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2 Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France.

3 Math. Dept., Tulane University, New Orleans, LA, USA.

ABSTRACT

Self-similarity has been widely used to model scale-free dynamics,
with significant successes in numerous applications that are very dif-
ferent in nature. However, such successes have mostly remained
confined to univariate data analysis while many applications in the
modern “data deluge” era involve multivariate and dependent data.
Operator fractional Brownian motion is a multivariate self-similar
model that accounts for multivariate scale-free dynamics and charac-
terizes data by means of a vector of self-similarity exponents (eigen-
values). This naturally raises the challenging question of testing the
equality of exponents. Expanding on the recently proposed wavelet
eigenvalue regression estimator of the vector of self-similarity expo-
nents, in the present work we construct and study a wavelet domain
bootstrap test for the equality of self-similarity exponents from one
single observation (time series) of multivariate data. Its performance
is assessed in a bivariate setting for various choices of sample size
and model parameters, and it is shown to be satisfactory for use on
real world data. Practical routines implementing estimation and test-
ing are available upon request.

Index Terms— multivariate self-similarity, operator fractional
Brownian motion, wavelet spectrum, bootstrap, hypothesis testing

1. INTRODUCTION

Context: univariate self-similarity. Self-similarity [1] provides
a framework for describing and modeling scale-free dynamics. It
has been widely used and lead to well-recognized successes in nu-
merous real world applications that are very different in nature (cf.,
e.g., [2–4] and references therein). Fractional Brownian motion
(fBm) is the only Gaussian stationary increment self-similar pro-
cess [5]. It has often been used to describe real world data, and
offers a robust and versatile model whose dynamics are mainly
governed by a unique self-similarity parameter H . In practice,
the estimation of the latter parameter is naturally the central chal-
lenge. Knowledge ofH permits carrying out various classical signal
processing tasks such as characterization, diagnosis, classification,
detection, etc. It is now well documented and widely accepted that
the wavelet transform provides efficient multiscale representations
and allows for theoretically well-grounded, robust and accurate esti-
mation of H [2, 6]. However, such successes have remained mostly
limited to univariate analysis. Modern applications often involve
several joint time series, which calls for adequate multivariate self-
similarity modeling.
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Related work: multivariate self-similarity. Recently, oper-
ator fractional Brownian motion (ofBm), a multivariate exten-
sion of fBm, was proposed as a model for multivariate self-
similarity [7–10]. In particular, it allows multiple correlated fBm
coordinate processes with possibly distinct self-similarity expo-
nents Hm, m = 1, . . . ,M , and occurring in a non-canonical set
of coordinates (mixing). A statistical procedure was recently de-
vised for jointly estimating the vector of self-similarity exponents
H = (H1, . . . , HM ) [4, 11, 12]. Based on multivariate wavelet
representations and eigenvalue decompositions, the method was
mathematically studied and shown to have satisfactory theoretical
and practical performance. Its actual use on real world data naturally
raises a crucial question for data analysis or experimental interpre-
tation — are all self-similarity exponents (H1, . . . , HM ) different
or identical? This question has never been addressed, except in the
restricted setting [13]. In addition, it should be noted that the design
of hypothesis tests in multivariate self-similarity contexts has to
cope with the notorious intricacy of asymptotic estimator covariance
matrices [14]. This work aims to provide the first and preliminary
answer to this question in the wavelet domain.
Goal, contributions and outline. By making use of wavelet
eigenvalue-based estimation for H , the present work devises, stud-
ies and assesses a bootstrap-type test for the hypothesis H1 = H2

starting from one single observation (time series) of bivariate data.
For the reader’s convenience, bivariate ofBm is briefly developed
in Section 2. After recapping the wavelet eigenvalue regression
estimator of H , Section 3 defines the new bootstrap-based testing
procedure. In Section 4, Monte Carlo experiments involving a large
number of independent copies of ofBm show that the proposed
method permits effective testing of the hypothesis H1 = H2 from
a single observation (time series). The performance of the test is
characterized with respect to sample size and model parameters,
notably the self-similarity exponents H and the Pearson correlation
of the data. OfBm synthesis and self-similarity exponent estimation
and testing are carried out by means of newly designed MATLAB
routines that will be made available at the time of publication.

