanent of size \(n\) can be represented by a determinant of size \(2^n - 1\) (B. Grenet).
Conjecture:
If \(\text{per}(A) = \text{det}(B) \) then \(\text{size}(B) \) cannot be polynomial in \(\text{size}(A) \).
The entries of \(B \) can be either:
- Entries of \(A \), or constants.
- Affine functions of the entries of \(A \).

Remark: These 2 versions of the conjecture are equivalent:
\(\text{det}(\text{affine functions}) \rightarrow \text{det}(\text{variables or constants}) \).

Some work toward the conjecture:
- \(\text{size}(B) \geq \text{size}(A)^2/2 \) (Mignon and Ressayre, 2004).
- Geometric Complexity Theory:
an approach based on representation theory
 (Ketan Mulmuley / Milind Sohoni + Bürgisser, Kumar, Landsberg, Manivel, Ressayre, Weyman...).
- Today’s approach is based on sparse polynomials,
 and uses the completeness of the permanent.
Conjecture:
If \(\text{per}(A) = \text{det}(B) \) then \(\text{size}(B) \) cannot be polynomial in \(\text{size}(A) \).
The entries of \(B \) can be either:

- Entries of \(A \), or constants.
- Affine functions of the entries of \(A \).

Remark: These 2 versions of the conjecture are equivalent:
\(\text{det}(\text{affine functions}) \rightarrow \text{det}(\text{variables or constants}) \).

Some work toward the conjecture:

- \(\text{size}(B) \geq \frac{\text{size}(A)^2}{2} \) (Mignon and Ressayre, 2004).
- Geometric Complexity Theory:
an approach based on representation theory
 (Ketan Mulmuley / Milind Sohoni + Bürgisser, Kumar, Landsberg, Manivel, Ressayre, Weyman...).
- Today’s approach is based on sparse polynomials,
 and uses the completeness of the permanent.
Conjecture:
If $\text{per}(A) = \text{det}(B)$ then $\text{size}(B)$ cannot be polynomial in $\text{size}(A)$.
The entries of B can be either:
- Entries of A, or constants.
- Affine functions of the entries of A.

Remark: These 2 versions of the conjecture are equivalent: $\text{det}(\text{affine functions}) \rightarrow \text{det}(\text{variables or constants})$.

Some work toward the conjecture:
- $\text{size}(B) \geq \text{size}(A)^2/2$ (Mignon and Ressayre, 2004).
- Geometric Complexity Theory: an approach based on representation theory (Ketan Mulmuley / Milind Sohoni + Bürgisser, Kumar, Landsberg, Manivel, Ressayre, Weyman...).
- Today’s approach is based on sparse polynomials, and uses the completeness of the permanent.
Conjecture:
If $\text{per}(A) = \text{det}(B)$ then $\text{size}(B)$ cannot be polynomial in $\text{size}(A)$.
The entries of B can be either:

- Entries of A, or constants.
- Affine functions of the entries of A.

Remark: These 2 versions of the conjecture are equivalent:
$\text{det}(\text{affine functions}) \rightarrow \text{det}(\text{variables or constants})$.

Some work toward the conjecture:

- $\text{size}(B) \geq \text{size}(A)^2/2$ (Mignon and Ressayre, 2004).
- Geometric Complexity Theory:
an approach based on representation theory (Ketan Mulmuley / Milind Sohoni + Bürgisser, Kumar, Landsberg, Manivel, Ressayre, Weyman...).
- Today’s approach is based on sparse polynomials,
 and uses the completeness of the permanent.
Arithmetic circuits:
Toward an arithmetic version of P versus NP

Circuit
Size: 9
Depth: 3
Valiant’s model: \(\text{VP}_K = \text{VNP}_K \) ?

- Complexity of a polynomial \(f \) measured by number \(L(f) \) of arithmetic operations \((+, -, \times)\) needed to evaluate \(f \):
 \[
 L(f) = \text{size of smallest arithmetic circuit computing } f.
 \]

- \((f_n) \in \text{VP} \) if number of variables, \(\text{deg}(f_n) \) and \(L(f_n) \) are polynomially bounded.

 Two examples: the determinant family \((\text{det}_n) \) is in \(\text{VP} \), but \((X^{2^n}) \notin \text{VP} \).

- \((f_n) \in \text{VNP} \) if
 \[
 f_n(x) = \sum_{y} g_n(x, y)
 \]
 for some \((g_n) \in \text{VP} \)
 (sum ranges over all boolean values of \(y \)).

 Example:
 If \(\text{char}(K) \neq 2 \) the permanent is a \(\text{VNP} \)-complete family.
Overview of the tutorial

1. Depth reduction for arithmetic circuits:
 - Reduction to depth $O(\log n)$ for arithmetic formulas (Muller-Preparata’76).
 - Reduction to depth $O(\log^2 n)$ for low-degree circuits (Valiant-Skyum-Berkowitz-Rackoff’83).
 - **Reduction to depth 4 for low-degree circuits** (Agrawal-Vinay, 2008).

2. The real τ-conjecture:
 a connection between sparse polynomials and lower bounds for the permanent.

3. Upper bound on the number of real roots.
Overview of the tutorial

1. Depth reduction for arithmetic circuits:
 ▶ Reduction to depth $O(\log n)$ for arithmetic formulas (Muller-Preparata’76).
 ▶ Reduction to depth $O(\log^2 n)$ for low-degree circuits (Valiant-Skyum-Berkowitz-Rackoff’83).
 ▶ Reduction to depth 4 for low-degree circuits (Agrawal-Vinay, 2008).

2. The real τ-conjecture:
 a connection between sparse polynomials and lower bounds for the permanent.

3. Upper bound on the number of real roots.
Overview of the tutorial

1. Depth reduction for arithmetic circuits:
 ▶ Reduction to depth $O(\log n)$ for arithmetic formulas (Muller-Preparata’76).
 ▶ Reduction to depth $O(\log^2 n)$ for low-degree circuits (Valiant-Skyum-Berkowitz-Rackoff’83).
 ▶ **Reduction to depth 4 for low-degree circuits** (Agrawal-Vinay, 2008).

2. The real τ-conjecture:
 a connection between sparse polynomials and lower bounds for the permanent.

3. Upper bound on the number of real roots.
Overview of the tutorial

1. Depth reduction for arithmetic circuits:
 ▶ Reduction to depth $O(\log n)$ for arithmetic formulas (Muller-Preparata'76).
 ▶ Reduction to depth $O(\log^2 n)$ for low-degree circuits (Valiant-Skyum-Berkowitz-Rackoff'83).
 ▶ **Reduction to depth 4 for low-degree circuits** (Agrawal-Vinay, 2008).

2. The real τ-conjecture:
 a connection between sparse polynomials and lower bounds for the permanent.

3. Upper bound on the number of real roots.
Overview of the tutorial

1. Depth reduction for arithmetic circuits:
 ▶ Reduction to depth $O(\log n)$ for arithmetic formulas (Muller-Preparata’76).
 ▶ Reduction to depth $O(\log^2 n)$ for low-degree circuits (Valiant-Skyum-Berkowitz-Rackoff’83).
 ▶ **Reduction to depth 4 for low-degree circuits** (Agrawal-Vinay, 2008).

2. The real τ-conjecture:
 a connection between sparse polynomials and lower bounds for the permanent.

3. Upper bound on the number of real roots.
Sparse polynomials: a glimpse of part 3

- Descartes’ rule without signs:
 If \(f \) has \(t \) monomials then \(f \) at most \(t - 1 \) positive real roots.

- Khovanskii’s theory of fewnomials: a system

\[
f_1(x_1, \ldots, x_n) = f_2(x_1, \ldots, x_n) = \cdots = f_n(x_1, \ldots, x_n) = 0
\]

with \(t \) distinct exponent vectors has at most \((n + 1)^t 2^{t(t-1)/2}\) non-degenerate roots in the positive orthant.

- For certain sparse systems, the \textit{Wronskian determinant} leads to better bounds.

A take-home problem:
How many real solutions to the univariate equation \(fg = 1 \)?
Descartes’ bound is \(O(t^2) \) but true bound could be \(O(t) \).

Remark: \(fg = 1 \) can be re-written as \([y = f(x), y.g(x) = 0]\).
Sparse polynomials: a glimpse of part 3

- **Descartes’ rule without signs:**
 If \(f \) has \(t \) monomials then \(f \) at most \(t - 1 \) positive real roots.

- **Khovanskii’s theory of fewnomials:** a system

 \[
 f_1(x_1, \ldots, x_n) = f_2(x_1, \ldots, x_n) = \cdots = f_n(x_1, \ldots, x_n) = 0
 \]

 with \(t \) distinct exponent vectors has at most \((n + 1)^t 2^{t(t-1)/2}\) non-degenerate roots in the positive orthant.

- For certain sparse systems,
 the *Wronskian determinant* leads to better bounds.

A take-home problem:
How many real solutions to the univariate equation \(fg = 1 \)?
Descartes’ bound is \(O(t^2) \) but true bound could be \(O(t) \).

Remark: \(fg = 1 \) can be re-written as \([y = f(x), y \cdot g(x) = 0]\).
Sparse polynomials: a glimpse of part 3

- Descartes’ rule without signs:
 If f has t monomials then f at most $t - 1$ positive real roots.

