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Scattering Transform for Intrapartum Fetal Heart
Rate Variability Fractal Analysis: a Case-Control

Study
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Abstract—Intrapartum fetal heart rate monitoring, aiming at
early acidosis detection, constitutes an important public health
stake. Scattering Transform is proposed here as a new tool to
analyze intrapartum fetal heart rate variability. It consists of
a non linear extension of the underlying Wavelet Transform,
that thus preserves its multiscale nature. Applied to a Fetal
Heart Rate (FHR) signal database constructed in a French
academic hospital, the Scattering Transform is shown to permit to
efficiently measure scaling exponents characterizing the fractal
properties of intrapartum fetal heart rate temporal dynamics,
that relate not only to the sole covariance (correlation scaling
exponent) but also to the full dependence structure of data
(intermittency scaling exponent). Such exponents are found to
satisfactorily discriminate temporal dynamics of Healthy subjects
(from that of Non Healthy ones) and to emphasize the role of
the highest frequencies (around and above 1Hz) in intrapartum
fetal heart rate variability. This permits to achieve satisfactory
classification performance, that improves on those obtained from
the analysis of International Federation of Gynecology and
Obstetrics (FIGO) criteria, notably by classifying as Healthy
a number of subjects that were incorrectly classified as Non
Healthy by classical clinically-used FIGO criteria. Combined to
obstetrician annotations, these scaling exponents enables us to
sketch a typology of these FIGO-False Positive subjects. Also, they
permit to monitor the evolution along time of the intrapartum
health status of the fetuses and to estimate an optimal detection
time-frame.

Index Terms—Scattering transform ; Fractal ; Non linear ;
Multiscale ; Intrapartum fetal heart rate variability ; Health
status time evolution ; Classification.

I. INTRODUCTION

A. Motivation: Intrapartum fetal heart rate variability surveil-
lance and acidosis detection

In delivery wards throughout the world, cardiotocograms
(CTG) – combination of fetal heart rate (FHR) and uterine
contraction signals [1] – are monitored with the aim to detect
fetus hypoxia. Early detection enables obstetricians to act
accordingly and reduce the subsequent fetal and neonatal
mortality (cf. e.g., [1], [2]). In clinical routine, intrapartum
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surveillance essentially relies on the visual inspection of
FHR signal, with a significant part of the final assessment
relying on the evaluation of fetal heart rate variability (F-
HRV). The health status of the fetus can be assessed using
International Federation of Gynecology and Obstetrics (FIGO)
guidelines [3], that essentially consist of a set of rules eval-
uating manually extracted temporal characteristics of CTG,
such as baseline level, variability level, number and type
of decelerations and their relation to contraction occurrence
times (cf. [4]). Departures from normality, as defined by
clinical guidelines, are regarded as sign of degradation of fetal
normoxy and practically result in actions from obstetricians
either aiming at improving the fetal state or at operating the
delivery. While application of the FIGO rules permits high
sensitivity to intrapartum acidosis detection, it also results
in a poor specificity: Strict application of FIGO rules leads
to a significant number of unnecessary operative delivery
decisions, where post-birth exams a posteriori indicate that
the fetus was efficiently coping with stress [4]. Operative
deliveries may result in either immediate or long-term severe
consequences for both the newborn and the mother. It thus
constitutes an important public health stake to reduce the
number of unnecessary operative deliveries, which motivates
significant research efforts i) to automatize the computation
of robust features from digitized CTG and ii) to produce
sound statistical characterization of CTG and F-HRV beyond
the essentially morphological (or geometric) FIGO criteria (cf.
e.g., [5], [6] or [7], [8] for tentative reviews).

B. Motivation: Related works: Intrapartum fetal heart rate
variability statistical characterization

To go beyond the clinically used static, temporal and
pattern-based description of F-HRV, it has naturally been
envisaged to use frequency based analysis. Following the
seminal work in [9] for adult heart rate characterization,
spectrum estimation tools were massively used for intrapartum
F-HRV analysis (e.g., [10] and references therein). However,
spectrum estimation for intrapartum F-HRV analysis suffers
from important shortcomings. First, because of the time-
evolving nature of the delivery process (baseline variations,
occurrence of decelerations), intrapartum F-HRV signals are
much less stationary than adult HRV signals are. This lead to
the use of joint time-frequency representations to account for
the time varying nature of the frequency content of intrapartum
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F-HRV [11], or, along another line, to adaptive (or data-driven)
characterization (cf. e.g., [12]). Second, spectrum estimation
only captures the (second order statistics) correlation of data –
thus neglecting higher statistical order forms of dependencies.
Tremendous research efforts were devoted to overcome this
limitation, often referred to as non linear analysis in the liter-
ature, to explicitly emphasize that the capture of information
beyond (linear) correlation is intended [13], [14], [6]. Entropy
rates, stemming from dynamical system modeling, and probing
partially the joint distribution function, thus higher order
statistics, have also been used (cf. e.g., [15]). Alternatively, to
describe F-HRV beyond correlation, the point process nature
of heart beat has been fruitfully explored [16]. The fractal, or
scaling, paradigm has also been involved into F-HRV analysis
[14], [17] and recently, multifractal analysis has been shown to
permit an efficient measure of statistical dependence beyond
the sole correlation [18], [19], [20].

