
SIAM J. COMPUT.
Vol. 12, No. 4, November 1983

1983 Society for Industrial and Applied Mathematics
0097-5397/83/1204-0003 $01.25/0

FAST PARALLEL COMPUTATION OF POLYNOMIALS
USING FEW PROCESSORS*

L. G. VALIANT, S. SKYUM, S. BERKOWITZ AND C. RACKOFF

Abstract. It is shown that any multivariate polynomial of degree d that can be computed sequentially
in C steps can be computed in parallel in O((log d)(log C + log d)) steps using only (Cd)1) processors.

Key words, parallel computation, polynomials, complexity theory

Introduction. Hyafil [6] showed that any polynomial q of degree d that can be
computed sequentially in C {+,-, x}-steps can be computed in parallel in time
proportional to (log d)(log C + log d). Unfortunately his method requires Cga pro-
cessors in general. Thus even if C and d are both bounded polynomially in terms of
the number of indeterminates the number of processors required would not be. In
this paper we give an improved construction that achieves the same time bound but
with only (Cd) processors, for an appropriate constant//. The achievability of such
fast time bounds with only polynomially many processors was known previously only
for certain specific polynomials such as the determinant [5]. Throughout we shall use
the unrestricted model of parallelism described by Borodin and Munro [2].

Simultaneous resource bounds in discrete computations are discussed in detail
by Cook 3]. An important positive result in that area, due to Ruzzo [8], is that
context-free languages can be recognized by Boolean circuits that simultaneously have
polynomial size and log2n depth. This is also a corollary of our present result as
can be seen as follows: Consider the monotone Boolean circuit defined by the
Cocke-Kasami-Younger algorithm. Regard this as an arithmetic program over the
reals using the correspondence "and"-> x and "or"-> +. This program has linear
degree and polynomial program size. An application of our construction therefore
gives a fast parallel program using only polynomially many processors. In addition,
the parallel program can be reinterpreted as a shallow monotone circuit, as required.
The concept of "degree" for Boolean circuits exploited in this argument is discussed
formally in [9].

Finally we observe that, in the terminology of [11], the question whether every
polynomial family of polynomially bounded degree and program size is a p-projection
of the determinant is open. An affirmative answer to this combined with Csanky’s
result would give an alternative proof of our main result here, at least in the case of
fields of characteristic 0.

This paper is a simplification and improvement of an earlier result by Valiant
and Skyum 12].

Definitions and the main theorem. Let F be a field and let F[x,..., x,] be the
ring of polynomials over indeterminates x 1, , x, with coefficients from F. A program
f over F is a sequence of instructions

)i<-"Vi)i, i=l,’",C

* Received by the editors May 15, 1981, and in revised form September 16, 1982.

" Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.
Computer Science Department, Aarhus University, Aarhus, Denmark.
Computer Science Department, University of Toronto, Toronto, Canada M5S 1A7.

641

642 L. G. VALIANT, S. SKYUM, S. BERKOWITZ AND C. RACKOFF

where for each value of
(I) v, v eFU{x, ,x,}U{v, v_} and

(II) is one of the two ring operators +, x.
Note that since -1 e F, subtraction can be easily simulated. The formal polynomial
computed at v can be defined in the obvious way and is denoted by f(v). The degree
of f(vi) in the usual sense is denoted by d(vi). For convenience, we will assume
d(v) >-d(v). For the moment we will also assume that f is homogeneous; by this we

then d(v’mean that if v v + v d(v"). We say that f has size C (the number
of instructions) and computes the polynomial f(Vc). The following fact due to Strassen
[10] shows that forcing f to be homogeneous is not a serious restriction.

FACT 1. D a nonhomogeneous program f computes a polynomial p of degree d and
has size C, then there is a homogeneous program which has size O(Cdz) and which
computes d + 1 polynomials whose sum is p.

Outline of proof. For each line of the original program, we will have d + 1 lines
which compute the first d + 1 homogeneous parts of the polynomial computed at the
original line. If the operation is +, then we add similar degree components. If the
operation is x, then we can view each set of operands as the coefficients of a polynomial,
and perform polynomial multiplication (about dz operations) to obtain the coefficients
of a new polynomial; only the first d + 1 of these are needed.

We will also assume that f is a smallest possible program for computing f(Vc).
The following fact is easy to verify.

FACT 2. Iff is a smallest possible homogeneous program for computing f(vc), then
f(vi) is not the zero polynomial for any i, and d(vi) <-d(vc) for all i.

