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Abstract

This is the �nal report of an internship in algebraic complexity. First, we give

an introduction to algebraic complexity and we give some motivations for the study

of the main model. Then we present two di�erent tools we studied during this

internship and use them to establish some lower bounds on this model. We �nally

discuss whether those bounds could be improved or not.
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1 Algebraic complexity: an introduction

In algebraic complexity, the objects that are studied are no longer words over �nite al-
phabet but polynomials over a �eld F. However, the question remains the same: is a
polynomial f hard to compute ? More precisely, we need to de�ne a model of compu-
tation for polynomials and associated complexity measures. Arithmetic circuits are the
most natural and standard model to compute polynomials. In this model, the inputs
are variables x1, . . . , xn, and the computation is performed using arithmetic operations
+,×, and may involve constants from the underlying �eld F. The output of an arith-
metic circuit is thus a polynomial (or a set of polynomial) in the input variable. The
complexity measures associated are size and depth of the circuit which capture the num-
ber of operations and the maximal distance between an input gate and an output gate,
respectively.

x1 x2 x3 x4

+

×

×

+

Figure 1: An arithmetic circuit computing (x1 +x2)x3 +x2x3x4, of depth 3 and of size 4.

There are two main kinds of problems in arithmetic complexity: �nd upper bounds
and lower bounds on the complexity of a family of polynomials. Upper bounds usually
consists of an explicit construction with controlled complexity whereas lower bounds
are usually more complex to establish, involve advanced and new tools, and are often
related to other interesting problems. Proving such bounds would allow to separate some
complexity classes, in the same manner as in boolean complexity.

1.1 Valiant complexity classes

Arithmetic classes were �rst de�ne in work of Valiant [Val79], in which he gave analogous
de�nition for the classes P and NP in the algebraic world, and showed a complete problem
for the later class. We now give some de�nitions to show the motivations of the problem we
studied, more material about basic arithmetic complexity can be found in [BCS97, Bü00].

De�nition 1 (VP). A family of polynomials {fn} over F is p-bounded if there exists
some polynomial p : N → N such that the number of variables and the degree of fn are
bounded by p(n), and there is an arithmetic circuit of size at most t(n) computing fn.
The class VPF consists of all p-bounded families over F.

The polynomial fn = x2n , for example, is not in VP, even though it has O(n) size
circuits, as its degree is not polynomial. This restriction on the degree make in fact VP
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more analogous to NC2 than to P. Indeed, a depth reduction theorem proved in [VSBR83]
states that any polynomial size algebraic circuit computing a polynomial of degree d can
be turned into an algebraic circuit of polynomial size and depth O(log d log n) (in fact we
even have stronger depth reduction theorem, as we will see in next subsection). If the
degree d if polynomially bounded, we end up with circuits of depth O(log2 n), giving the
analogy with NC2.
A natural family in VP is the family of determinants:

DETn(X) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σ(i)

An easy way to see that DET ∈ VP is to compute it using Gauss pivot algorithm, which
yields n3 depth circuits, and then to get rid of the division gates using method described
by Strassen [Str73].

De�nition 2 (VNP). A family of polynomials {fn} over F is p-de�nable if there exists
a family {gn} in VPF and two polynomially bounded functions p, k : N→ N such that for
every n ∈ N:

fn(x1, . . . , xk(n)) =
∑

w∈{0,1}p(n)

gp(n)

(
x1, . . . , xk(n), w1 . . . , wp(n)

)
The class VNPF consists of all p-de�nable families over F.

The link between VNP and NP is harder to catch: the variables (w1, . . . , wp(n)) can
be seen as the �witness� and the summation is the algebraic equivalent of the existential
quanti�er for NP problems (in fact VNP is more analogous to #P than to NP).
A natural family in VNP is the family of permanents:

PERMn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

By de�nition of VP and VNP, it directly follows that VP ⊆ VNP. As an analogue to
the P vs NP question, Valiant's conjectured that the inequality is strict:

Conjecture 3. VP 6= VNP

Arithmetic circuits have a lot of structure, so one could hope Valiant's conjecture to
be easier than it's classical counterpart. In order to prove it, Valiant also de�ned a notion
of completeness to capture the hardness of some polynomials in a same class. First, he
de�ned a notion of reduction for two families of polynomials:

De�nition 4. The family {fn} is a p-projection of {gn} if there exists a polynomially
bounded p : N → N such that for all n, fn can be derived from gp(n) by a substitution of
the variables by other variables or constants in F.

As one would expect, both VP and VNP are closed under p-projections. Moreover,
Valiant showed in [Val79] PERM is complete for VNP, ie any family in VNP is a p-
projection of the permanent. In particular, this implies that conjecture 3 is equivalent
to prove an super-polynomial lower bound on the size of the circuits computing the
permanent.
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1.2 Restricted arithmetic circuit classes and depth reduction

General circuits are still too complicated to handle, very few lower bounds are known
for them. Instead, people consider restricted circuit classes by adding constraint on the
circuits computing the family of polynomials. We focus on depth restriction:

De�nition 5 (Bounded-depth circuits). A family of circuits {Ci} is of bounded depth if
there exists a constant d ∈ N such that for any n, Cn has depth at most d.

In particular, we will consider the case of depth-4 circuits, also known as ΣΠΣΠ
circuits. A ΣΠΣΠ circuit is a depth-4 circuit with an addition gate at the top (output)
then a layer of multiplication gates, then a layer of additive gates, then multiplication
gates at bottom, i.e. it computes a polynomial of the form:

k∑
i=1

m∏
j=1

t∑
l=1

∏
p∈Si,j,l

xp

where xp is either an input variable or a constant in F.
We usually denote fi,j(x1, . . . , xn) =

∑t
l=1

∏
p∈Si,j,l

xp and thus ΣΠΣΠ circuits compute

polynomials of the form
k∑
i=1

m∏
j=1

fi,j(x1, . . . , xn), where the fi,j's are t-sparse multivariate

polynomials.