C. Motivation: Goals and Contributions

The present contribution intends to explore the benefits
of using the Scattering Transform for intrapartum F-HRV
analysis. It consists of a recently proposed non linear and
multiscale transform [21], shown to be highly effective to
classify audio signals, image textures, and to analyze fractal
properties [22], [23]. The Scattering Transform is defined
in Section II. It is applied to a FHR database, described
in Section III, carefully constructed and well documented
by obstetricians at the Femme-Mère-Enfant (Woman-Mother-
Child) academic public Hospital (HFME), in Lyon, France. It
is shown, first, how the Scattering Transform enables to cap-
ture and quantify the fractal properties of intrapartum F-HRV
data, and how the extracted (correlation and intermittency)
scaling exponents enable to distinguish subjects suffering from
acidosis from healthy ones, and how these scaling exponents
emphasize the role of the highest frequencies (around and
above 1Hz) in F-HRV temporal dynamics (cf. Section IV-A).
Classification performance are then quantified and compared
against FIGO-based achieved ones (cf. Section IV-B). Further,
it is shown how these scaling exponents enable to track the
evolution along time of the fetus health status from Healthy
to Non Healthy (cf. Section IV-C). Finally, making use of the
documentation provided by the obstetricians, a typology of
the subjects misclassified as Non Healthy using the FIGO-
rules (FIGO-False Positive), compared to the classification
achieved using Scattering Transform based scaling exponents,
is performed in Section IV-D. This contribution elaborates on
a preliminary work presented at EMBC2013 [24].

II. METHODS

A. Scattering Transform

A scattering transform provides locally translation invariant
multiscale coefficients, which characterize the scaling proper-
ties of signals. They are computed by iteratively calculating
the modulus of complex wavelet coefficients [21], [22], [25].
Let X(t) denote the time series to analyze. The wavelet ψ(t)
is a complex analytic band-pass filter, whose transfer function
is thus supported over positive frequencies. Let ψj(t) =

2−jψ(2−jt) denote the dilated templates of ψ at scales a = 2j .
While the wavelet transform computes X ?ψj(t) for multiple
scales 2j , the scattering transform outputs locally translation
invariant coefficients by averaging the modulus of these com-
plex coefficients. Let φ(t) be a low-pass filter, which is dilated
to adjust the averaging support: φJ(t) = 2−Jφ(2−J t). The
first order scattering coefficients are thus defined as the average
amplitude of wavelet coefficients, for any 1 ≤ j ≤ J , over half
overlapping time windows of size 2J , centered at the points
t = k2J−1, k ∈ N:

SX(j, k) = |X ? ψj | ? φJ(t = k2J−1) . (1)

Averaging results in the loss of the high frequency contents
of |X ? ψj1(t)|, which can be recovered by computing a new
set of wavelet coefficients |X ? ψj1(t)| ? ψj2(t). Averaging
their modulus defines the second order scattering coefficients
at each t = k2J−1, for any 1 ≤ j1 < j2 ≤ J :

SX(j1, j2, k) = ||X ? ψj1 | ? ψj2 | ? φJ(t = k2J−1) . (2)

This iterative procedure can be extended to higher orders.
Third order coefficients are similarly defined for any 1 ≤ j1 <
j2 < j3 ≤ J by SX(j1, j2, j3, t) = |||X ? ψj1 | ? ψj2 | ? ψj3 | ?
φJ(t). Only the two first order coefficients are exploited in the
present work.

By definition, the amplitude of second order coefficients
depends upon that of the first order coefficients. To remove
such dependency, it is convenient to introduce the normalized
second order scattering coefficients:

S̃X(j1, j2, k) =
SX(j1, j2, k)
SX(j1, k)

. (3)

In the sequel, the vector of scattering coefficients aggre-
gates, for each time position k, the first and normalized second
order coefficients:

SX(k) =
(
{SX(j, k)}1≤j≤J , {S̃X(j1, j2, k)}1≤j1<j2≤J

)
.

(4)
While providing a multiscale representation of X , the scat-
tering transform consists of a highly non linear transform, as
opposed to the underlying discrete wavelet transform.

In practice, in the present contibution, a complex wavelet
is used, consisting of the analytic part (restriction to positive
frequencies) of a Battle-Lemarié cubic spline wavelet [21].
The window φ is the cubic spline scaling function associated
to this wavelet. The ScatNet software is available at http://
www.di.ens.fr/data/software/scatnet/.