- Khovanskii’s theory of fewnomials: a system

\[
 f_1(x_1, \ldots, x_n) = f_2(x_1, \ldots, x_n) = \cdots = f_n(x_1, \ldots, x_n) = 0
\]

with t distinct exponent vectors has at most $(n + 1)^t 2^{t(t-1)/2}$ non-degenerate roots in the positive orthant.

- For certain sparse systems,
 the Wronskian determinant leads to better bounds.

A take-home problem:
How many real solutions to the univariate equation $fg = 1$?
Descartes’ bound is $O(t^2)$ but true bound could be $O(t)$.
Remark: $fg = 1$ can be re-written as $[y = f(x), y.g(x) = 0]$.
Sparse polynomials: a glimpse of part 3

- Descartes’ rule without signs:
 If \(f \) has \(t \) monomials then \(f \) at most \(t - 1 \) positive real roots.

- Khovanskii’s theory of fewnomials: a system

 \[
 f_1(x_1, \ldots, x_n) = f_2(x_1, \ldots, x_n) = \cdots = f_n(x_1, \ldots, x_n) = 0
 \]

 with \(t \) distinct exponent vectors has at most \((n + 1)^t 2^{t(t-1)/2} \) non-degenerate roots in the positive orthant.

- For certain sparse systems,
 the \textit{Wronskian determinant} leads to better bounds.

\textbf{A take-home problem:}
How many real solutions to the univariate equation \(fg = 1 \)?
Descartes’ bound is \(O(t^2) \) but true bound could be \(O(t) \).
\textbf{Remark:} \(fg = 1 \) can be re-written as \([y = f(x), y . g(x) = 0] \).
Weakly Skew Circuits

For each multiplication gate \(\alpha := \beta \times \gamma: \)
\(C_\beta \) or \(C_\gamma \) is independent from the remainder of the circuit.

If a gate is not in an independent subcircuit it is *reusable*.
For each multiplication gate $\alpha := \beta \times \gamma$:
β or γ is an input.

Skew Circuits \subseteq Weakly Skew Circuits, and Arithmetic Formulas (Trees) \subseteq Weakly Skew Circuits.
(Weakly) Skew Circuits and the Determinant

Weakly skew circuits capture the complexity of the determinant.

Theorem (Toda92)

The determinant can be computed by:
- Weakly skew circuits of size $O(n^7)$.
- Skew circuits of size $O(n^{20})$.

Proof based on Berkowitz’s algorithm.

Theorem (Toda92,Malod03)

A weakly skew circuit of size t has an equivalent determinant (and permanent) of size $t + 1$.
Applications

- Closure properties of the determinant:
 1. Stability under polynomial size summation [Malod - Portier’06-08]
 2. Stability under exact quotient [Kaltofen - Koiran’08]
 3. $\det(\text{affine functions}) \rightarrow \det(\text{variables or constants})$.

Proof: convert determinants into weakly skew circuits, convert back final result into determinant form.

- Expressive power of determinants of symmetric matrices [Grenet-Kaltofen-Koiran-Portier’11]
Applications

- Closure properties of the determinant:
 1. Stability under polynomial size summation [Malod - Portier’06-08]
 2. Stability under exact quotient [Kaltofen - Koiran’08]
 3. $\det(\text{affine functions}) \to \det(\text{variables or constants})$. Proof: convert determinants into weakly skew circuits, convert back final result into determinant form.

- Expressive power of determinants of symmetric matrices [Grenet-Kaltofen-Koiran-Portier’11]
Applications

- Closure properties of the determinant:
 1. Stability under polynomial size summation [Malod - Portier’06-08]
 2. Stability under exact quotient [Kaltofen - Koiran’08]
 3. det(affine functions) → det(variables or constants).

 Proof: convert determinants into weakly skew circuits, convert back final result into determinant form.

- Expressive power of determinants of symmetric matrices [Grenet-Kaltofen-Koiran-Portier’11]
An arithmetic branching programs is a dag with two distinguished vertices s, t.

- edges labeled by variables or constants.
- weight of path = product of edge weights.
- output = $w(s \rightarrow t) =$ sum of the weights of all st-paths.

(Valiant’79, universality of per/det for arithmetic formulas.)
Invariant:
For each *reusable* gate α, there exists t_α s.t.
$w(s \rightarrow t_\alpha) = \theta_\alpha$.
Invariant:
For each reusable gate \(\alpha \), there exists \(t_\alpha \) s.t.
\[w(s \rightarrow t_\alpha) = \phi_\alpha. \]
Invariant:
For each reusable gate α, there exists t_α s.t. $w(s \rightarrow t_\alpha) = \phi_\alpha$.

From Weakly Skew Circuit to Determinants (2/4)
From Weakly Skew Circuit to Determinants (3/4)
From Weakly Skew Circuit to Determinants (4/4)

$$\begin{pmatrix} 0 & x & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & z \\ 0 & 0 & 1 & y & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\det A = \sum_{\sigma} \prod_{i=1}^{n} A_{i,\sigma(i)}; \quad \operatorname{det} A = \sum_{\sigma} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}$$

Permutation in $A = \text{cycle cover in } G$.
Up to signs, $\det A = \text{sum of weights of cycle covers in } G$.
From Weakly Skew Circuit to Determinants (4/4)

\[
\begin{pmatrix}
0 & x & 3 & 0 & 0 \\
0 & 1 & 0 & 0 & z \\
0 & 0 & 1 & y & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\text{det } A = \sum_{\sigma} \prod_{i=1}^{n} A_{i,\sigma(i)}; \quad \text{det } A = \sum_{\sigma} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i,\sigma(i)}
\]

Permutation in \(A \) = cycle cover in \(G \).
Up to signs, \(\text{det } A = \text{sum of weights of cycle covers in } G \).
From Weakly Skew Circuit to Determinants (4/4)

\[
\det \begin{pmatrix}
0 & x & 3 & 0 & 0 \\
0 & 1 & 0 & 0 & z \\
0 & 0 & 1 & y & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\text{per } A = \sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)}; \quad \det A = \sum_{\sigma} (-1)^{\text{sgn}(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)}
\]

Permutation in \(A = \) cycle cover in \(G \).
Up to signs, \(\det A = \) sum of weights of cycle covers in \(G \).
Theorem (Kaltofen-Koiran’08, Jansen’08)

A weakly skew circuit of size m has an equivalent skew circuit of size $2m$.

1. Construct equivalent arithmetic branching program G of size $m + 1$.
2. Compute inductively $w(s \rightarrow v)$ for each node $v \in G$.
 - Two predecessors v_1, v_2 with unit edge weights:

 $w(s \rightarrow v) = w(s \rightarrow v_1) + w(s \rightarrow v_2)$.
 - One predecessor v_1 with edge weight x:

 $w(s \rightarrow v) = x \times w(s \rightarrow v_1)$.
More on Skew versus Weakly Skew

Theorem (Kaltofen-Koiran’08, Jansen’08)

A weakly skew circuit of size m has an equivalent skew circuit of size $2m$.

1. Construct equivalent arithmetic branching program G of size $m + 1$.
2. Compute inductively $w(s \rightarrow v)$ for each node $v \in G$.
 ▶ Two predecessors v_1, v_2 with unit edge weights:
 \[w(s \rightarrow v) = w(s \rightarrow v_1) + w(s \rightarrow v_2). \]
 ▶ One predecessor v_1 with edge weight x:
 \[w(s \rightarrow v) = x \times w(s \rightarrow v_1). \]
Parallelization of Weakly Skew Circuits

Theorem: Let G be a branching program of size m and depth δ. There is an equivalent circuit of depth $2 \log \delta$, with $m^3 \log \delta$ binary multiplication gates and $m^2 \log \delta$ addition gates of unbounded fan-in.

Consequence: polynomial size weakly skew circuits \Rightarrow polynomial size circuits of depth $\log^2 n$ (with gates of fan-in 2).
Parallelization algorithm

Let M be the adjacency matrix of G, add the loop $M_{tt} = 1$. From undergraduate graphs algorithms:
output(G) = $(M^p)_{st}$ for any $p \geq \text{depth}(G) = \delta$.
⇒ Compute M^{2^i} for $i = 0, \ldots, \log \delta$.

Squaring circuit:
depth 2, m^3 multiplications, m^2 unbounded additions.
General circuits

Theorem [Valiant - Skyum - Berkowitz - Rackoff 1983]: Let C be a circuit of size s computing a polynomial $f(x_1, ..., x_n)$ of degree d. There is an equivalent circuit of size $O(d^6 s^3)$ and depth $O(\log(ds) \log d + \log n)$. All gates have fan-in 2.

Consequence: $\text{VP} \subseteq \text{VNC}^2$ (same as for weakly skew!)

Refinements:
- Multilinearity: Raz-Yehudayoff’08.
Theorem [Valiant - Skyum - Berkowitz - Rackoff 1983]: Let C be a circuit of size s computing a polynomial $f(x_1, \ldots, x_n)$ of degree d. There is an equivalent circuit of size $O(d^6s^3)$ and depth $O(\log(ds) \log d + \log n)$. All gates have fan-in 2.

Consequence: $\text{VP} \subseteq \text{VNC}^2$ (same as for weakly skew!)

Refinements:
- Multilinearity: Raz-Yehudayoff’08.
General circuits

Theorem[Valiant - Skyum - Berkowitz - Rackoff 1983]:
Let C be a circuit of size s computing a polynomial $f(x_1, \ldots, x_n)$ of degree d.
There is an equivalent circuit of size $O(d^6s^3)$ and depth $O(\log(ds)\log d + \log n)$. All gates have fan-in 2.