Remark 6. The choice of ΣΠΣΠ rather than ΠΣΠΣ isn't arbitrary: when we consider
depth-d circuits, it's usually more interesting to consider circuits with an additive output
gate. Indeed, if a polynomial f is computed by a circuit of depth d with a multiplicative
output gate, we can always consider sub-circuits of depth d − 1 which computes some
factor of f . In the case of the additive output gate, it's more di�cult to do the same
because of possible cancellation: the sub-circuits of depths d−1 may compute polynomials
of degree > d and the �nal addition may cancel the term of too high degrees.

The importance of ΣΠΣΠ circuit comes from two main reasons. First, exponential
lower bounds for DET and PERM for depth-3 circuits have already been proved in [GK98].
Second, Agrawal and Vinay [AV08] and subsequent strengthenings of Koiran [Koi12] and
Tavenas [Tav13] showed that depth-4 circuits are as interesting as general circuits:

Theorem 7 ([AV08] [Koi12] [Tav13] Depth-reduction). Let f be an n-variate polynomial
computed by a circuit of size s and of degree d. Then f is computed by a ΣΠ[O(α)]ΣΠ[β]

circuit C of size 2
O
(√

d log(ds) logn
)
where α =

√
d logn

log ds
and β =

√
d log ds

logn
.

In the particular case where s, d = nO(1), f is computed by a ΣΠ[O(
√
d)]ΣΠ[c·

√
d] circuit

C of size nO(
√
d).

This depth-reduction theorem implies that lower bounds for the depth-4 arithmetic
circuit model will give lower bounds for general arithmetic circuits. Recent results of
[GKKS13, KSS13, FLMS13] gave lower bound that comes very close to the required
threshold for di�erent polynomial. For instance, Gupta, Kamath, Kayal and Saptharishi
[GKKS13] showed the following lower bound for DET and PERM:

Theorem 8 ([GKKS13]). Any ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit computing DETn or PERMn has

top fanin 2Ω(
√
n).
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1.3 The univariate case: the real τ -conjecture

Univariate polynomials are just a special case of multivariate polynomials, but Koiran
showed in [Koi10] that results on univariate polynomials would yield strong lower bounds
for the multivariate case. The main advantage of the univariate approach is that uni-
variate polynomials are well-known objects, and one could hope to use some real analysis
tools. Multivariate and univariate circuits are connected by a simple transformation: re-
place inputs x1, . . . , xn of a general arithmetic circuits by some power of X, eg xi = X2i .
Starting from ΣΠΣΠ circuits, the transformation results in sum of products of sparse poly-
nomials (SPS) of the form:

∑k
i=1

∏m
j=1 fi,j(X) with fi,j t-sparse. Theorem 6 of [Koi10]

shows that under the assumption that PERM ∈ VP, polynomials with �reasonable� coef-
�cients can be e�ciently represented by sum of product of sparse polynomials.

Example 9. The family of polynomials gn(X) =
∏2n

i=1(x − i), called the Pochhammer-
Wilkinson polynomials of order 2n, have �reasonable� coe�cients. Hence, if PERM ∈ VP,
we could write gn as

∑k
i=1

∏m
j=1 fi,j(x), with k = 2O(

√
n log2 n),m = O(

√
n), and where the

fi,j's are t-sparse polynomials, with t = 2O(
√
n logn).

The ultimate goal being to prove PERM 6∈ VP, it would su�ce to exhibit an univariate
polynomial that doesn't admit e�cient any SPS representation. The di�cult part is to
prove this later statement for a given polynomial. In the case of the Pochhammer-
Wilkinson polynomials, one can remark that they have a lot of integer roots, it would
hence su�ce to prove that SPS polynomials have a relatively small number of integer
roots. This leads to the real τ -conjecture, �rst de�ned in [Koi10]:

Conjecture 10. Consider a nonzero polynomial of the form:

k∑
i=1

m∏
j=1

fi,j(X)

where each fi,j has at most t monomials. The number of real roots of f is bounded by a
polynomial function of kmt.

This conjecture directly implies that PERM 6∈ VP, using Example 9. Indeed, SPS with
parameters k = 2

√
n,m =

√
n, t ≤ 2

√
n would only have 2o(n) roots, whereas Pocchammer-

Wilkinson polynomial of order 2n has exactly 2n roots. Notice that even a bound poly-
nomial in kt2m is enough to have the contradiction.

A �rst naive bound follows from Descartes' rule of signs:

Descartes' Rule of Signs. Given a polynomial f(X) =
∑d

i=0 aiX
i, with ai ∈ R, the

number of positive roots of the polynomial is either equal to the number of sign di�erences
between consecutive nonzero coe�cients, or is less than it by an even number.

Corollary 11. Given a t-sparse polynomial f , the number of real roots of f is bounded
by 2t− 1.

This corollary directly implies that the number of real roots of a sum of product of
t-sparse polynomial is bounded by 2ktm−1, since it has at most ktm di�erent monomials.
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No better bound is known so far but some results have been found in [GKPS11, KPT12]
for a similar model: sums of products of powers of sparse polynomials. During the intern-
ship, we studied another variant of this model: sums of powers of (sparse) polynomials.
This isn't really a restriction since we can transform the product by a sum of power using
the following formula [Fis94]:

x1 · . . . · xd =
1

d!