2. OPERATOR FRACTIONAL BROWNIAN MOTION

The ofBm model was introduced and developed in general settings
in [7–10]. It is a natural multivariate extension of fBm consisting
of a multivariate Gaussian self-similar process with stationary incre-
ments. For ease of exposition of the principle behind the bootstrap
test, the presentation is restricted to a bivariate and time reversible
setting [9].

Let X ≡ {BH1(t), BH2(t)}t∈R be a pair of fBm components
defined by their self-similarity exponents H = (H1, H2), 0 <



H1 ≤ H2 < 1 and a pointwise covariance matrix ΣX with en-
tries (ΣX)m,m′ = σmσm′ρm,m′ , where σ2

1 , σ2
2 and ρ0 ≡ ρ1,2 are

the variance of each component and their respective correlation co-
efficients. Let P be a 2 × 2, real-valued, invertible matrix. In this
contribution, we consider the particular framework where (bivariate)
ofBm is defined by

Y ≡ {BH,ΣX ,P1 (t), B
H,ΣX ,P
2 (t)}t∈R = P{BH1(t), BH2(t)}t∈R

(in short, Y = PX). Bivariate ofBm is well-defined if and only if
Γ(2H1 + 1)Γ(2H2 + 1) sin(πH1) sin(πH2)
−ρ2

0Γ(H1 +H2 +1)2 sin2(π(H1 +H2)/2) > 0, thus showing that
H and ρ0 cannot be selected independently [9].

LetH = Pdiag(H)P−1 be the so-named Hurst matrix parame-
ter, where H correspond to the Hurst eigenvalues. Multivariate self-
similarity, the key property of ofBm, reads as

{BH,ΣX ,P1 (t), B
H,ΣX ,P
2 (t)}t∈R

fdd
=

{aH(B
H,ΣX ,P
1 (t/a), B

H,ΣX ,P
2 (t/a))}t∈R, (1)

∀a > 0, where fdd
= stands for the equality of finite dimensional distri-

butions, and aH :=
∑+∞
k=0 logk(a)Hk/k!. When the mixing matrix

P is diagonal, namely, when we can set P ≡ I , the self-similarity
relation (1) takes the simple form of component-wise self-similarity
relations (see [15])

{BH,ΣX ,I1 (t), B
H,ΣX ,I
2 (t)}t∈R

fdd
=

{aH1B
H,ΣX ,I
1 (t/a), aH2B

H,ΣX ,I
2 (t/a))}t∈R. (2)

3. ESTIMATINGH AND TESTINGH1 = H2

3.1. Wavelet based joint estimation ofH1 andH2

In statistical practice, the central task is to estimate the Hurst eigen-
values H = (H1, H2) from a single time series Y . When P is di-
agonal, (2) suggests that H1 and H2 can be estimated independently
using standard univariate methodologies [13, 15]. However, in the
general framework of nondiagonal mixing (coordinates) matrices P ,
univariate estimation does not yield relevant results. Instead, a mul-
tivariate wavelet transform-based joint estimation procedure can be
used, cf. [4, 11]; it is recalled next for the reader’s convenience.
Multivariate wavelet transform. Let ψ0 be an oscillating refer-
ence pattern with joint time and frequency localization, referred to as
the mother wavelet and further characterized by its so-named num-
ber of vanishing moments Nψ . The latter is a positive integer such
that ∀n = 0, . . . , Nψ − 1,

∫
R t
kψ0(t)dt ≡ 0 and

∫
R t
Nψψ0(t)dt 6=

0. Let {ψj,k(t) = 2−j/2ψ0(2−jt − k)}(j,k)∈Z2 be the collection
of dilated and translated templates of ψ0 that forms an orthonormal
basis of L2(R).