Consequence: $\text{VP} \subseteq \text{VNC}^2$ (same as for weakly skew!)

Refinements:
- Multilinearity: Raz-Yehudayoff’08.
VP ⊆ VNC³

The formal degree:
- Multiplication gate: \(\text{deg}(f \times g) = \text{deg}(f) + \text{deg}(g) \).
- Addition gate: \(\text{deg}(f + g) = \max(\text{deg}(f), \text{deg}(g)) \).

Remark:
Formal degree can replace actual degree in definition of VP.

Theorem:
Let \(C \) be a circuit of size \(t \) and formal degree \(d \).
There is an equivalent circuit \(C' \) of depth \(O(\log t \cdot \log d) \) and size \(O(t^3 \log t \cdot \log d) \).
Multiplications gates in \(C \) and \(C' \) are assumed to be binary.

Remark: if all gates are binary, depth is of order \(\log^3 \).
VP \subseteq VNC3

The formal degree:
- Multiplication gate: $\deg(f \times g) = \deg(f) + \deg(g)$.
- Addition gate: $\deg(f + g) = \max(\deg(f), \deg(g))$.

Remark:
Formal degree can replace actual degree in definition of VP.

Theorem:
Let C be a circuit of size t and formal degree d.
There is an equivalent circuit C' of depth $O(\log t \cdot \log d)$
and size $O(t^3 \log t \cdot \log d)$.
Multiplications gates in C and C' are assumed to be binary.

Remark: if all gates are binary, depth is of order \log^3.
Proof of $VP \subseteq VNC^3$

Let C_i be the “slice” \{g : gate of C; $\deg(g) \in [2^i, 2^{i+1}]$\}.

1. C_i is a (multi-output) circuit with inputs from the C_j ($j < i$).
2. C_i is skew: if $\deg(g_1), \deg(g_2) \geq 2^i$ then $\deg(g_1 \times g_2) \geq 2^{i+1}$.

Replace each C_i ($i = 0, \ldots, \log d$) by a circuit of depth $2 \log t$ and size $O(t^3 \log t)$.
Theorem [Agrawal-Vinay’08]:
Let $P(x_1, \ldots, x_m)$ be a polynomial of degree $d = O(m)$. If there exists an arithmetic circuit of size $2^{o(d + d \log \frac{m}{d})}$ for P, then there exists a depth 4 arithmetic circuit of size $2^{o(d + d \log \frac{m}{d})}$.

Corollary:
A multilinear polynomial in m variables with an arithmetic circuit of size $2^{o(m)}$ also has a depth 4 arithmetic circuit of size $2^{o(m)}$.

This suggests to first prove lower bounds for depth 4 circuits.

Warning: For the $n \times n$ permanent, $m = n^2$ and $d = n$. We already know (Ryser’63) that the permanent has depth 3 formulas of size $O(n2^n)$!
Reduction to depth 4 (ΣΠΣΠ formulas)

Theorem[Agrawal-Vinay’08]:
Let $P(x_1, \ldots, x_m)$ be a polynomial of degree $d = O(m)$. If there exists an arithmetic circuit of size $2^{o(d + d \log \frac{m}{d})}$ for P, then there exists a depth 4 arithmetic circuit of size $2^{o(d + d \log \frac{m}{d})}$.

Corollary:
A multilinear polynomial in m variables with an arithmetic circuit of size $2^{o(m)}$ also has a depth 4 arithmetic circuit of size $2^{o(m)}$.

This suggests to first prove lower bounds for depth 4 circuits.

Warning: For the $n \times n$ permanent, $m = n^2$ and $d = n$.
We already know (Ryser’63) that the permanent has depth 3 formulas of size $O(n2^n)$!
Theorem:
Let C be an arithmetic circuit of size t and formal degree d. There is an equivalent depth 4 circuit of size $t^{O(\sqrt{d} \log d)}$.

Corollary:
If the permanent family (per_n) is in VP, then it has depth 4 circuits of size $n^{O(\sqrt{n} \log n)}$.

Reduction to depth 4 for polynomial size circuits
From branching programs to depth 4 circuits

Theorem:
Let \(G \) be an arithmetic branching program of size \(m \) and depth \(\delta \). There is an equivalent depth 4 circuit with \(m^2 + 1 \) addition gates and \(m^{O(\sqrt{\delta})} \) multiplication gates.

Proof: recall \(\text{output}(G) = (M^p)_{st} \) for any \(p \geq \delta \).

1. Write \(M^\delta = (M^{\sqrt{\delta}})^{\sqrt{\delta}} \).
2. Write entries of \(N = M^{\sqrt{\delta}} \) as sums of \(m^{\sqrt{\delta}-1} \) monomials (\(\Rightarrow \) multiplication gates are of arity \(\sqrt{\delta} \)).
3. Repeat step 2 with matrix \(M \) replaced by \(N \).
Theorem:
Let G be an arithmetic branching program of size m and depth δ. There is an equivalent depth 4 circuit with $m^2 + 1$ addition gates and $m^{O(\sqrt{\delta})}$ multiplication gates.

Proof: recall output(G) = (M^p)$_{st}$ for any $p \geq \delta$.

1. Write $M^\delta = (M^{\sqrt{\delta}})^{\sqrt{\delta}}$.
2. Write entries of $N = M^{\sqrt{\delta}}$ as sums of $m^{\sqrt{\delta}-1}$ monomials (\Rightarrow multiplication gates are of arity $\sqrt{\delta}$).
3. Repeat step 2 with matrix M replaced by N.

From branching programs to depth 4 circuits
From general circuits to depth 4 circuits

Start from circuit C of size t and formal degree d, with binary multiplication gates.

1. There is an equivalent branching program G of size $m = t^{\log 2d} + 1$ and depth $\delta = 3d - 1$

2. Convert G into a depth 4 circuit of size $m^{O(\sqrt{\delta})}$.

Proof of step 1:
$C \rightarrow$ weakly skew circuit of size $t^{\log 2d}$ (Malod)
\rightarrow branching program of size $1 + t^{\log 2d}$;
some additional work for the depth bound.
From general circuits to depth 4 circuits

Start from circuit C of size t and formal degree d, with binary multiplication gates.

1. There is an equivalent branching program G of size $m = t^\log 2^d + 1$ and depth $\delta = 3d - 1$
2. Convert G into a depth 4 circuit of size $m^{O(\sqrt{\delta})}$.

Proof of step 1:
$C \rightarrow$ weakly skew circuit of size $t^\log 2^d$ (Malod)
\rightarrow branching program of size $1 + t^\log 2^d$;
some additional work for the depth bound.
The τ-Conjecture [Shub-Smale’95]

$\tau(f) =$ size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$. No constants are allowed.

Conjecture: f has at most $\tau(f)^c$ integer zeros (for a constant c).

Theorem [Shub-Smale’95]: τ-conjecture \Rightarrow P$_C \neq$ NP$_C$.

Theorem [Bürgisser’07]:
τ-conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent.

Remarks:
- What if constants are allowed?
- We must have $c \geq 2$.
- Conjecture becomes false for real roots: Chebyshev’s polynomials, see also Borodin-Cook’76.
The τ-Conjecture [Shub-Smale’95]

$\tau(f) = \text{size of smallest arithmetic circuit for } f \in \mathbb{Z}[X]$. No constants are allowed.

Conjecture: f has at most $\tau(f)^c$ integer zeros (for a constant c).

Theorem [Shub-Smale’95]: τ-conjecture $\Rightarrow P_C \neq NP_C$.

Theorem [Bürgisser’07]:

τ-conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent.

Remarks:

- What if constants are allowed?
- We must have $c \geq 2$.
- Conjecture becomes false for real roots: Chebyshev’s polynomials, see also Borodin-Cook’76.
The τ-Conjecture [Shub-Smale’95]

$\tau(f) =$ size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$. No constants are allowed.

Conjecture: f has at most $\tau(f)^c$ integer zeros (for a constant c).

Theorem [Shub-Smale’95]: τ-conjecture $\Rightarrow P_C \neq NP_C$.

Theorem [Bürgisser’07]:

τ-conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent.

Remarks:

- What if constants are allowed?
- We must have $c \geq 2$.
- Conjecture becomes false for real roots: Chebyshev’s polynomials, see also Borodin-Cook’76.
The τ-Conjecture [Shub-Smale’95]

$\tau(f) =$ size of smallest arithmetic circuit for $f \in \mathbb{Z}[X]$. No constants are allowed.

Conjecture: f has at most $\tau(f)^c$ integer zeros (for a constant c).

Theorem [Shub-Smale’95]: τ-conjecture \Rightarrow $P_C \neq NP_C$.

Theorem [Bürgisser’07]:

τ-conjecture \Rightarrow no polynomial-size arithmetic circuits for the permanent.

Remarks:

- What if constants are allowed?
- We must have $c \geq 2$.
- Conjecture becomes false for real roots: Chebyshev’s polynomials, see also Borodin-Cook’76.
Chebyshev polynomials

Let T_n be the Chebyshev polynomial of order n:

$$\cos(n\theta) = T_n(\cos \theta).$$

For instance $T_1(x) = x$, $T_2(x) = 2x^2 - 1$.

T_n is a degree n polynomial with n real zeros on $[-1, 1]$.