∑
ε∈{−1,1}d−1

(x1 + ε1x2 + . . .+ εd−1xd)
d

Example 12. We saw that if PERM ∈ VP, then the Pochhammer-Wilkinson polynomial
of order 2n could be written as

∑k
i=1

∏m
j=1 fi,j(x), with k = 2O(

√
n log2 n),m = O(

√
n), and

where the fi,j's are t-sparse polynomials, with t = 2O(
√
n logn). Now, using formula above,

the Pochhammer-Wilkinson polynomial of order 2n could be written as
∑k

i=1(hi(x))O(
√
n),

with k = 2O(
√
n log2 n) and hi's some t-sparse polynomials, with t = 2O(

√
n logn).

We could formulate another real τ -conjecture for sums of powers of polynomial: an
upper bound polynomial in kt2α, where α is the maximal exponent of the expression,
is enough to implies VP 6= VNP. In this internship, we investigate other ways than the
number of real roots to show that some univariate polynomials don't have any e�cient
representation as a sum of powers, using two main tools: the Wronskian and the shifted
derivatives space.

2 The model and the tools

The model is the univariate analog of the model investigated in [Kay12], so we consider
representation of the form:

f(x) = Q1(x)e1 + . . .+Qs(x)es

where the ei's are positive integer, and the Qi's are arbitrary univariate polynomials of
bounded degree. This model is an interesting one because it is quite a simple model but
a lot of problems still remain open. Better lower bounds for those problems may involve
new techniques which can be used for other open problems of algebraic complexity.

When the Qi's have degree t, any such representation of the random polynomial of
degree d must satisfy s ≥ d+1

t+1
. Indeed, as one Qi has t + 1 coe�cients, the model, for a

�xed s, has s · (t+ 1) degrees of freedom. On the other side, the polynomials of degree d
have d+ 1 degrees of freedom, so we know that there are some polynomials that requires
s to be greater that d+1

t+1
. However, we are looking for �explicit� polynomials.

The strongest result we proved for an explicit polynomial is the following bound:

Theorem 13. For any d, t ≥ 2 such that t < d
4
, the polynomial f(x) =

∑m
i=1(x − ai)d,

with distinct ai's and m =
⌊√

d
t

⌋
, is hard in the following sense: any representation of f

of the form f =
∑s

i=1 αiQ
ei
i , with each Qi of degree ≤ t, αi ∈ F, must satisfy s = Ω

(√
d
t

)
.
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Even in the case t = 2, it is still an open problem to �nd a better bound than Ω
(√

d
)
.

Nevertheless, we proved the linear bound in the case t = 1, but all the exponents must
be the same:

Theorem 14. For any d, the polynomial f(x) =
∑m

i=1(x − ai)d, with distinct ai's and
m =

⌊
d
2

⌋
, is optimally hard in the following sense: any representation of f of the form

f =
∑s

i=1 αil
d
i , with each li of degree 1, must satisfy s ≥

⌊
d
2

⌋
.

In the next section, we will prove several lower bounds using two di�erent tools, but
they will both use the same key ingredient, summarized in this observation:

Observation 15. Given a polynomial f of the form f(x) = Qe(x), with Q of degree t,
we can factorize f (k) by some powers of Q: for any i ≤ k, we have f (k) = Qe−iR, with
degR ≤ it− k.

This describes the strong structure of the model we work on and we will use it to
show that some polynomials can't be written e�ciently with such a nice structure. We
now de�ne and describe the two tools we used, the Wronskian and the shifted derivatives
space.

2.1 The Wronskian

In mathematics, theWronskian is a tool mainly used in the study of di�erential equations,
where it can be used to show that a set of solutions is linearly independent.

De�nition 16 (Wronskian). For n real functions f1, . . . , fn, which are n − 1 times dif-
ferentiable, the Wronskian W (f1, . . . , fn) is de�ned by

W (f1, . . . , fn) (x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) . . . fn(x)
f ′1(x) f ′2(x) . . . f ′n(x)
...

...
. . .

...

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
We will use the following formulas about the Wronskian whose proofs can be found

in [PS76] (and which are known since the 19th century). For any f1, . . . , fk, g which are
k − 1 times di�erentiable, we have W (gf1, . . . , gfk) = gk W (f1, . . . , fk). As a corollary,
we have the following formula:

W (f1, . . . , fk) = (f1)k W

((
f2

f1

)′
, . . . ,

(
fk
f1

)′)
(1)

The basic property of the Wronskian about linear independence is that for any linearly
dependent functions f1, . . . , fn, the Wronskian W (f1, . . . , fn) vanishes everywhere. The
converse is false in general, Peano then Bôcher found counterexamples (see [EP] for a his-
tory of these results). However, several conditions su�cient to ensure that the vanishing
of the Wronskian everywhere implies linear dependence were found. For instance, Bôcher
proved [Bô00] that if the fi's are analytic, then the converse holds. We will adapt the
proof of this result to make it work with functions in C(X) (the �eld of complex rational
functions), and in particular with polynomials in C[X].
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Proposition 17. For f1, . . . , fn ∈ C(X), the functions are linearly dependent if and only
if the Wronskian W (f1, . . . , fn) vanishes everywhere.

Proof. The proof goes on by induction on n. The basic case n = 1 is trivial.
Suppose that f1, . . . , fn ∈ C(X) has a null Wronskian. Then, using Formula 1, if we

denote gi =
(
fi
f1

)′
, the Wronskian W (g2, . . . , gn) is also null (in fact, it's null except on a

�nite number of complex values, but since the Wronskian is also a rational function, this
implies its nullity everywhere). By induction hypothesis, the gi's are linearly dependent,
i.e. there exists a2, . . . , an such that:

a2g2 + . . . angn = 0

By integrating this equality, since gi =
(
fi
f1

)′
, there exists a1 such that:

a1 + a2
f2

f1

+ . . .+ an
fn
f1

= 0

But then by multiplying by f1, we obtain:

a1f1 + a2f2 + . . .+ anfn = 0

Thus the family (fi) is linearly dependent.