The multivariate discrete wavelet transform (DWT) of the mul-
tivariate stochastic process {Y (t)}t∈R is defined as (D(2j , k)) ≡
DY (2j , k) = (DY1(2j , k), DY2(2j , k)), ∀k ∈ Z, ∀j ∈ {j1, . . . , j2},
and ∀m ∈ {1, 2}: Dym(2j , k) = 〈2−j/2ψ0(2−jt−k)|Ym(t)〉. For
a detailed introduction to wavelet transforms, interested readers are
referred to, e.g., [16].
Joint estimation of H1,H2. Let S(2j) denote the empirical
wavelet spectrum defined as

S(2j) =
1

nj

nj∑
k=1

D(2j , k)D(2j , k)∗, nj =
N

2j
,

where N is the sample size. Let Λ(2j) = {λ1(2j), λ2(2j)} be
the eigenvalues of the 2 × 2 matrix S(2j). The wavelet eigenvalue
regression estimators (Ĥ1, Ĥ2) of (H1, H2) are defined by means
of weighted log-regressions across scales 2j1 ≤ a ≤ 2j2 [4, 11]

Ĥm =

(
j2∑
j=j1

wj log2 λm(2j)

)/
2− 1

2
, ∀m = 1, 2. (3)

Estimation performance. It was shown theoretically in [4, 11]
that (Ĥ1, Ĥ2) constitute consistent estimators with asymptotic joint
normality under mild assumptions. It was also shown that these es-
timators have very satisfactory performance for finite sample sizes.
Their covariances decrease as a function of the inverse of the sample
size and are approximately normal even for small sample sizes. It
was further observed that the variances of (Ĥ1, Ĥ2) do not signifi-
cantly depend on the actual values of (H1, H2).

3.2. TestingH1 = H2

Test formulation. The need to understand and analyze the data
structure and underlying stochastic mechanisms leads to the issue of
whether or not H1 and H2 are equal. In other words, it is of great
practical interest to test the null hypothesis H1 = H2 against the
alternative hypothesis H1 6= H2. A natural choice of test statistic is
δ̂ = Ĥ2 − Ĥ1.

In view of the asymptotic joint normality of (Ĥ1, Ĥ2), δ̂ can be
modeled as a zero mean Gaussian random variable, with unknown
variance. With the purpose of testing δ̂ = 0 from a single realization
of the process, we propose to estimate its unknown variance by a
bootstrap procedure [17, 18].
Bootstrap in the multivariate wavelet domain. To approximate
the distribution of δ̂, a bootstrap method in the multivariate wavelet
domain can be constructed that preserves the joint covariance struc-
ture of the wavelet coefficients. To this end, rather than bootstrap-
ping independently on the wavelet coefficients of each component,
the vectors of coefficients D(2j , k), k = 1, . . . , nj , are used in a
(circular) block-bootstrap procedure [19]. For each scale j, from the
periodically extended samples (D(2j , 1), . . . , D(2j , nj)), R block
bootstrap resamples D∗(r)j = (D∗(r)(2j , 1), . . . , D∗(r)(2j , nj)),
r = 1, . . . , R, are generated by a drawing-with-replacement pro-
cedure of dcard(Y )/LBe overlapping blocks of fixed size LB ,
(D(2j , k), . . . , D(2j , k + LB − 1), k = 1, . . . , nj . Then, for each
resample D∗(r)j , bootstrap estimates S∗(r)(j), and (Ĥ

∗(r)
1 , Ĥ

∗(r)
2 )

are computed. The standard deviation of δ̂ is then approximated
by the square root of the variance estimated from the R bootstrap
samples Ĥ∗(r)2 − Ĥ∗(r)1 and labeled σ∗δ .
Bootstrap test. The bootstrap test forH1 = H2, with significance
level α, is then defined as

dα = 1 : |δ̂| > σ∗δ t1−α2 (H1 = H2 rejected)

dα = 0 : |δ̂| ≤ σ∗δ t1−α2 (H1 = H2 accepted),
(4)

where tπ = F−1(π) and F is the standard normal cumulative dis-
tribution function.

4. TEST PERFORMANCE ASSESSMENT

4.1. Monte Carlo simulation

Monte Carlo experiments are conducted to assess the validity of the
multivariate bootstrap procedure and to quantify the performance of
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Fig. 1. Gaussanity of estimates. Quantile-quantile-plots against
standard normal of estimates δ = H2 −H1 under the null (left) and
alternative (right) hypothesis, showing that estimates for δ are well
modeled by a Gaussian distribution.
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Fig. 2. Standard deviation of δ̂ for several values of N (left) and ρ
(right) as a function of H2 −H1.