$T_{2^n}(x) = T_2(T_2(\cdots T_2(T_2(x)) \cdots))$: n-th iterate of T_2.

As a result $\tau(T_{2^n}) = O(n)$.

Plots of T_2 and T_4:
The Real τ-Conjecture

Conjecture: Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$, where the f_{ij} are t-sparse. If f is nonzero, its number of real roots is polynomial in kmt.

Theorem: If the conjecture is true then the permanent is hard.

Remarks:

- It is enough to bound the number of integer roots. Could techniques from real analysis be helpful?
- Case $k = 1$ of the conjecture follows from Descartes’ rule.
- By expanding the products, f has at most $2kt^m - 1$ zeros (bounds from fewnomial theory are exponential in k, m, t).
- $k = 2$ is open. An even more basic question (courtesy of Arkadev Chattopadhyay): how many real solutions to $fg = 1$? Descartes’ bound is $O(t^2)$ but true bound could be $O(t)$.
The Real τ-Conjecture

Conjecture: Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$, where the f_{ij} are t-sparse.
If f is nonzero, its number of **real roots** is polynomial in kmt.

Theorem: If the conjecture is true then the permanent is hard.

Remarks:

- It is enough to bound the number of integer roots. Could techniques from real analysis be helpful?
- Case $k = 1$ of the conjecture follows from Descartes’ rule.
- By expanding the products, f has at most $2kt^m - 1$ zeros (bounds from fewnomial theory are exponential in k, m, t).
- $k = 2$ is open. An even more basic question (courtesy of Arkadev Chattopadhyay):
how many real solutions to $fg = 1$?
Descartes’ bound is $O(t^2)$ but true bound could be $O(t)$.
The Real τ-Conjecture

Conjecture: Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$, where the f_{ij} are t-sparse.
If f is nonzero, its number of **real roots** is polynomial in kmt.

Theorem: If the conjecture is true then the permanent is hard.

Remarks:

- It is enough to bound the number of integer roots. Could techniques from real analysis be helpful?
- Case $k = 1$ of the conjecture follows from Descartes’ rule.
- By expanding the products, f has at most $2kt^m - 1$ zeros (bounds from fewnomial theory are exponential in k, m, t).
- $k = 2$ is open. An even more basic question (courtesy of Arkadev Chattopadhyay):
 how many real solutions to $fg = 1$?
Descartes’ bound is $O(t^2)$ but true bound could be $O(t)$.
The Real τ-Conjecture

Conjecture: Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)$, where the f_{ij} are t-sparse. If f is nonzero, its number of real roots is polynomial in kmt.

Theorem: If the conjecture is true then the permanent is hard.

Remarks:

- It is enough to bound the number of integer roots. Could techniques from real analysis be helpful?
- Case $k = 1$ of the conjecture follows from Descartes’ rule.
- By expanding the products, f has at most $2kt^m - 1$ zeros (bounds from fewnomial theory are exponential in k, m, t).
- $k = 2$ is open. An even more basic question (courtesy of Arkadev Chattopadhyay): how many real solutions to $fg = 1$? Descartes’ bound is $O(t^2)$ but true bound could be $O(t)$.

The Real \(\tau\)-Conjecture

Conjecture: Consider \(f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}(X)\), where the \(f_{ij}\) are \(t\)-sparse.
If \(f\) is nonzero, its number of **real roots** is polynomial in \(kmt\).

Theorem: If the conjecture is true then the permanent is hard.

Remarks:

- It is enough to bound the number of integer roots. Could techniques from real analysis be helpful?
- Case \(k = 1\) of the conjecture follows from Descartes’ rule.
- By expanding the products, \(f\) has at most \(2kt^m - 1\) zeros (bounds from fewnomial theory are exponential in \(k, m, t\)).
- \(k = 2\) is open. An even more basic question (courtesy of Arkadev Chattopadhyay):
 how many real solutions to \(fg = 1\)?
 Descartes’ bound is \(O(t^2)\) but true bound could be \(O(t)\).
Theorem:
If f has t monomials then f at most $t - 1$ positive real roots.

Proof: Induction on t. No positive root for $t = 1$. For $t > 1$: let $a_\alpha X^\alpha = \text{lowest degree monomial}$. We can assume $\alpha = 0$ (divide by X^α if not). Then:

(i) f' has $t - 1$ monomials $\Rightarrow \leq t - 2$ positive real roots.
(ii) There is a positive root of f' between 2 consecutive positive roots of f (Rolle's theorem).
Descartes’s rule without signs

Theorem:
If \(f \) has \(t \) monomials then \(f \) at most \(t - 1 \) positive real roots.

Proof: Induction on \(t \). No positive root for \(t = 1 \).
For \(t > 1 \): let \(a_\alpha X^\alpha \) = lowest degree monomial.
We can assume \(\alpha = 0 \) (divide by \(X^\alpha \) if not). Then:

(i) \(f' \) has \(t - 1 \) monomials \(\Rightarrow \leq t - 2 \) positive real roots.
(ii) There is a positive root of \(f' \) between 2 consecutive positive roots of \(f \) (Rolle’s theorem).
Real τ-Conjecture \Rightarrow Permanent is hard

The 2 main ingredients:

- The Pochhammer-Wilkinson polynomials:
 \[PW_n(X) = \prod_{i=1}^{n}(X - i). \]

 Theorem [Bürgisser’07-09]: If the permanent is easy, PW_n has circuits size $(\log n)^{O(1)}$.

- Reduction to depth 4 for arithmetic circuits (Agrawal and Vinay, 2008).
The second ingredient: reduction to depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial in n variables with an arithmetic circuit of size $2^{o(n)}$ also has a depth four ($\Sigma\Pi\Sigma\Pi$) circuit of size $2^{o(n)}$.

Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the form X^{2^i}, or constants

(Shallow circuit with high-powered inputs)

\leftrightarrow

Sum of Products of Sparse Polynomials
How the proof does not go

Assume by contradiction that the permanent is easy.

Goal:
Show that SPS polynomials of size $2^{o(n)}$ can compute $\prod_{i=1}^{2^n}(X - i)$
⇒ contradiction with real τ-conjecture.

1. From assumption: $\prod_{i=1}^{2^n}(X - i)$ has circuits of polynomial in n (Bürgisser).
2. Reduction to depth 4 ⇒ SPS polynomials of size $2^{o(n)}$.

What’s wrong with this argument:
How the proof does not go

Assume by contradiction that the permanent is easy.

Goal:
Show that SPS polynomials of size $2^{o(n)}$ can compute $\prod_{i=1}^{2^n}(X - i)$ \Rightarrow contradiction with real τ-conjecture.

1. From assumption: $\prod_{i=1}^{2^n}(X - i)$ has circuits of polynomial in n (Bürgisser).
2. Reduction to depth 4 \Rightarrow SPS polynomials of size $2^{o(n)}$.

What's wrong with this argument:
No high-degree analogue of reduction to depth 4 (think of Chebyshev’s polynomials).
How the proof goes (more or less)

Assume that the permanent is easy.

Goal:
Show that SPS polynomials of size $2^{o(n)}$ can compute $\prod_{i=1}^{2n}(X - i)$ ⇒ contradiction with real τ-conjecture.

1. From assumption: $\prod_{i=1}^{2n}(X - i)$ has circuits of polynomial in n (Bürgisser).
2. Reduction to depth 4 ⇒ SPS polynomials of size $2^{o(n)}$.

For step 2: need to use again the assumption that perm is easy.
The limited power of powering (a tractable special case)

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^{\alpha_{ij}}(X)$, where the f_j are t-sparse.

Theorem [with Grenet, Portier and Strozecki]:
If f is nonzero, it has at most $t^{O(m \cdot 2^k)}$ real roots.

Remarks:

- For this model we also give a permanent lower bound and a polynomial identity testing algorithm ($f \equiv 0$?). See also [Agrawal-Saha-Saptharishi-Saxena, STOC’2012].
- Bounds from Khovanskii’s theory of fewnomials are exponential in k, m, t.

Today’s result:

Theorem [with Portier and Tavenas]:
If f is nonzero, it has at most $t^{O(m \cdot k^2)}$ real roots.

The main tool is...
The limited power of powering (a tractable special case)

What if the number of distinct f_{ij} is very small (even constant)?
Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^{\alpha_{ij}}(X)$, where the f_j are t-sparse.

Theorem [with Grenet, Portier and Strozecki]:
If f is nonzero, it has at most $t^{O(m.2^k)}$ real roots.

Remarks:
- For this model we also give a permanent lower bound and a polynomial identity testing algorithm ($f \equiv 0$?). See also [Agrawal-Saha-Saptharishi-Saxena, STOC’2012].
- Bounds from Khovanskii’s theory of fewnomials are exponential in k, m, t.

Today’s result:

Theorem [with Portier and Tavenas]:
If f is nonzero, it has at most $t^{O(m.k^2)}$ real roots.

The main tool is...
The limited power of powering (a tractable special case)

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^\alpha(X)$, where the f_j are t-sparse.

Theorem [with Grenet, Portier and Strozecki]:
If f is nonzero, it has at most $t^{O(m.2^k)}$ real roots.

Remarks:
- For this model we also give a permanent lower bound and a polynomial identity testing algorithm ($f \equiv 0$?). See also [Agrawal-Saha-Saptharishi-Saxena, STOC’2012].
- Bounds from Khovanskii’s theory of fewnomials are exponential in k, m, t.