Example 18. Using proposition above, we can show that, for any distinct ai's in C, the
family S = {(x−a1)d, . . . , (x−ad+1)d} is a basis of Cd[X], the vector space of polynomials
of degree less or equal than d. Since dimCd[X] = d+ 1 = |S|, we only have to show that
S is linearly independent. Consider the Wronskian of the polynomials in |S|:

Wr(x) = W
(
(x− a1)d, . . . , (x− ad+1)d

)
=

∣∣∣∣∣∣∣∣∣
(x− a1)d . . . (x− ad+1)d

d(x− a1)d−1 . . . d(x− ad+1)d−1

...
. . .

...
d! . . . d!

∣∣∣∣∣∣∣∣∣
It's enough to show that the Wronskian is not the null polynomial. In fact, we will show
that it's a (non-zero) constant polynomial. For any z ∈ C, de�ne bi = z − ai and we
have:

Wr(z) =

∣∣∣∣∣∣∣∣∣
bd1 . . . bdd+1

d · bd−1
1 . . . d · bd−1

d+1
...

. . .
...

d! . . . d!

∣∣∣∣∣∣∣∣∣ = c ·

∣∣∣∣∣∣∣∣∣
bd1 . . . bdd+1

bd−1
1 . . . bd−1

d+1
...

. . .
...

1 . . . 1

∣∣∣∣∣∣∣∣∣
for some non-zero c ∈ N∗ which only depends on d.
The last matrix is a Vandermonde matrix, so its determinant is equal to the product∏

i 6=j(bi − bj) =
∏

i 6=j(aj − ai), which is a non-zero constant, since all ai's are distinct.
The determinant is hence non-zero and so we have Wr(z) 6= 0 for any z ∈ C, thus the
family S is linearly independent.
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This tool was used �rst to establish a bound in [KPT12] for sums of products of powers
of sparse polynomials. They used some results from [VP75] which give a link between
polynomials of the form F =

∑m
i=1Qi and the Wronskian W (Q1, . . . , Qm) concerning

their number of roots. This gives them a non-trivial upper bound on the number of roots
of a sum of products of powers of sparse polynomials.

In our case, in order to prove lower bounds, we will use another result from [VP75]
which gives a bound on the multiplicity of a root depending on the Wronskian:

Lemma 19. Let Q1, . . . , Qm be some linearly independent polynomial and z0 ∈ C, and
let F (z) =

∑m
i=1Qi(z). Then:

Nz0 (F ) ≤ m− 1 + Nz0 (W (Q1, . . . , Qm))

where Nz0 (W (Q1, . . . , Qm)) is �nite since W (Q1, . . . , Qm) 6≡ 0.

Proof. By multilinearity of the determinant, we have: W (Q1, . . . , Qm) = W (Q1, . . . , Qm−1, F ).
Hence:

W (Q1, . . . , Qm−1, F ) =
m−1∑
i=0

BiF
(i)

where the Bi's are some co-factor of the Wronskian matrix. Then:

Nz0 (W (Q1, . . . , Qm)) = Nz0

(
m−1∑
i=0

BiF
(i)

)
≥ Nz0 (F )− (m− 1)

proving the lemma.

Remark 20. The assumption about the independence of the Qi's is not that restrictive
in the following sense. If the Qi's are dependent, take a subset of them which form a
basis: {Qi1 , . . . Qin}. By rewriting the other Qi's in this basis, we obtain something of the
following form: F (z) =

∑n
j=1 ajQij(z), with aj ∈ R. We then extract a subfamily of the

basis by keeping only the Qij 's with aj 6= 0: {Qk1 , . . . Qkp}. The polynomial F can now be
written as F (z) =

∑p
j=1 bjQkj(z), with bj ∈ R∗. Now, we can use the lemma with those

linearly independent polynomial to obtain:

Nz0 (F ) ≤ p− 1 + Nz0

(
W
(
b1Qk1 , . . . , bpQkp

))
We factorize the Wronskian by the bi's to obtain:

Nz0 (F ) ≤ p− 1 + Nz0

(
W
(
Qk1 , . . . , Qkp

))
Thus the result holds even for linearly dependent Qi's, but we have to take the Wron-

skian of some particular subfamilies of the Qi's in this case.

This lemma allows us to �transform� the sum into a Wronskian. It's quite useful in
our model, since we have to deal with sums of powers of polynomial. Indeed, we can't
factorize a sum, but we can factorize the corresponding Wronskian, and this will give us
a lower bound for speci�c polynomials.
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2.2 The space of shifted derivatives

This tool is used in more �natural� proofs than the ones involving the Wronskian. �Nat-
ural� proof strategies follow the same plan (outlined in [KS]):

Step 1: (normal form) For every circuit in the circuit class C of interest, express the
polynomial computed as a small sum of simple building blocks.

Step 2: (complexity measure) Build a map Γ : F[X] → Z+ that is sub-additive, i.e.
Γ(f + g) ≤ Γ(f) + Γ(g).

Step 3: (potential usefulness) Show that if B is a simple building block, then Γ(B) is
small. Further, check if Γ(f) for a random polynomial f is large.

Step 4: (explicit lower bound) Find an explicit polynomial f for which Γ(f) is large.

These are usually the steps taken in most of the existing arithmetic circuit lower
bound proofs. The hard part is to build a useful complexity measure, which is small on
the building blocks but large for a random polynomial. In our case, our model consists
of sums of power of polynomial, hence a simple block is a power of a polynomial.