the test. NMC = 1000 independent realizations of synthetic bi-
variate ofBm of sizes N ∈ {212, 214, 216} are subjected to the
estimation procedure and test. Under the null hypothesis, ofBm
parameters are set to H1 = H2 = 0.8. Under the alternative hy-
pothesis, H2 = 0.8 and H1 ∈ {0.75, 0.7, . . . , 0.45, 0.4}. The
significance level (i.e., error of type 1) of the test is set to α =
0.05. The test performance is reported for several correlation lev-
els ρ0 ∈ {−0.6, −0.4, 0, 0.4, 0.8}. The mixture matrix is set
to P =

(
(0.69 0.31)T , (0.07 − 0.93)T

)
. For all these instances,

asymptotic joint normality holds [4]. This leads to an effective cor-
relation coefficient of ρ ∈ {0.25, 0.02, −0.33, −0.62, −0.88} for
the analyzed bivariate time series Y = PX . Other choices, not re-
ported here, yield equivalent performance. For the analysis, we use
least asymmetric Daubechies 3 wavelets (hence LB = 6), j1 = 5
and j2 = {7, 9, 11}, and R = 500 bootstrap resamples.

4.2. Statistical properties of δ̂ = Ĥ2 − Ĥ1

Monte Carlo experiments first enabled us to study the statistical
properties of δ̂. Fig. 1 shows quantile-quantile plots of δ̂ against
the standard normal distribution for several sample sizes, both when

H1 = 0.6, H2 = 0.8, ρ0 = 0.4
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Fig. 3. Bootstrap resampling. Top: single realization of bi-
variate ofBm (top, N = 214). Center: log-scale diagrams of
log2 λ

(
S(j)

)
(blue solid lines and circles) and for their bootstrap

replica log2 λ
(
S∗(j)

)
(averages and standard 95% confidence in-

tervals; red dashed lines and crosses) obtained by component-wise
independent resampling (left) and by the joint resampling proposed
here (right). Bottom: corresponding estimates and bootstrap his-
tograms for H1, H2.

H1 = H2 and H1 6= H2. The plots clearly validate the normal
approximation to the distribution of δ̂. Furthermore, Fig. 2 reports
standard deviations of δ̂ estimated over Monte Carlo realizations,

denoted
√
V arMC(δ̂), as a function of H2−H1, for several values

for N and ρ. It clearly illustrates the fact that the variance of δ̂ does
not depend on the values of H1, H2 or ρ, and decreases as ∼ 1

N
apart from border effects of the wavelet transform.

4.3. Multivariate bootstrap accuracy and relevance

Multivariate vs. univariate resampling. We illustrate the rel-
evance of the proposed multivariate resampling strategy by com-
paring it with a bootstrap scheme that generates resamples of the
wavelet coefficients DYm(2j , k) independently for each component
m, instead of vector-wise. In Fig. 3, the functions log2 Λ

(
2j
)

(blue
lines) and their bootstrap replicas (averages and confidence inter-
vals, red) are plotted, together with histograms of bootstrap estimates
Ĥ∗m for a single realization of bivariate ofBm, once for component-
wise bootstrap (left), and once based on the multivariate resampling
scheme (right). The empirical distribution obtained using the uni-
variate bootstrap clearly fails to accurately estimate the distributions
of log2 Λ

(
2j
)
m

and Hm, which stands in contrast to those obtained
from the advocated multivariate resampling scheme.
Accuracy of bootstrap variance estimation. To shed more light
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Fig. 4. Bootstrap variance accuracy. Ratio of Monte Carlo stan-
dard deviation and average bootstrap standard deviation estimates
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Fig. 5. Test performance. Average bootstrap decisions (for 1000
independent realizations) as a function of H2 − H1, for different
levels of correlation ρ ∈ {−0.8, −0.4, 0, 0.4, 0.8} (from left to
right, respectively) and sample sizes N ∈ {212, 214, 216}: the left-
most points (H2 − H1 = 0) correspond to the null hypothesis and
quantify the type 1 error of the test (for preset significance α = 0.05,
indicated by horizontal dashed line), the other points (H2−H1 > 0)
correspond to alternative hypotheses and quantify the test power.

on the accuracy of the proposed multivariate resampling strategy, in
Fig. 4 we report the ratios of the Monte Carlo variances V arMC(δ̂)
and averages (over Monte Carlo realizations) of the bootstrap vari-
ance estimators σ∗2δ as a function of H2 − H1 and for several val-
ues for N and ρ. The results show that the bootstrap variance esti-
mates are on average excellent, lying within a few percent of the true
(Monte Carlo) variances, irrespective of sample size N , correlation
level ρ, and specific values of H1 and H2.