Today’s result:
Theorem [with Portier and Tavenas]:
If f is nonzero, it has at most $t^{O(m.k^2)}$ real roots.

The main tool is...
The limited power of powering (a tractable special case)

What if the number of distinct f_{ij} is very small (even constant)? Consider $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f^\alpha_{ij}(X)$, where the f_j are t-sparse.

Theorem [with Grenet, Portier and Strozecki]:
If f is nonzero, it has at most $t^{O(m.2^k)}$ real roots.

Remarks:
- For this model we also give a permanent lower bound and a polynomial identity testing algorithm ($f \equiv 0$?). See also [Agrawal-Saha-Saptharishi-Saxena, STOC’2012].
- Bounds from Khovanskii’s theory of fewnomials are exponential in k, m, t.

Today’s result:
Theorem [with Portier and Tavenas]:
If f is nonzero, it has at most $t^{O(m.k^2)}$ real roots.

The main tool is...
The limited power of powering (a tractable special case)

What if the number of distinct \(f_{ij} \) is very small (even constant)?
Consider \(f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^\alpha(X) \),
where the \(f_j \) are \(t \)-sparse.

Theorem [with Grenet, Portier and Strozecki]:
If \(f \) is nonzero, it has at most \(t^{O(m.2^k)} \) real roots.

Remarks:

- For this model we also give a permanent lower bound and a polynomial identity testing algorithm (\(f \equiv 0 ? \)). See also [Agrawal-Saha-Saptharishi-Saxena, STOC’2012].
- Bounds from Khovanskii’s theory of fewnomials are exponential in \(k, m, t \).

Today’s result:

Theorem [with Portier and Tavenas]:
If \(f \) is nonzero, it has at most \(t^{O(m.k^2)} \) real roots.
The main tool is...
The Wronskian

Definition: Let \(f_1, \ldots, f_k : I \to \mathbb{R} \). Their *Wronskian* is the determinant of the *Wronskian matrix*

\[
W(f_1, \ldots, f_k) = \det \begin{bmatrix}
f_1 & f_2 & \cdots & f_k \\
f'_1 & f'_2 & \cdots & f'_k \\
\vdots & \vdots & \ddots & \vdots \\
f_1^{(k-1)} & f_2^{(k-1)} & \cdots & f_k^{(k-1)}
\end{bmatrix}
\]

- Linear dependence \(\Rightarrow W(f_1, \ldots, f_k) \equiv 0 \).
- Converse is not always true (Peano, 1889):
 Let \(f_1(x) = x^2, f_2(x) = x|x| \). Then

\[
W(f_1, f_2) = \det \begin{bmatrix} x^2 & \text{sign}(x)x^2 \\
2x & 2\text{sign}(x)x \end{bmatrix} \equiv 0.
\]
- Converse *is* true for analytic functions (Bôcher, 1900).
The Wronskian and Real Roots

Upper Bound Theorem: Assume that the k wronskians

\[W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k) \]

have no zeros on I.

Let \(f = a_1 f_1 + \cdots + a_k f_k \) where \(a_i \neq 0 \) for some \(i \).

Then \(f \) has at most \(k - 1 \) zeros on I, counted with multiplicities.

Remark:
Connections between real roots and the Wronskian were known.

Typical application:
Divide \mathbb{R} into intervals where the k wronskians have no zeros.

Case \(k = 2 \):

1. If \(a_2 = 0 \), \(f = a_1 f_1 \) has no zero on I.

2. If \(a_2 \neq 0 \), write \(f = f_1 g \) where \(g = a_1 + a_2 f_2 / f_1 \).

\[g' = a_2 (f_2' f_1 - f_2 f_1') / f_1^2 = a_2 W(f_1, f_2) / f_1^2 \]

has no zero \(\Rightarrow \) by Rolle's theorem, \(g \) has at most 1 zero, and \(f \) too.
The Wronskian and Real Roots

Upper Bound Theorem: Assume that the \(k \) wronskians

\[W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k) \]

have no zeros on \(I \).
Let \(f = a_1 f_1 + \cdots + a_k f_k \) where \(a_i \neq 0 \) for some \(i \).
Then \(f \) has at most \(k - 1 \) zeros on \(I \), counted with multiplicities.

Remark:
Connections between real roots and the Wronskian were known.

Typical application:
Divide \(\mathbb{R} \) into intervals where the \(k \) wronskians have no zeros.

Case \(k = 2 \):
1. If \(a_2 = 0 \), \(f = a_1 f_1 \) has no zero on \(I \).
2. If \(a_2 \neq 0 \), write \(f = f_1 g \) where \(g = a_1 + a_2 f_2 / f_1 \).
 \[g' = a_2 (f_2' f_1 - f_2 f_1') / f_1^2 = a_2 W(f_1, f_2) / f_1^2 \]
 has no zero \(\Rightarrow \)
 by Rolle’s theorem, \(g \) has at most 1 zero, and \(f \) too.
The Wronskian and Real Roots

Upper Bound Theorem: Assume that the k wronskians

\[W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k) \]

have no zeros on I.

Let $f = a_1 f_1 + \cdots + a_k f_k$ where $a_i \neq 0$ for some i.

Then f has at most $k - 1$ zeros on I, counted with multiplicities.

Remark:
Connections between real roots and the Wronskian were known.

Typical application:
Divide \mathbb{R} into intervals where the k wronskians have no zeros.

Case $k = 2$:

1. If $a_2 = 0$, $f = a_1 f_1$ has no zero on I.

2. If $a_2 \neq 0$, write $f = f_1 g$ where $g = a_1 + a_2 f_2 / f_1$.

\[g' = a_2 (f_2' f_1 - f_2 f_1') / f_1^2 = a_2 W(f_1, f_2) / f_1^2 \]

has no zero \Rightarrow by Rolle's theorem, g has at most 1 zero, and f too.
The Wronskian and Real Roots

Upper Bound Theorem: Assume that the k wronskians

$$W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k)$$

have no zeros on I.

Let $f = a_1f_1 + \cdots + a_kf_k$ where $a_i \neq 0$ for some i.

Then f has at most $k - 1$ zeros on I, counted with multiplicities.

Remark:

Connections between real roots and the Wronksian were known.

Typical application:

Divide \mathbb{R} into intervals where the k wronskians have no zeros.

Case $k = 2$:

1. If $a_2 = 0$, $f = a_1f_1$ has no zero on I.

2. If $a_2 \neq 0$, write $f = f_1g$ where $g = a_1 + a_2f_2/f_1$.

\[g' = a_2\left(f_2'f_1 - f_2f_1'
ight)/f_1^2 = a_2W(f_1, f_2)/f_1^2\]

has no zero \Rightarrow

by Rolle's theorem, g has at most 1 zero, and f too.
The Wronskian and Real Roots

Upper Bound Theorem: Assume that the \(k\) wronskians

\[
W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k)
\]

have no zeros on \(I\).

Let \(f = a_1 f_1 + \cdots + a_k f_k\) where \(a_i \neq 0\) for some \(i\).

Then \(f\) has at most \(k - 1\) zeros on \(I\), counted with multiplicities.

Remark:
Connections between real roots and the Wronskian were known.

Typical application:
Divide \(\mathbb{R}\) into intervals where the \(k\) wronskians have no zeros.

Case \(k = 2\):

1. If \(a_2 = 0\), \(f = a_1 f_1\) has no zero on \(I\).

2. If \(a_2 \neq 0\), write \(f = f_1 g\) where \(g = a_1 + a_2 f_2 / f_1\).
 \[
g' = a_2 (f_2' f_1 - f_2 f_1') / f_1^2 = a_2 W(f_1, f_2) / f_1^2
 \]
 has no zero \(\Rightarrow\) by Rolle’s theorem, \(g\) has at most 1 zero, and \(f\) too.
Theorem [Bôcher]: If \(f_1, \ldots, f_k : I \to \mathbb{R} \) are analytic and \(W(f_1, \ldots, f_k) \equiv 0 \), these functions are linearly dependent.

Proof: By induction on \(k \). Pick \(J \subseteq I \) where \(f_1 \neq 0 \). On \(J \):

\[
\begin{align*}
a_1 f_1 + \cdots + a_k f_k &\equiv 0 \\
\iff a_1 + a_2 \frac{f_2}{f_1} + \cdots + a_k \frac{f_k}{f_1} &\equiv 0 \\
\iff a_2 \left(f_2/f_1 \right)' + \cdots + a_k \left(f_k/f_1 \right)' &\equiv 0. \quad (\ast)
\end{align*}
\]

(\ast) follows from induction hypothesis and the recursive formula:

\[
W(f_1, \ldots, f_k) = f_1^k W\left(f_2/f_1, \ldots, f_k/f_1 \right).
\]

To conclude: for analytic functions, if \(f = a_1 f_1 + \cdots + a_k f_k \equiv 0 \) on \(J \), then \(f \equiv 0 \) on \(I \).
Theorem [Bôcher]: If \(f_1, \ldots, f_k : I \to \mathbb{R} \) are analytic and \(W(f_1, \ldots, f_k) \equiv 0 \), these functions are linearly dependent.