Our complexity measure is inspired by the one �rst de�ned in [Kay12]: the space
of shifted partial derivatives. Using this complexity measure, Kayal proved exponential
lower bounds on a similar multivariate model. The key intuition follows from Observation
15: derivatives of Qe of order ≤ k all share a large common factor, namely Qe−k. We try
to capture this property with the following complexity measure:

De�nition 21 (Shifted derivatives space). Let f(x) ∈ F[x] be a polynomial. The span
of the l-shifted k-th order derivatives of f, denoted by

〈
x≤i+l · f (i)

〉
i≤k, is de�ned as:〈

x≤i+l · f (i)
〉
i≤k

def
= F-span

{
xj · f (i)(x) : i ≤ k, j ≤ i+ l

}
〈
x≤i+l · f (i)

〉
i≤k forms an F-vector space and we denote by dim

〈
x≤i+l · f (i)

〉
i≤k the dimen-

sion of this space.

Remark 22. We have two trivial upper bounds on the dimension of the shifted deriva-
tives space. First, for any polynomial f of degree d, the degree of any polynomial in〈
x≤i+l · f (i)

〉
i≤k is less than d+l, hence dim

〈
x≤i+l · f (i)

〉
i≤k ≤ d+l+1. Second, the dimen-

sion is less or equal than the cardinality of a generating family, thus dim
〈
x≤i+l · f (i)

〉
i≤k ≤∑k

i=0(l + i+ 1). Thus, we have:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ min

(
d+ l + 1, (k + 1)l +

(
k + 2

2

))
We will see in the next section some polynomials that achieve those bounds and thus have
a full shifted derivative space.

Notice that since
〈
x≤i+l · (f + g)(i)

〉
i≤k ⊆

〈
x≤i+l · f (i)

〉
i≤k +

〈
x≤i+l · g(i)

〉
i≤k, the mea-

sure we de�ned is sub-additive. Now that we have de�ned the complexity measure, we
have to show that in our model, polynomials have a small complexity according to this
measure:

10



Proposition 23. For any polynomial f of degree d of the form f =
∑s

i=1 αiQ
ei
i , with

degQi ≤ t we have:
dim

〈
x≤i+l · f (i)

〉
i≤k ≤ s · (l + kt+ 1)

Proof. Since the measure is sub-additive, we only have to show that for a simple building
block f of the form Qei , with degQ ≤ t, we have dim

〈
x≤i+l · f (i)

〉
i≤k ≤ l + kt + 1. To

do so, we use observation 15: any g ∈
〈
x≤i+l · f (i)

〉
i≤k is of the form g = Qei−k · R, with

degR ≤ l+kt, since deg g ≤ ei · t+ l. This directly gives the bound on the dimension.

In the last part of the proof, in the next section, we will give an explicit lower bound
on the dimension of shifted derivatives space of some explicit polynomial.

3 Lower bounds for sums of powers of polynomials

In this section, we give proofs of several lower bounds on the model for the same type of
polynomials: f(x) =

∑m
i=1(x− ai)d, for distinct ai's and for some well chosen parameter

m. Of course, there is a trivial upper bound on the number s of summands needed
to express f as a sum of powers, since f is already in this form. Most of the result
proved next will show that this is the �optimal� representation for f : if we have another
representation of f as a sum of s powers, then m and s must have the same order.

The results di�ers in several ways: we will work with constant t or not, and we will
allow the exponents to be unbounded or not. This later restriction is an important one
since allowing unbounded exponents means there can be cancellations of terms of too high
degree. We know that cancellations can add power to a model in general, for instance
the most e�cient circuits computing the determinant family use them, and we still don't
know if it's the case with this model.

First, we will see the case t = 2 to provide some intuition on how the Wronskian
works to prove lower bounds. Then, we will try to adapt the proof for the general case
and it will give two lower bounds whether the exponents are unbounded or not. Next,
we will study the case t = 1, with the only linear lower bound we known, to see what
it's di�erent and may allow us to improve lower bounds for general case. Finally, we will
show the best bound we have found, using shifted derivatives.

3.1 Sums of powers of quadratic polynomials

As we will prove later, we have the optimal bound for t = 1 but already for t = 2, we

only have a lower bound in Ω
(√

d
)
. However, the proof for t = 1 only work with all

exponents equal to d, whereas this bound holds even for unbounded exponents.

Theorem 24. For any d, the polynomial f(x) =
∑m

i=1(x−ai)d with distinct ai's and m =⌊√
d

2

⌋
is hard in the following sense: any representation of f of the form f =

∑s
i=1 αiQ

ei
i ,

with each Qi's of degree ≤ 2, must satisfy s = Ω
(√

d
)
.

Proof. For contradiction, assume that f =
∑s

i=1 αiQ
ei
i with s < m

2
. Since we have

deg(Qi) ≤ 2, the Qi's have at most 2s roots, and thus the inequality s < m
2
implies

11



that one (x − ai) does not divide any Qj, without loss of generality (x − a1). We set
l = s+m− 1 and de�ne for i > s:

αi = −1

Qi(x) = (x− ai−s+1)

ei = d

so that: (x− a1)d =
∑l

i=1 αiQ
ei
i (x).

Now, using lemma 19, for a certain subfamily Q
ei1
i1
, . . . , Q

eip
ip

of the Qei
i 's, we obtain:

d = Na1

(
(x− a1)d

)
≤ p− 1 + Na1

(
W
(
Q
ei1
i1
, . . . , Q

eip
ip

))
(2)

We denote the Wronskian W
(
Q
ei1
i1
, . . . , Q

eip
ip

)
simply by Wr and, using Observation

(15), we factorize it by Q
eij−(p−1)

ij
for every j such that ej > p − 1. Since Na1 (Qi) = 0

holds for any i, we obtain:

Na1 (Wr) = Na1

∣∣∣∣∣∣∣
R1,1 . . . R1,p
...

. . .
...

