
Complexity of Factorization
in Products of Linear Forms

Pascal Koiran, LIP, ENS Lyon

October 2018

In a recent preprint [7] we have proposed three algorithms for the fac-
torization of multivariate polynomials into products of linear forms. Our
algorithms work in the black box model, where the algorithm has access to
the polynomial f to be factored only through a “black box” which on input
(x1, . . . , xn) outputs f(x1, . . . , xn). The problem of polynomial factoriza-
tion in the black box model was solved in full generality by Kaltofen and
Trager [2]. Our main goal in [7] was to give simpler algorithms for the special
case of factorization into products of linear forms. In this internship several
directions for improving our algorithms will be explored. In particular, our
first algorithm seems to be the only factorization algorithm based on ideas
from invariant theory.1 This should be a fruitful direction to pursue since it
is as of now unexplored in the context of factorization algorithms, except of
course for [7]. We propose below three possible research directions.

1. Improved running time: following ideas from [6], our invariant-
theoretic algorithm first determines the Lie algebra of the input poly-
nomial f . This boils down to the resolution of a linear system [5, 6],
but this step is nonetheless expensive since the system to be solved
has n2 unknowns. One could try to exploit the special structure of the
linear system to speed up its resolution.

2. Randomization: our three algorithms are randomized. As pointed out
in [7], this is unavoidable for polynomial time algorithms in the black
box model. Nonetheless, looking for a deterministic algorithm makes
sense in the model where the input polynomial is given by an arithmetic
circuit rather than a black box. This question even makes sense for
the black box model if we assume that the input can be factorized as a
product of linear forms (in this case, the algorithm must output such a
factorization but it does not have to decide whether such a factorization
is possible). In order to obtain a deterministic factorization algorithm,
one could try to derandomize the computation of the Lie algebra of

1A polynomial f is invariant under a linear transformation A if f(A.x) = f(x) for all x.

1



f . This would be of interest beyond polynomial factorization since the
computation of the Lie algebra has other applications [6]. Note also
that obtaining a deterministic algorithm for the general problem of
polynomial factorization is equivalent to the notorious open problem
of derandomizing polynomial identity testing (PIT) [8].

3. Large exponents: an arithmetic circuit of size s can compute a polyno-
mial of degree up to 2s. The factorization of such high-degree polyno-
mials raises new issues compared to the low degree case. For instance,
it is a remarkable fact that the factors of an arithmetic circuit of “low”
degree can all be computed by “small” arithmetic circuits [4, 3] (see
also Theorems 2.21 and 8.14 in [1]); but this is not known for the low-
degree factors of high-degree circuits ([1], Conjecture 8.3). In [7] we
studied factorization into products of linear forms for the low degree
case only. The case of high degrees (i.e., large exponents for the linear
forms) could be investigated in this internship.

Student’s background. The student should be interested in algorithms
and complexity, and have some prior exposure to these subjects. He or
she should be comfortable working with polynomials. Note however that
knowledge of advanced topics in algebra (and in particular Lie algebras) is
not a prerequisite since the required notions are presented in an elementary
and self-contained way in [6, 7].

In this internship the student will have the opportunity to design and
analyze new algorithms; and will get exposure to current research topics such
as derandomization of algorithms or invariant-theoretic methods in algebraic
complexity [5, 6, 7].

References

[1] P. Bürgisser. Completeness and Reduction in Algebraic Complexity
Theory. Number 7 in Algorithms and Computation in Mathematics.
Springer, 2000.

[2] E. Kaltofen and B. Trager. Computing with polynomials given by black
boxes for their evaluations: Greatest common divisors, factorization, sep-
aration of numerators and denominators. Journal of Symbolic Computa-
tion, 9(3):301–320, 1990.

[3] Erich Kaltofen. Single-factor Hensel lifting and its application to the
straight-line complexity of certain polynomials. In Proc. 19th ACM Sym-
posium on Theory of Computing (STOC), pages 443–452, 1986.

[4] Erich Kaltofen. Factorization of polynomials given by straight-line pro-
grams. In Randomness and Computation, pages 375–412. JAI Press,
1989.

2



[5] Neeraj Kayal. Efficient algorithms for some special cases of the poly-
nomial equivalence problem. In Symposium on Discrete Algorithms
(SODA). Society for Industrial and Applied Mathematics, January 2011.

[6] Neeraj Kayal. Affine projections of polynomials. In Proceedings of the
44th Annual ACM Symposium on Theory of Computing (STOC), pages
643–662, 2012.

[7] P. Koiran and N. Ressayre. Orbits of monomials and factorization into
products of linear forms. arXiv:1807.03663, 2018.

[8] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of
polynomial identity testing and deterministic multivariate polynomial
factorization. In Proc. 29th Conference on Computational Complexity
(CCC), pages 169–180, 2014.

3

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Poly20Equiv.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Poly20Equiv.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Projection.pdf
https://arxiv.org/pdf/1807.03663.pdf
https://www.cs.tau.ac.il/~shpilka/publications/KoppartySarafShpilka14.pdf
https://www.cs.tau.ac.il/~shpilka/publications/KoppartySarafShpilka14.pdf
https://www.cs.tau.ac.il/~shpilka/publications/KoppartySarafShpilka14.pdf