Proof: By induction on \(k \). Pick \(J \subseteq I \) where \(f_1 \neq 0 \). On \(J \):

\[
a_1 f_1 + \cdots + a_k f_k \equiv 0
\]

\[
\Leftrightarrow a_1 + a_2 (f_2/f_1) + \cdots + a_k (f_k/f_1) \equiv 0
\]

\[
\Leftrightarrow a_2 (f_2/f_1)' + \cdots + a_k (f_k/f_1)' \equiv 0.
\]

\((*)\) follows from induction hypothesis and the recursive formula:

\[
W(f_1, \ldots, f_k) = f_1^k W((f_2/f_1)', \ldots, (f_k/f_1)').
\]

To conclude: for analytic functions,
if \(f = a_1 f_1 + \cdots + a_k f_k \equiv 0 \) on \(J \), then \(f \equiv 0 \) on \(I \).
Theorem [Bôcher]: If \(f_1, \ldots, f_k : I \to \mathbb{R} \) are analytic and \(W(f_1, \ldots, f_k) \equiv 0 \), these functions are linearly dependent.

Proof: By induction on \(k \). Pick \(J \subseteq I \) where \(f_1 \neq 0 \). On \(J \):

\[
\begin{align*}
 a_1 f_1 + \cdots + a_k f_k & \equiv 0 \\
 \iff a_1 + a_2 \left(\frac{f_2}{f_1} \right) + \cdots + a_k \left(\frac{f_k}{f_1} \right) & \equiv 0 \\
 \iff a_2 \left(\frac{f_2}{f_1} \right)' + \cdots + a_k \left(\frac{f_k}{f_1} \right)' & \equiv 0. \quad (*)
\end{align*}
\]

(\(* \)) follows from induction hypothesis and the recursive formula:

\[
W(f_1, \ldots, f_k) = f_1^k W((f_2/f_1)', \ldots, (f_k/f_1)')
\]

To conclude: for analytic functions, if \(f = a_1 f_1 + \cdots + a_k f_k \equiv 0 \) on \(J \), then \(f \equiv 0 \) on \(I \).
Theorem [Bôcher]: If $f_1, \ldots, f_k : I \to \mathbb{R}$ are analytic and $W(f_1, \ldots, f_k) \equiv 0$, these functions are linearly dependent.

Proof: By induction on k. Pick $J \subseteq I$ where $f_1 \neq 0$. On J:

$$a_1 f_1 + \cdots + a_k f_k \equiv 0$$
\iff
$$a_1 + a_2 (f_2/f_1) + \cdots + a_k (f_k/f_1) \equiv 0$$
\iff
$$a_2 (f_2/f_1)' + \cdots + a_k (f_k/f_1)' \equiv 0.$$

(*) follows from induction hypothesis and the recursive formula:

$$W(f_1, \ldots, f_k) = f_1^k W((f_2/f_1)', \ldots, (f_k/f_1)').$$

To conclude: for analytic functions,

if $f = a_1 f_1 + \cdots + a_k f_k \equiv 0$ on J, then $f \equiv 0$ on I.

Theorem [Bôcher]: If \(f_1, \ldots, f_k : I \to \mathbb{R} \) are analytic and \(W(f_1, \ldots, f_k) \equiv 0 \), these functions are linearly dependent.

Proof: By induction on \(k \). Pick \(J \subseteq I \) where \(f_1 \neq 0 \). On \(J \):

\[
\begin{align*}
a_1 f_1 + \cdots + a_k f_k &\equiv 0 \\
\Leftrightarrow a_1 + a_2 \left(\frac{f_2}{f_1} \right) + \cdots + a_k \left(\frac{f_k}{f_1} \right) &\equiv 0 \\
\Leftrightarrow a_2 \left(\frac{f_2}{f_1} \right)' + \cdots + a_k \left(\frac{f_k}{f_1} \right)' &\equiv 0. \quad (\ast)
\end{align*}
\]

(\ast) follows from induction hypothesis and the recursive formula:

\[
W(f_1, \ldots, f_k) = f_1^k W\left(\left(\frac{f_2}{f_1} \right)', \ldots, \left(\frac{f_k}{f_1} \right)' \right).
\]

To conclude: for analytic functions, if \(f = a_1 f_1 + \cdots + a_k f_k \equiv 0 \) on \(J \), then \(f \equiv 0 \) on \(I \).
Theorem [Bôcher]: If \(f_1, \ldots, f_k : I \to \mathbb{R} \) are analytic and \(W(f_1, \ldots, f_k) \equiv 0 \), these functions are linearly dependent.

Proof: By induction on \(k \). Pick \(J \subseteq I \) where \(f_1 \neq 0 \). On \(J \):

\[
a_1 f_1 + \cdots + a_k f_k \equiv 0
\]
\[
\iff a_1 + a_2 \left(\frac{f_2}{f_1} \right) + \cdots + a_k \left(\frac{f_k}{f_1} \right) \equiv 0
\]
\[
\iff a_2 \left(\frac{f_2}{f_1} \right)' + \cdots + a_k \left(\frac{f_k}{f_1} \right)' \equiv 0. \quad (*)
\]

\((*)\) follows from induction hypothesis and the recursive formula:

\[
W(f_1, \ldots, f_k) = f_1^k W\left(\frac{f_2}{f_1}', \ldots, \frac{f_k}{f_1}'\right).
\]

To conclude: for analytic functions, if \(f = a_1 f_1 + \cdots + a_k f_k \equiv 0 \) on \(J \), then \(f \equiv 0 \) on \(I \).
Linear Dependence for Analytic Functions (1/3)

Theorem [Bôcher]: If \(f_1, \ldots, f_k : I \to \mathbb{R} \) are analytic and \(W(f_1, \ldots, f_k) \equiv 0 \), these functions are linearly dependent.

Proof: By induction on \(k \). Pick \(J \subseteq I \) where \(f_1 \neq 0 \). On \(J \):

\[
 a_1 f_1 + \cdots + a_k f_k \equiv 0
\]

\[
 \iff a_1 + a_2 \left(\frac{f_2}{f_1} \right) + \cdots + a_k \left(\frac{f_k}{f_1} \right) \equiv 0
\]

\[
 \iff a_2 \left(\frac{f_2}{f_1} \right)' + \cdots + a_k \left(\frac{f_k}{f_1} \right)' \equiv 0. \quad (*)
\]

\((*)\) follows from induction hypothesis and the recursive formula:

\[
 W(f_1, \ldots, f_k) = f_1^k W\left(\left(\frac{f_2}{f_1} \right)', \ldots, \left(\frac{f_k}{f_1} \right)' \right).
\]

To conclude: for analytic functions, if \(f = a_1 f_1 + \cdots + a_k f_k \equiv 0 \) on \(J \), then \(f \equiv 0 \) on \(I \).
Lemma: \(W(f_1g, f_2g, \ldots, f_kg) = g^kW(f_1, f_2, \ldots, f_k). \)

For instance:

\[
W(f_1g, f_2g, f_3g) = \begin{vmatrix} f_1 & f_2 & f_3 \\ (f_1g)' & (f_2g)' & (f_3g)'' \\ (f_1g)'' & (f_2g)'' & (f_3g)'' \end{vmatrix}
\]

\[
= g \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1'g + f_1g' & f_2'g + f_2g' & f_3'g + f_3g' \\ f_1''g + 2f_1'g' + f_1g'' & f_2''g + 2f_2'g' + f_2g'' & f_3''g + 2f_3'g' + f_3g'' \end{vmatrix}
\]

\[
= g \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1'g & f_2'g & f_3'g \\ f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g' \end{vmatrix}
\]

\[
= g^2 \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1' & f_2' & f_3' \\ f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g' \end{vmatrix} = g^3W(f_1, f_2, f_3).
\]
Lemma: $W(f_1g, f_2g, \ldots, f_kg) = g^kW(f_1, f_2, \ldots, f_k)$.

For instance:

$$W(f_1g, f_2g, f_3g) = \begin{vmatrix} f_1g & f_2g & f_3g \\ (f_1g)' & (f_2g)' & (f_3g)'' \\ (f_1g)'' & (f_2g)'' & (f_3g)'' \end{vmatrix}$$

$$= g \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1'g + f_1g' & f_2'g + f_2g' & f_3'g + f_3g' \\ f_1''g + 2f_1'g' + f_1g'' & f_2''g + 2f_2'g' + f_2g'' & f_3''g + 2f_3'g' + f_3g'' \end{vmatrix}$$

$$= g \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1'g & f_2'g & f_3'g \\ f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g' \end{vmatrix}$$

$$= g^2 \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1' & f_2' & f_3' \\ f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g' \end{vmatrix} = g^3W(f_1, f_2, f_3).$$
Linear Dependence for Analytic Functions (2/3)

Lemma: \(W(f_1g, f_2g, \ldots, f_kg) = g^kW(f_1, f_2, \ldots, f_k). \)

For instance:

\[
W(f_1g, f_2g, f_3g) = \begin{vmatrix}
 f_1 & f_2 & f_3 \\
 (f_1g)' & (f_2g)' & (f_3g)'' \\
 (f_1g)'' & (f_2g)'' & (f_3g)''
\end{vmatrix}
\]

\[
= g \begin{vmatrix}
 f_1 & f_2 & f_3 \\
 f_1'g + f_1g' & f_2'g + f_2g' & f_3'g + f_3g' \\
 f_1''g + 2f_1'g' + f_1g'' & f_2''g + 2f_2'g' + f_2g'' & f_3''g + 2f_3'g' + f_3g''
\end{vmatrix}
\]

\[
= g \begin{vmatrix}
 f_1 & f_2 & f_3 \\
 f_1'g & f_2'g & f_3'g \\
 f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g'
\end{vmatrix}
\]

\[
= g^2 \begin{vmatrix}
 f_1 & f_2 & f_3 \\
 f_1' & f_2' & f_3' \\
 f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g'
\end{vmatrix}
\]

\[
= g^3W(f_1, f_2, f_3).
\]
Lemma: $W(f_1g, f_2g, \ldots, f_kg) = g^k W(f_1, f_2, \ldots, f_k)$.