Rp,1 · · · Rp,p

∣∣∣∣∣∣∣ with deg(Ri,j) ≤ 2(p− 1)− (i− 1)

When eij is smaller than p−1, the corresponding column is unchanged, and thus we even
have deg(Ri,j) ≤ ej−(i−1) ≤ p−1−(i−1). For indices i such that Qi(x) = (x−ai−k+1),
we also have this same tighter bound because in this case we have deg(Qi) = 1.
The determinant above has degree ≤ 2p(p−1)−

(
p
2

)
= 3

2
p(p−1). Inequality (2) becomes:

d ≤ 3p2

2
− p

2
− 1 hence d ≤ 3p2

2
≤ 3l2

2

Now, using the assumption that s < m
2
, we have l2 < 9

4
m2, and we �nally obtain the

contradiction:

d <
27

8
m2 implies m >

2
√

2

3
√

3

√
d >

√
d

2

3.2 The general case: unbounded exponents

When one tries to adapt directly the previous proof for the general case, it ends up with a
weaker lower bound which is still interesting because it still makes no assumption about
the value of the ei's:

Theorem 25. For any t ≥ 2, d, the polynomial f(x) =
∑m

i=1(x− ai)d, with distinct ai's

and m =
⌊

2
3

√
d
t

⌋
is hard in the following sense: any representation of f of the form

f =
∑s

i=1 αiQ
ei
i , with each Qi of degree ≤ t and αi ∈ R, must satisfy s = Ω

(
1
t

√
d
t

)
.

12



Proof. For the sake of contradiction, assume that f =
∑s

i=1 αiQ
ei
i with s < m

t
. Again,

without loss of generality, (x − a1) does not divide any Qi. We set l = s + m − 1 and
de�ne for i > s: 

αi = −1

Qi(x) = (x− ai−k+1)

ei = d

so that: (x− a1)d =
∑l

i=1 αiQ
ei
i (x).

Now, using lemma 19, for a certain subfamily S of size p of the Qei
i 's, we obtain:

d = Na1

(
(x− a1)d

)
≤ p− 1 + Na1 (W (S)) (3)

We now factorize it by Q
eij−(p−1)

ij
for every j such that ej > p− 1. Since Na1 (Qi) = 0

holds for any i, we obtain:

Na1 (Wr) = Na1

∣∣∣∣∣∣∣
R1,1 . . . R1,p
...

. . .
...

Rp,1 · · · Rp,p

∣∣∣∣∣∣∣ with deg(Ri,j) ≤ t(p− 1)− (i− 1)

The determinant above has degree ≤ tp(p− 1)−
(
p
2

)
= (t− 1/2)p(p− 1) The inequality

(3) becomes:

d ≤
(
t− 1

2

)
p2 −

(
t− 3

2

)
p− 1

We drop the negative terms to obtain: d ≤ tp2. Now, using the assumption that s < m
t
,

we have p2 ≤ l2 <
(
1 + 1

t

)2
m2, and we obtain:

d < t

(
1 +

1

t

)2

m2

We �nally obtain the contradiction, since t ≥ 2:

m >
1

1 + 1
t

√
d

t
≥ 2

3

√
d

t

This implies that:

s ≥ 1

t

⌊
2

3

√
d

t

⌋
= Ω

(
1

t

√
d

t

)

3.3 The general case: bounded exponents

In this section we will prove a stronger lower bound by weakening the hypothesis s < m
t
.

We reach the bound Ω
(√

d
t

)
but we need to have a bound on the ei's, which means we

don't allow cancellation.
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Theorem 26. For any t, d, the polynomial f(x) =
∑m

i=1(x − ai)
d, with distinct ai's

and m =
⌊√

2
3

√
d
t

⌋
, is hard in the following sense : any representation of f of the

form f =
∑s

i=1 αiQ
ei
i , with each Qi of degree ≤ t, ei ≤ d/t and αi ∈ C, must satisfy

s = Ω
(√

d
t

)
.

Proof. Fix a constant c ∈ R+ which will be later set to 1
2
. Assume for contradiction that

s < c ·m. We can't say any longer that one (x − ai) divides no Qi's, but since the Qi's
have at most st < c ·mt roots, a weaker statement still holds: if we denote by µi,j the
multiplicity of ai in Qj, and de�ne µi =

∑
j µi,j, there exists ai such that µi < ct, without

loss of generality a1. As before, we set l = s+m− 1 and de�ne for i > s:
αi = −1

Qi(x) = (x− ai−k+1)

ei = d

so that: (x− a1)d =
∑l

i=1 αiQ
ei
i (x).

Now, using lemma 19, for a certain subfamily S of size p of the Qei
i 's, we obtain:

d = Na1

(
(x− a1)d

)
≤ p− 1 + Na1 (W (S)) (4)

Now, when we factorize by Q
eij−(p−1)

ij
, we add µij ,1(eij − (p − 1)) to the multiplicity.

When we sum up, by hypothesis on a1, we obtain a new term which is smaller than
ct(d/t − (p − 1)). Thus we have the following bound on the multiplicity of a1 in the
Wronskian:

Na1 (Wr) ≤ ct

(
d

t
− (p− 1)

)
+ Na1

∣∣∣∣∣∣∣
R1,1 . . . R1,p
...

. . .
...

Rp,1 · · · Rp,p

∣∣∣∣∣∣∣
with deg(Ri,j) ≤ t(p− 1)− (i− 1).
The degree of this determinant is bounded by tp(p−1)−

(
p
2

)
= (t−1/2)p(p−1). Equation

(4) hence gives:

d ≤ p− 1 + ct

(
d

t
− (p− 1)

)
+

(
t− 1

2

)
p(p− 1)

(1− c) · d ≤
(
t− 1

2

)
p2 −

(
t− 3

2

)
p− ct(p− 1)− 1

We drop the negative terms to obtain:

(1− c) · d ≤ tp2

Using the fact that s < cm, we have p < (1 + c)m, which gives:

(1− c) · d < t(1 + c)2m2

m2 >
1− c

(1 + c)2
· d
t

14



Taking c = 1
2
, we �nally have the contradiction:

m2 >
2

9
· d
t

This implies that:

s ≥ 1

3
√

2

√
d

t
= Ω

(√
d

t

)

3.4 Linear bound for degree 1

In the case t = 1, we have an optimal linear lower bound for the same type of polynomial.
However, the exponents must all be equal to d to obtain the bound. We give here the
proof of theorem 14, restated here:

Theorem 14. For any d, the polynomial f(x) =
∑m

i=1(x − ai)d, with distinct ai's and
m =

⌊
d
2

⌋
, is optimally hard in the following sense: any representation of f of the form

f =
∑s

i=1 αil
d
i , with each li of degree 1, must satisfy s ≥

⌊
d
2

⌋
.