We will denote the set {v} by V, the set {x} by X, and the set V UX LI F by V.
The depth of v V is the length of the longest possible sequence u ,. ., u such that

" and UD FUX.u v, for each i, Ug+l u or U+l ui,

DEFINITION. Let v, w V. We define f(v w) F[x 1, , x, by induction on the
depth of w. Firstly, if v w (that is they are the same node) then f(v w) 1. Otherwise,
if wFUX, then f(v;w)=O. Otherwise, if ww’+w" then f(v;w)=
f(v w’) +f(v w") and if w w’ x w" then f(v w) f(w"), f(v w’). (The motivation
for this definition is that if d(w)<2d(v), then f(v; w) turns out to be the coefficient
of v’ in f(w) in a modified program obtained by replacing node v by a new indeterminate
v’. In fact, the proof below can be rewritten so as to only use the value of f(v; w) in
this case.)

FACT 3. It is easy to see that each f(v) computed in the homogeneous program f
is also homogeneous, that is, all of its monomials have the same degree. It is also easy
to prove by induction on the depth of w that each nonzero f(v; w) is homogeneous and
satisfies" degree(f(v w)) d(w)-d(v).

DEFINITION. If a > 0, define V {t V[d(t) > a, t’ x t", d(t’) <= a}.
LEMMA 1. Say that v, w V, d (v) <- a < d(w). Then

f(v; w)= Y (f(v; t) f(t; w)) and f(w)= Y’. f(t) f(t; w).
t v. t v

Proof. Notice that v w since d (v) < d(w). We will prove the lemma by induction
on the depth of w, keeping v and a fixed.

Case 1. w F UX. This cannot happen since we can’t have d(w > a > O.
Case 2. w w’ + w", d(w’) d(w") d(w). Assume the lemma holds for w’ w"

f(v; w)=f(v; w’)+f(v; w")= E (f(v;t).f(t; w’))+ E (f(v;t).f(t; w"))
te v. te v,

E (f(v; t). (/(t; w’)+f(t; w")))= E (/(v; t). f(t; w)).

FAST PARALLEL COMPUTATION OF POLYNOMIALS 643

Similarly, f(w) Y.,v.f(t).f(t; w).
Case 3. w w’ w", a >=d(w’) >=d(w"). (Recall that d(w’) >=d(w ’’) by definition.)

Then w V. Clearly f(v; w)=f(v;w), f(w;w). Let s be any other element of V.
Then f(s; w)=f(w").f(s; w’). But f(s; w’)=0 by Fact 3, since d(s)>a >=d(w’). So
f(s; w)=0. So f(v; w)=Ytv. (f(v; t) f(t; w)). Similarly, f(w)=Y.tv.f(t) f(t; w).

Case 4. w w’ w", d(w)>=d(w’)>a. Assume the lemma holds for w’.

f(v; w)=f(w") f(v; w’)=f(w") Y. (f(v; t) f(t; w’))
t Va

E (/(v; t)" f(w")" f(t; w’)) Y f(v; t)" f(t; w).
te v tv

Similarly, f(w)=],v.f(t). f(t; w).
THEOREM 1. Let f be a homogeneous program of size C which computes a

polynomial p of degree d. Then there is a program f’ of size O(C3) which computes p,
such that the largest depth of any node is O(log C log d).

Proof. The construction of f’ will proceed in [log d] stages; each stage will add
at most log C to the depth of the program.

At stage 0 we compute all f(w) and f(v; w) that have degree at most 20= 1. Since
these are linear forms in n indeterminates and C =>n-1 if f is minimal, depth
2 + [log2 C] is sufficient for this. At stage + 1 we compute all f(w) and f(v; w) that
have degree in the range (2 g, 2i+1]. By Fact 2 we are done after stage [log2 d].

Say that 2g+_->d(w)>2g. Let a=2g. Then by Lemma 1, f(w)=vf(t).
f(t; w) .vf(t’), f(t"), f(t; w). By definition of V,, each f(t’), f(t"), f(t; w) has
already been computed. So f(w) can be computed adding only O(log C) depth.

Say that 2+ >-d(w)-d(v)=degree (f(v; w))>2. Let a =d(v)+2. By Lemma
1, f(v; w)=tvf(v; t) f(t; w)=Etvf(t") f(v; t’) f(t; w). Each f(v; t’) and
f(t; w) has already been computed. It is possible, however, that d(t") is very large,
say that d(t’)>-d(t’’) > 2+. If f(v; t’) 0, then we’re okay, since f(t"), f(v; t’). f(t; w)
can still be computed. So say that d(t")> 2+ and f(v;t’) O. Then d(t’)>-d(v), so
d(t)=d(t’)+d(t")>d(v)+2g+>-_d(w). So f(t; w)-0. So f(v; w) can be computed
adding only O(log C) depth.