For instance:

$$W(f_1g, f_2g, f_3g) = \begin{vmatrix} f_1g & f_2g & f_3g \\ (f_1g)' & (f_2g)' & (f_3g)'' \\ (f_1g)'' & (f_2g)'' & (f_3g)'' \end{vmatrix}$$

$$= g \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1'g + f_1g' & f_2'g + f_2g' & f_3'g + f_3g' \\ f_1''g + 2f_1'g' + f_1g'' & f_2''g + 2f_2'g' + f_2g'' & f_3''g + 2f_3'g' + f_3g'' \end{vmatrix}$$

$$= g^2 \begin{vmatrix} f_1 & f_2 & f_3 \\ f_1' & f_2' & f_3' \\ f_1''g + 2f_1'g' & f_2''g + 2f_2'g' & f_3''g + 2f_3'g' \end{vmatrix} = g^3 W(f_1, f_2, f_3).$$
Proposition [Hesse - Christoffel - Frobenius]:
\[W(f_1, \ldots, f_k) = f_1^k W((f_2/f_1)', \ldots, (f_k/f_1)') \].

From previous lemma:
\[W(f_1, f_2, f_3) = f_1^3 W(1, f_2/f_1, f_3/f_1) = f_1^3 \begin{vmatrix} 1 & f_2/f_1 & f_3/f_1 \\ 0 & (f_2/f_1)' & (f_3/f_1)' \\ 0 & (f_2/f_1)'' & (f_3/f_1)'' \end{vmatrix} \]

Hence
\[W(f_1, f_2, f_3) = f_1^3 \begin{vmatrix} (f_2/f_1)' & (f_3/f_1)' \\ (f_2/f_1)'' & (f_3/f_1)'' \end{vmatrix} = f_1^3 W((f_2/f_1)', (f_3/f_1)'). \]
Proposition [Hesse - Christoffel - Frobenius]:
\[W(f_1, \ldots, f_k) = f_1^k W\left(\frac{f_2}{f_1}, \ldots, \frac{f_k}{f_1}\right) \].

From previous lemma:

\[
W(f_1, f_2, f_3) = f_1^3 W(1, \frac{f_2}{f_1}, \frac{f_3}{f_1}) = f_1^3 \begin{vmatrix}
1 & f_2/f_1 & f_3/f_1 \\
0 & (f_2/f_1)' & (f_3/f_1)' \\
0 & (f_2/f_1)'' & (f_3/f_1)''
\end{vmatrix}
\]

Hence

\[
W(f_1, f_2, f_3) = f_1^3 \begin{vmatrix}
(f_2/f_1)' & (f_3/f_1)' \\
(f_2/f_1)'' & (f_3/f_1)''
\end{vmatrix} = f_1^3 W\left(\frac{f_2}{f_1}', \frac{f_3}{f_1}'\right).
\]
Linear Dependence for Analytic Functions (3/3):
The Recursive Formula for the Wronskian

Proposition [Hesse - Christoffel - Frobenius]:
\[W(f_1, \ldots, f_k) = f_1^k W(((f_2/f_1)', \ldots, (f_k/f_1)'). \]

From previous lemma:

\[W(f_1, f_2, f_3) = f_1^3 W(1, f_2/f_1, f_3/f_1) = f_1^3 \begin{vmatrix} 1 & f_2/f_1 & f_3/f_1 \\ 0 & (f_2/f_1)' & (f_3/f_1)' \\ 0 & (f_2/f_1)'' & (f_3/f_1)'' \end{vmatrix} \]

Hence

\[W(f_1, f_2, f_3) = f_1^3 \begin{vmatrix} (f_2/f_1)' & (f_3/f_1)' \\ (f_2/f_1)'' & (f_3/f_1)'' \end{vmatrix} = f_1^3 W(((f_2/f_1)', (f_3/f_1)')). \]
Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians

$$W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k)$$

have no zeros on I.

Let $f = a_1 f_1 + \cdots + a_k f_k$ where $a_i \neq 0$ for some i.

Then f has at most $k - 1$ zeros on I, counted with multiplicities.

Proof: By induction on k.

Assume $k \geq 2$ and a_2, \ldots, a_k not all 0.

Write $f = f_1 g$ where $g = a_1 + a_2 f_2/f_1 + \cdots + a_k f_k/f_1$.

To apply induction hypothesis to $g' = a_2 (f_2/f_1)' + \cdots + a_k (f_k/f_1)'$:

Note

$$W((f_2/f_1)', \ldots, (f_i/f_1)') = W(f_1, \ldots, f_i)/f_1^i$$

has no zero on I.

Hence g' has at most $k - 2$ zeros on I.

g and f at most $k - 1$ by Rolle’s theorem.
Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians

$$W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k)$$

have no zeros on I.

Let $f = a_1 f_1 + \cdots + a_k f_k$ where $a_i \neq 0$ for some i.

Then f has at most $k - 1$ zeros on I, counted with multiplicities.

Proof: By induction on k.

Assume $k \geq 2$ and a_2, \ldots, a_k not all 0.

Write $f = f_1 g$ where $g = a_1 + a_2 f_2 / f_1 + \cdots + a_k f_k / f_1$.

To apply induction hypothesis to $g' = a_2 (f_2 / f_1)' + \cdots + a_k (f_k / f_1)'$:

Note

$$W((f_2 / f_1)', \ldots, (f_i / f_1)') = W(f_1, \ldots, f_i) / f_1^i$$

has no zero on I.

Hence g' has at most $k - 2$ zeros on I,

g and f at most $k - 1$ by Rolle’s theorem.
Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians

$$W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k)$$

have no zeros on I.

Let $f = a_1 f_1 + \cdots + a_k f_k$ where $a_i \neq 0$ for some i.

Then f has at most $k - 1$ zeros on I, counted with multiplicities.

Proof: By induction on k.

Assume $k \geq 2$ and a_2, \ldots, a_k not all 0.

Write $f = f_1 g$ where $g = a_1 + a_2 f_2 / f_1 + \cdots + a_k f_k / f_1$.

To apply induction hypothesis to $g' = a_2 (f_2 / f_1)' + \cdots + a_k (f_k / f_1)'$:

Note

$$W((f_2 / f_1)', \ldots, (f_i / f_1)') = W(f_1, \ldots, f_i) / f_1^i$$

has no zero on I.

Hence g' has at most $k - 2$ zeros on I,

g and f at most $k - 1$ by Rolle’s theorem.
Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians

$$W(f_1), W(f_1, f_2), W(f_1, f_2, f_3), \ldots, W(f_1, \ldots, f_k)$$

have no zeros on I.

Let $f = a_1 f_1 + \cdots + a_k f_k$ where $a_i \neq 0$ for some i.

Then f has at most $k - 1$ zeros on I, counted with multiplicities.

Proof: By induction on k.

Assume $k \geq 2$ and a_2, \ldots, a_k not all 0.

Write $f = f_1 g$ where $g = a_1 + a_2 f_2 / f_1 + \cdots + a_k f_k / f_1$.

To apply induction hypothesis to $g' = a_2 (f_2 / f_1)' + \cdots + a_k (f_k / f_1)'$:

Note

$$W((f_2 / f_1)', \ldots, (f_i / f_1)') = W(f_1, \ldots, f_i) / f_1^i$$

has no zero on I.

Hence g' has at most $k - 2$ zeros on I,

g and f at most $k - 1$ by Rolle’s theorem.
Theorem (Avendano’09):
Let \(g = \sum_{j=1}^{k} a_j x^{\alpha_j} y^{\beta_j} \) and \(f(x) = f(x, ax + b) \). Assume \(f \neq 0 \).
If \(b/a > 0 \) then \(f \) has at most \(2k - 2 \) roots in each of the 3 intervals \(]-\infty, -b/a[,]-b/a, 0[,]0, +\infty[\).

Remark: This bound is provably false for rational exponents.

Set \(a = b = 1 \) and \(f_j(X) = X^{\alpha_j}(1 + X)^{\beta_j} \).
The entries of the wronskians are of the form:

\[
f_j^{(i)}(X) = \sum_{t=0}^{i} c_{ijt} X^{\alpha_j-t}(1 + X)^{\beta_j-i+t}.
\]

Factorizing common factors in rows and columns shows

\[
W(f_1, \ldots, f_k) = X^{\sum_j \alpha_j - \binom{k}{2}} (1 + X)^{\sum_j \beta_j - \binom{k}{2}} \det M
\]

where \(\det M \) has degree \(\leq \binom{k}{2} \).
Theorem (Avendano’09):
Let \(g = \sum_{j=1}^{k} a_j x^{\alpha_j} y^{\beta_j} \) and \(f(x) = f(x, ax + b) \). Assume \(f \not\equiv 0 \).
If \(b/a > 0 \) then \(f \) has at most \(2k - 2 \) roots in each of the 3 intervals \(] - \infty, -b/a[,] - b/a, 0[,]0, +\infty[\).
Remark: This bound is provably false for rational exponents.