Proof. Assume for contradiction that there exists a representation of f of the form∑s
i=1 αil

d
i with s < m. As before, we set n = s+m and de�ne for i > s:{

αi = −1

li(x) = (x− ai−k+1)

so that
∑n

i=1 αil
d
i = 0.

Some li's could be the same, so we rewrite the sum as
∑p

j=1 βij l
d
ij

= 0, where all lij 's are
di�erent. Since s < m, there is at least one βij which is non-zero, and this means that the
family (ldij) is linearly dependent. However, since m ≤ d

2
, we have p ≤ n ≤ d, and using

Example 18, the family is hence linearly independent. This gives the contradiction.

3.5 The lower bound using shifted derivatives

In this section, we will prove theorem 13 using shifted derivatives. The proof will consist
in a lower bound on the dimension shifted derivatives space of the polynomials of the
form f(x) =

∑m
i=1(x − ai)d. To do so, we will show that f does not satisfy a particular

kind of di�erential equations, under some conditions.

De�nition 27. Shifted Di�erential Equations (SDE) are a particular kind of di�erential
equations of the form

k∑
i=0

Pi(x)f (i)(x) = 0

for some polynomials Pi ∈ C[X] with degPi ≤ i+ l.
The quantity k is called the order and the quantity l is called the shift.
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This kind of di�erential equations is directly linked with the notion of shifted deriva-
tives:

Proposition 28. For any f ∈ R[X], if f doesn't satisfy any SDE of order k and of shift
l, then

〈
x≤i+l · f (i)

〉
i≤k is full, ie:

dim
〈
x≤i+l · f (i)

〉
i≤k =

k∑
i=0

(l + i+ 1) = (k + 1)l +

(
k + 2

2

)
In order to prove some conditions on the SDE satis�ed by f , we �rst need to prove

that the polynomials (x− a1)d, . . . , (x− am)d cannot satisfy simultaneously a SDE if the
order is not big enough:

Lemma 29. For any d,m ≤ d, for any distinct (ai) ∈ Rm, the following property holds
for the family S = {(x − a1)d, . . . , (x − am)d}: if a SDE is satis�ed by every polynomial
in S, then the order of the SDE must be greater than m.

Proof. Assume the family S = {(x−a1)d, . . . , (x−am)d} satis�es the following SDE, with
k < m:

k∑
i=0

Pi(x)f (i)(x) = 0 (5)

We can factorize (x − ai)d−k for any i in a same manner to obtain a new SDE satis�ed
by the family S ′ = {(x− a1)k, . . . , (x− am)k}:

k∑
i=0

Qi(x)f (i)(x) = 0 (6)

with Qi(x) = d!
k!

(k−i)!
(d−i)!Pi(x).

But now, since k < m, the family S generate Rk[X], and thus this imply that every
polynomial of degree ≤ k should satisfy the SDE (6). We obtain the contradiction by
taking xi0 , where i0 is the smallest integer such that Qi0(x) 6≡ 0.

We can now prove the lower bound on the parameters of a SDE that f could satis�ed,
which will directly give the result.

Lemma 30. For any d,m ≤ d, for any distinct (ai) ∈ Rm, if the polynomial f(x) =
m∑
i=1

(x − ai)
d satis�es a SDE of parameters k, l then at least one of the two following

conditions holds:

i) k ≥ m

ii) l > d
m
− 2m

Proof. We will prove the result by showing that if f satis�es a SDE and i) doesn't hold,
then ii) must hold. Assume that f satis�es a di�erential equation of the following form:

k∑
i=0

Pi(x)f (i)(x) = 0 (7)
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with k < m and deg(Pi) ≤ i+ l.
For every i, we denote by Qi the unique polynomial such that:

k∑
j=0

Pj(x)
(
(x− ai)d

)(i)
(x) = Qi(x)(x− ai)d−k

Notice that Qi is of degree at most k + l. Using lemma 29, since k < m, not all Qi's can
be 0, without loss of generality we have Q1 6≡ 0. We set fi(x) = Qi(x)(x − ai)d−k and,
using linearity of di�erentiation, we rewrite di�erential equation (7) as:

−f1(x) =
m∑
i=2

fi(x)

Using Lemma 19, for a certain subset I = {i1, . . . , ip} ⊆ J2;mK, we obtain

d− k ≤ Na1 (f1) ≤ p− 1 + Na1 (W ((fi)i∈I)) (8)

We can factorize the Wronskian by (x− ai)d−k−(p−1) for any i ∈ I:

Na1 (Wr) = Na1

∣∣∣∣∣∣∣
R1,1 . . . R1,p
...

. . .
...