4.4. Test performance

Test performance under the null hypothesis. Fig. 5 plots av-
erage (over 1000 independent realizations) test decisions for three
different sample sizes N (left plot; ρ = 0.25) and several values
for ρ (right plot; N = 214), for H2 = 0.8 and various values for
H1. The leftmost points (H2 − H1 = 0) correspond to the null
hypothesis, i.e., H1 = H2 = 0.8, under which the average test deci-
sions ideally reproduce the significance level α. The results clearly
show that in all situations (i.e., for all sample sizes N and correla-
tion levels ρ), the average test decisions are very close to the preset
value α = 0.05. This indicates that the null distribution model used
in (4), relying on asymptotic Gaussianity and bootstrap estimates of
the unknown variance, is highly accurate.
Test performance under alternative hypotheses. The points to
the right of H2 − H1 = 0 in Fig. 5 correspond to the average

test decisions under the alternative hypothesis with H1 = 0.8 and
H2 ∈ {0.75, 0.7, . . . , 0.45, 0.4} (i.e., increasing δ); hence, they
quantify the power of the test. The results were as follows. The test
power increases both with the sample size and with the difference
H2 − H1, as expected. Interestingly, the power of the test slightly
decreases for increasing correlation ρ between the components of
ofBm. This indicates that it is more difficult to identify the existence
of two different values of H in data when the components are corre-
lated. Nevertheless, the reported test powers should be satisfactory
for most applications and enable, for instance, forN = 216 to detect
a small difference of 0.05 betweenH1 andH2 with reasonable prob-
ability > 65% for ρ = 0.25 (and still > 25% for N = 214). Note
that these sample sizes are common in applications such as Internet
traffic modeling [20] and macroscopic brain activity analysis [21].
The test power could also be further increased by setting the onset
scale j1 to a smaller value, which leads to a larger effective sample
size. These results further suggest that the proposed bivariate es-
timation and test methods are effective in disentangling the mixed
ofBm components (since, otherwise, the estimated values Ĥ1 and
Ĥ2 would be close and the test power small).

Overall, the reported results show that the proposed testing pro-
cedure for the equality of pairs of scaling exponents of ofBm with
nondiagonal mixing (coordinates) matrix is operational and effec-
tive, and can be readily applied to real world data.

5. CONCLUSIONS AND PERSPECTIVES

This work puts forward a new test for the equality of the self-
similarity exponents H1 and H2 of ofBm with non-trivial mixing
(coordinates) matrix, that is, for situations where classical univariate
estimation procedures cannot be used. The testing procedure is
constructed in the wavelet domain and relies on three original ingre-
dients. First, it makes use of a sample wavelet eigenvalue regression
approach for the accurate estimation of the self-similarity exponents
(eigenvalues) in mixed components; second, the asymptotic joint
normality for the corresponding estimators, established in [4, 11], is
used; third, a multivariate nonparametric block bootstrap resampling
scheme is devised that preserves the multivariate statistical structure
of the (wavelet vector coefficients of the) data. A broad Monte
Carlo study illustrates that the proposed procedure has satisfactory
performance in detecting differences between H1 and H2 even at
small sample sizes. In view of the notorious intricacy of asymp-
totic estimator covariance matrices in multivariate self-similarity
frameworks, we provide an operational and effective procedure that
can actually be applied to real world data. MATLAB code for the
estimation and testing procedures (together with the ofBm synthesis
procedure) is available upon request.

Future methodological work includes the extension of the
method to the testing of the equality of multiple self-similarity
exponents H . This implies devising multiple hypotheses tests or
a strategy that allows to estimate how many self-similarity param-
eters are actually different amongst the multiple estimates. Also,
when the number of components increases while the sample size
remains small (high dimension), the Gaussian approximation to the
distribution of δ̂ might prove to be less accurate. Hence, instead of
assuming a priori the normality of δ̂ and applying the bootstrap only
in variance estimation, the distribution of the statistic itself could be
estimated by means of the multivariate bootstrap procedure, which
requires a modification of the final test formulation. Finally, the
estimation and test procedures will be used in applications such as
in macroscopic brain dynamics analysis of neuroscientific data.
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