Set \(a = b = 1 \) and \(f_j(X) = X^{\alpha_j}(1 + X)^{\beta_j} \).
The entries of the wronskians are of the form:

\[
 f_j^{(i)}(X) = \sum_{t=0}^{i} c_{ijt} X^{\alpha_j-t}(1 + X)^{\beta_j-i+t}.
\]

Factorizing common factors in rows and columns shows

\[
 W(f_1, \ldots, f_k) = X^{\sum_j \alpha_j - \binom{k}{2}}(1 + X)^{\sum_j \beta_j - \binom{k}{2}} \det M
\]
where \(\det M \) has degree \(\leq \binom{k}{2} \).
Conclusion:
\[f(x) = \sum_{j=1}^{k} a_j x^{\alpha_j} (1 + x)^{\beta_j} \text{ has } O(k^4) \text{ zeros in }]0, +\infty[. \]

Proof:
Assume \(W(f_1, \ldots, f_k) \neq 0 \) (otherwise, there is a linear dependence). We have \(k \) Wronskians, each with \(O(k^2) \) zeros in \(]0, +\infty[. \)
\(\Rightarrow \) \(O(k^3) \) intervals containing \(\leq k - 1 \) zeros each.

Remarks:
- This can be adapted to a number of different models.
- A better use of the Wronskian leads to \(O(k^3) \) upper bound.
Conclusion:
\[f(x) = \sum_{j=1}^{k} a_j x^{\alpha_j} (1 + x)^{\beta_j} \text{ has } O(k^4) \text{ zeros in }]0, +\infty[. \]

Proof:
Assume \(W(f_1, \ldots, f_k) \neq 0 \) (otherwise, there is a linear dependence). We have \(k \) Wronskians, each with \(O(k^2) \) zeros in \(]0, +\infty[. \)
\[\Rightarrow O(k^3) \text{ intervals containing } \leq k - 1 \text{ zeros each.} \]

Remarks:
- This can be adapted to a number of different models.
- A better use of the Wronskian leads to \(O(k^3) \) upper bound.
Conclusion:
\[f(x) = \sum_{j=1}^{k} a_j x^{\alpha_j} (1 + x)^{\beta_j} \text{ has } O(k^4) \text{ zeros in }]0, +\infty[. \]

Proof:
Assume \(W(f_1, \ldots, f_k) \neq 0 \) (otherwise, there is a linear dependence). We have \(k \) Wronskians, each with \(O(k^2) \) zeros in \(]0, +\infty[. \)
\[\Rightarrow O(k^3) \text{ intervals containing } \leq k - 1 \text{ zeros each.} \]

Remarks:
- This can be adapted to a number of different models.
- A better use of the Wronskian leads to \(O(k^3) \) upper bound.
To learn more about the Wronskian...

- G. Pólya and G. Szegö. Problems and theorems in analysis II. *(Includes connection to Descartes’ rule of signs, pointed out by Saugata Basu)*
M. Voorhoeve and A. J. van der Poorten.
Wronskian determinants and the zeros of certain functions.
(*Includes strong version of upper bound theorem;
Voorhoeve’s papers pointed out by Maurice Rojas*)

P; Koiran, N. Portier and S. Tavenas.
A Wronskian approach to the real τ-conjecture.
arxiv.org/abs/1205.1015
(*Preliminary version, check for updates!*)
§ 7. What is the Basis of Descartes' Rule of Signs?

We see from 36, 41, 77, 84, 85 that the sequences of functions

\[
\begin{align*}
1, & \quad x, \quad x^3, \quad \ldots, \\
1, & \quad x-\xi_1, (x-\xi_2)(x-\xi_3), \quad \ldots, \\
\epsilon^n x^n, & \quad \epsilon^n x^n, \quad \epsilon^n x^n, \quad \ldots, \\
1, & \quad \frac{1}{x}, \quad \frac{1}{x(x+1)}, \quad \frac{1}{x(x+1)(x+2)}, \quad \ldots, \\
F(a_0 x), & \quad F(a_0 x), \quad F(a_0 x), \quad \ldots
\end{align*}
\]

considered there have a common property: The number of zeros lying in a certain interval of their linear combinations with constant coefficients never exceeds the number of changes of sign of these coefficients. What is the basis for this frequent validity of Descartes' rule of signs?

Let the sequence of functions

\[h_1(x), h_2(x), \ldots, h_d(x)\]

obey Descartes' rule of signs in the open interval \(a < x < b\). More precisely: If \(a_1, a_2, \ldots, a_r\) denote any real numbers which are not all zero, then the number of zeros lying in \(a < x < b\) of the linear combination

\[a_1 h_1(x) + a_2 h_2(x) + \ldots + a_r h_r(x)\]

never exceeds the number of changes of sign of the sequence

\[a_1, a_2, \ldots, a_r\]

For this to hold, the following property of the sequence \(h_1(x), h_2(x), \ldots, h_d(x)\) is a necessary condition: If \(v_1, v_2, \ldots, v_r\) denote integers with \(1 \leq v_1 < v_2 < \ldots < v_r \leq n\), then the Wronskian determinants [VII, 82]

\[W[h_n(x), h_{n-1}(x), \ldots, h_r(x)]\]

do not vanish in the interval \((a, b)\) and further any two Wronskian determinants with the same number \(l\) of rows have the same sign, where \(l = 1, 2, 3, \ldots, n-1\).

[Look at multiple zeros!]

88 (continued). In particular for the validity of Descartes' rule of signs it is necessary that in the interval \(a < x < b\) the quotients

\[
\frac{h_2(x)}{h_1(x)}, \quad \frac{h_3(x)}{h_2(x)}, \quad \ldots, \quad \frac{h_d(x)}{h_{d-1}(x)}
\]

are all positive and are either all monotonically decreasing or all monotonically increasing.

89 (continued). Let \(1 \leq s \leq n\). If \(h_1(x), h_2(x), \ldots, h_s(x)\) satisfy the determinantal conditions stated in 87, then so do the \(n-1\) functions

\[
\begin{align*}
H_1 &= -\frac{d}{dx} h_1, & H_2 &= -\frac{d}{dx} h_2, \ldots, & H_{s-1} &= -\frac{d}{dx} h_{s-1} \\
H_s &= \frac{d}{dx} h_s, & H_{s+1} &= \frac{d}{dx} h_{s+1}, & H_{n-1} &= \frac{d}{dx} h_{n-1}
\end{align*}
\]

[VII 88.]
Appendix: lower bound for restricted depth 4 circuits

Consider representations of the permanent of the form:

\[\text{per}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^{\alpha}(X) \]

(1)

where

- \(X \) is a \(n \times n \) matrix of indeterminates.
- \(k \) and \(m \) are bounded, and the \(\alpha_{ij} \) are of polynomial bit size.
- The \(f_j \) are polynomials in \(n^2 \) variables, with at most \(t \) monomials.

Theorem [with Grenet, Portier and Strozecki]:
No such representation if \(t \) is polynomially bounded in \(n \).

Remark: The point is that the \(\alpha_{ij} \) may be nonconstant. Otherwise, the number of monomials in (1) is polynomial in \(t \).
Lower Bound Proof

- Assume otherwise:

\[
\text{per}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^x(X). \quad (2)
\]

- Since per is easy, \(P_n = \prod_{i=1}^{2^n} (x - i)\) is easy too. In fact [Bürgisser], \(P_n(x) = \text{per}(X)\) where \(X\) is of size \(n^{O(1)}\), with entries that are constants or powers of \(x\).

- By (2) and upper bound theorem, \(P_n\) should have only \(n^{O(1)}\) real roots. But \(P_n\) has \(2^n\) integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the \(f_j\)).
Lower Bound Proof

- Assume otherwise:

\[\text{per}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^{\alpha_{ij}}(X). \] (2)

- Since \(\text{per} \) is easy, \(P_n = \prod_{i=1}^{2^n} (x - i) \) is easy too. In fact [Bürgisser], \(P_n(x) = \text{per}(X) \) where \(X \) is of size \(n^{O(1)} \), with entries that are constants or powers of \(x \).

- By (2) and upper bound theorem, \(P_n \) should have only \(n^{O(1)} \) real roots.

But \(P_n \) has \(2^n \) integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the \(f_j \)).
Lower Bound Proof

- Assume otherwise:

\[
\text{per}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^{\alpha_{ij}}(X).
\]

- Since \text{per} is easy, \(P_n = \prod_{i=1}^{2^n} (x - i) \) is easy too.

 In fact [Bürgisser], \(P_n(x) = \text{per}(X) \) where \(X \) is of size \(n^{O(1)} \), with entries that are constants or powers of \(x \).

- By (2) and upper bound theorem, \(P_n \) should have only \(n^{O(1)} \) real roots.

 But \(P_n \) has \(2^n \) integer roots!

Remark:

The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the \(f_j \)).
Lower Bound Proof

Assume otherwise:

\[\text{per}(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{ij}^\alpha(X). \]

Since \text{per} is easy, \(P_n = \prod_{i=1}^{2^n} (x - i) \) is easy too. In fact [Bürgisser], \(P_n(x) = \text{per}(X) \) where \(X \) is of size \(n^{O(1)} \), with entries that are constants or powers of \(x \).

By (2) and upper bound theorem, \(P_n \) should have only \(n^{O(1)} \) real roots.

But \(P_n \) has \(2^n \) integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis (to handle arbitrary complex coefficients in the \(f_j \)).