Rp,1 · · · Rp,p

∣∣∣∣∣∣∣
with deg(Ri,j) ≤ l + k + p− i.
The determinant has degree ≤ p(l + k) +

(
p
2

)
. Hence, inequality (8) becomes:

d− k ≤ p− 1 + p(l + k) +

(
p

2

)
Using the fact that p ≤ m− 1, we obtain:

d ≤ (m− 1) · l +m · k +
(m− 2)(m+ 1)

2

Divide by m and drop negatives terms to obtain:

d

m
≤ l + k +

m

2

Using the hypothesis that k < m, we �nally have:

l >
d

m
− 3

2
m

We can now prove again the main result, restated here:

Theorem 13. For any d, t ≥ 2 such that t < d
4
, the polynomial f(x) =

∑m
i=1(x − ai)d,

with distinct ai's and m =
⌊√

d
t

⌋
, is hard in the following sense: any representation of f

of the form f =
∑s

i=1 αiQ
ei
i , with each Qi of degree ≤ t, αi ∈ F, must satisfy s = Ω

(√
d
t

)
.

17



Proof. We take k and l small enough to ensure that f doesn't satisfy any SDE of param-
eters k and l. Using lemma 30, it is enough to take:

• k = m− 1 =
⌊√

d
t

⌋
− 1 so that k < m

• l =
⌊√

dt− 3
2

√
d
t

⌋
so that l ≤ d

m
− 3

2
m

Using proposition 28, we thus establish a lower bound on the dimension of the shifted
derivatives space:

dim
〈
x≤i+l · f (i)

〉
i≤k = (k + 1)l +

(
k + 2

2

)
≥

(√
d

t
− 1

)(
√
dt− 3

2

√
d

t
− 1

)
+

1

2

(√
d

t

)2

= d

(
1− 1

t
−
√
t

d
+

1

2
√
dt

+
1

d

)

≥ d

(
1− 1

t
−
√
t

d

)

Now, assume that f =
∑s

i=1 αiQ
ei
i , for some Qi's with degQi ≤ t. Proposition 23 gives

the following upper bound on the dimension:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ s · (l + kt+ 1) ≤ s · 2

√
dt

Hence:

s ≥
1− 1

t
−
√

t
d

2
· d√

dt

Now, since t < d
4
, we have

√
t
d
< 1

2
and thus:

s = Ω

(√
d

t

)

4 Discussion

In the previous section, we presented several proofs of lower bounds for the model of sums
of powers of univariate polynomials. The best one we proved in Theorem 13 was estab-
lished using shifted derivatives, and it is a stronger lower bound than the ones obtained
using the Wronskian alone in Theorems 24, 25 and 26. However, the proofs involving the
Wronskian alone are still interesting because it seems that we cannot improve the lower
bound with the shifted derivatives. On the other hand, we propose one possible way to
improve lower bounds using the Wronskian alone.
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4.1 Multiplicity of the Wronskian

The proofs involving Wronskian followed the same pattern:

Step 1: Isolate a polynomial which has a root with high multiplicity

Step 2: Use Lemma 19 to �transform� the sum into a Wronskian

Step 3: Factorize the Wronskian by powers of polynomials

Step 4: Bound the multiplicity of the resulting determinant by its degree

The step that costs the most is the last one since we have to deal with a determinant of
k×k matrix, with polynomials of degree O(tk) in it, so the degree of the determinant will
always be in O(tk2). And since the multiplicity cannot be greater that d, we will always

have something like d ≤ c · tk2, which gives the already known lower bound Ω
(√

d
t

)
.

For instance, if one could show that the multiplicity is at most O(tk) (the degree of the
polynomials in the determinant) instead of O(tk2), it will directly gives the desired linear
lower bound.

4.2 Limitation of the method of shifted derivatives

The best lower bound we get is using shifted derivatives. However, it is probably not
possible to improve it using this tool. Indeed, as we saw in Remark 22, the trivial upper
bound on the dimension is:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ min

(
d+ l + 1, (k + 1)l +

(
k + 2

2

))
This upper bound is tight since we have proved in Section 3.5 that the equality holds for
the polynomials of the form f(x) =

∑m
i=1(x − ai)d. On the other hand, Proposition 23

states the upper bound on the model:

dim
〈
x≤i+l · f (i)

〉
i≤k ≤ s · (l + kt+ 1)

Thus, the best bound possible on the number of summands is:

s ≥
min

(
d+ l + 1, (k + 1)l +

(
k+2

2

))
l + kt+ 1

The choice of parameters l = O(
√
dt) and k = O

(√
d
t

)
gives the lower bound of Theorem

13, s = Ω
(√

d
t

)
, and we claim that this is optimal with this tool.

Proof. Denote

f(k, l) = min

(
d+ l + 1

l + kt+ 1
,

(k + 1)l +
(
k+2

2

)
l + kt+ 1

)

We want to show that for any k, l, f(k, l) ≤
√

d
t

+ 1. To do so, we work with �xed k, and

we di�erentiate two cases :
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• k ≥
√

d
t
: the function g : l 7→ d+l+1

l+kt+1
is monotonous on [0; +∞[. Moreover we have

g(+∞) = 1 and g(0) = d+1
kt+1

<
√

d
t

+ 1. Thus g(l) <
√

d
t

+ 1 for any l.

• k ≤
√

d
t
: the function h : l 7→ (k+1)l+(k+2

2 )
l+kt+1

is monotonous on [0; +∞[. Moreover

we have h(+∞) = k + 1 ≤
√

d
t

+ 1 and h(0) = (k+2)(k+1)
2(kt+1)

≤ k+2
t

<
√

d
t
. Thus

h(l) ≤
√

d
t

+ 1 for any l.

In both cases, f(k, l) ≤
√

d
t

+ 1, hence, for any l, k, f(k, l) ≤
√

d
t

+ 1.

4.3 Conclusion

Even simple models like sums of powers of univariate polynomial aren't still very well
understood. Better lower bounds for the related problems may involve new techniques
which can be used for other open problems of algebraic complexity.
The Wronskian is a tool mainly used in the study of di�erential equations but some
of its properties are interesting for some problems of algebraic complexity. A better
understanding of this object, for instance of its roots, may provide new and stronger lower
bounds on those sums of powers of univariate polynomials, which might be transposed
to the multivariate case.
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