The size of the new program is dominated by the time to compute the f(v; w).
There are C choices of pairs (v, w) and the computation of each f(v; w) takes O(C)
steps. The overall size is therefore O(C3).

By combining Theorem 1 and Fact 1 we have"
THEOREM 2. Let f be a nonhomogeneous program of size C which computes a

polynomial p of degree d. Then there is a program f’ of size O((Cd2)3) and depth
O((log C + log d) log d) which computes p.

There is another method for handling nonhomogeneous programs without first
making them homogeneous. Given a nonhomogeneous program f, we first define the
degree of a node v, d(v), differently than above. The degree of a field member is 0;
the degree of an indeterminate is 1; the degree of a multiplication node is the sum
of the degrees of its inputs; the degree of an addition node is the maximum degree
of its inputs. We define the degree of f to be the maximum degree of any node.

For a > 0, define V’ {t e VId(t) > a, - t’ / t", d(t") <= a}. We state the following
lemma and theorem without proof.

LEMMA 2. Say that v, w V, d(v) <-_ a < d (w). Then

f(v; w)= E (f(v; t) f(t; w))+ . (f(v; t") f(t; w))
and t v,, tv

f(w) Y’. (f(t) f(t; w))+ Y. (f(t") f(t; w)).
te v, t v,

644 L. G. VALIANT, S. SKYUM, S. BERKOWITZ AND C. RACKOFF

THEOREM 3. Let f be a nonhomogeneous program of size C and degree d. Then
there is a program f’ of size O(C3) and depth O(log C log d) which computes the same
polynomial.

Remarks. 1. Strassen [10] showed that for infinite fields Fact 1 holds even when
divisions are allowed in the original program but not in the transformed one. It follows
that Theorem 2 holds under the same hypothesis. Recently Borodin, yon zur Gathen
and Hopcroft [1] have shown that the infinity assumption is inessential.

2. It is easy to verify that the above theorems hold for structures much less
restricted than fields. For example, the constructions work for monotone arithmetics
(i.e., with constants from the nonnegative reals). As observed in the introduction, the
same results then follow for monotone Boolean circuits when the notion of degree is
suitably interpreted. More formally, it can be verified that it is sufficient for F to be
a semiring in the sense of Jerrum and Snir [7].

3. Using Lemmas 1 and 2, analogues of Theorems 1 and 3 can be proved with
a size bound for f’ of C log d where a is such that n n matrices can be multiplied
in n operations (a < 2.496 [4]).

REFERENCES

A. BORODIN, J. VON ZUR GATHEN AND J. HOPCROFT, Fast parallel matrix and GCD computations,
Proc. 23rd IEEE Symposium on Foundations of Computer Science, 1982, pp. 65-71.

[2] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[3] S. A. COOK, Deterministic CFL’s are accepted simultaneously in polynomial time and log squared
space, Proc. 11th ACM Symposium on Theor of Computing, 1979, pp. 338-345.

[4] D. COPPERSMITH AND S. WINOGRAD, On the asymptotic complexity of matrix multiplication, Proc.
22nd IEEE Symposium on Foundations of Computer Science, 1981, pp. 82-90.

[5] L. CSANKY, Fast parallel inversion algorithms, this Journal, 5 (1976), pp. 618-623.
[6] L. HYAFIL, On the parallel evaluation of multivariate polynomials, Proc. 10th ACM Symposium on

Theory of Computing, 1978, pp. 193-195.
[7] M. JERRUM AND M. SNIR, Some exact complexity results for straight-line computations over semirings,

J. Assoc. Comput. Mach., 1982, to appear.
[8] W. L. Ruzzo, On uniform circuit complexity, Proc. 20th IEEE Symposium on Foundations of

Computer Science, 1979, pp. 312-318.
[9] S. SKYUM AND L. G. VALIANT, A complexity theory based on Boolean algebra, Proc. 22nd IEEE

Symposium on Foundations of Computer Science, 1981, pp. 244-253.
[10] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 264 (1973), pp. 182-202.
11] L. G. VALIANT, Completeness classes in algebra, Proc. 1 lth ACM Symposium on Theory of Computing,

1979, pp. 249-261.
12] L. G. VALIANT AND S. SKYUM, Fastparallel computation ofpolynomials using few processors, Lecture

Notes in Computer Science, 118, Springer-Verlag, New York, 1981, pp. 132-139.