B. Fractal Dynamics

When computed from time series X possessing fractal
dynamics, or scale invariant, properties, as well as stationary
increments, the scattering coefficients have been shown [25]
to exhibit power law behavior with respect to scales:

SX(j, k) ' 2jz1(k) , (5)

S̃X(j1, j2, k) ' 2(j2−j1)z2(j1,k). (6)

As first order coefficients average amplitude wavelet coeffi-
cients, z1 directly provides an estimate of the Hurst parameter

http://www.di.ens.fr/data/software/scatnet/
http://www.di.ens.fr/data/software/scatnet/
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H , for fractional Brownian motion and is in general related to
the covariance function of data, it is thus referred to as the
correlation scaling exponent. The normalized second order
scattering coefficients provide an information beyond 2nd
order statistics [25]. Furthermore, for exactly scale invariant
processes, z2(j1) has been shown to be independent of j1:
z2(j1) ≡ z2,∀j1 [25]. For fractional Brownian motion, for
instance, z2 = −1/2. For multifractal processes, z2 has been
shown to be related to the intermittency or multifractality
parameter. In general, the z2(j1) captures the bursty or in-
termittent nature of data: The larger the z2(j1) the more
bursty in time the data. The z2(j1) are thus referred to as
the intermittency scaling exponents.

The scaling exponents z1 and z2(j1) thus provide features
characterizing the fractal dynamics of X , where z1 gives
a global regularity information which mostly depends upon
its second-order statistics, whereas the z2(j1) depend upon
higher-order statistics. Fractal properties in time series, in
general, and in HRV in particular, can also be analyzed using
other tools such as e.g., those developed and used in [18],
[19] . However, while the Scattering Transform is not primarily
intended for fractal analysis, but rather for non linear analysis,
it also formally offers an original manner to measure fractal
properties in data via non linear transformations. Such connec-
tions are made explicit in [25]. While theoretically formally
equivalent when applied to synthetic truly fractal processes,
the scattering based measurements of fractal property on real
world data may potentially differ from those obtained from
other fractal estimation tools.

C. Data preprocessing and Scattering Transform computation
As common practice for HRV analysis (cf. e.g., [14],

[26]), the lists {tn}n=1,...,N of R-peaks are transformed
into regularly sampled beat-per-minute (BpM) time
series, X(t), by linear interpolation of the measurements
{(tn/1000, 60000/(tn+1 − tn))}n=1,...,N . As F-HRV carries
by nature no information beyond 3 Hz, sampling frequency
is set to fs = 8 Hz, (using higher fs has been observed to
yield no improvement in classification).

To be able to follow the evolution along time of the health
status of the fetuses, the scattering transform is computed
in T-minute long sliding windows. For clinical practice,
obstetricians expect regular and short updates on the fetus
health status, with a typical update period of 5 to 10 min.
Thus, for this study, J = 12 is used so that 2J/fs = 512s
' 8.5min (as the optimal use of the current version of the
scattering transform used here requires power of 2 sample
size), with 50% overlap. Even though the database consists of
only 45 subjects, this sliding time-window analysis procedure
amounts to computing scattering coefficients, SX(k), for 507
different time windows, indexed by k, for each subject.

While studying the evolution along time, k, of the statistics
of SX(k) enables us to follow the time evolution of the
fetus health status, an average performed on the last-K-
windows before delivery can be assumed to measure the fetus
health status before delivery, and hence at the time when
obstetricians make the decision to operate delivery or not.

By construction of the BpM time series (interpolation at
8 Hz), octave j1, corresponding to frequencies ranging from
2 to 4Hz, contains no or little information related to F-HRV
temporal dynamics and is thus discarded from analysis.

III. DATABASE

A. Data measurement

Intrapartum CTG have routinely been monitored at HFME
over the last 30 years, with systematic STAN-based surveil-
lance for fetuses suffering from initial intermediate FHR
during labor or with high risk of fetal asphyxia (post-date
delivery, intra-uterine growth restriction, diabetes, occurrence
of abnomalies in CTG, . . . ). CTGs are measured using the
STAN, Neoventa Medical (Moelndal, Sweden) system (STAN
21 or 31 systems, 12bit resolution, 500Hz sampling rate for
the FECG signal), thus producing high quality data compared
to the less invasive but far less reliable ultrasound doppler-
effect based measurements. From CTG measurements, for
each subject, a list, {tn}n=1,...,N , of beat-by-beat R-peak
occurrence time (in ms) is available.

B. Database

Obstetricians have carefully selected subjects and annotated
files according to FIGO guidelines to create a documented
database. The following criteria were used for inclusion of a
subject into the database: The database must contain represen-
tative Healthy and Non Healthy subjects, which were correctly
diagnosed by FIGO-rules as such, as well as representative
Healthy subjects which were incorrectly diagnosed as Non
Healthy by FIGO-rules; For each subject, the F-HRV time
series are at least 30 minute long, many recordings last for
several hours; Data have good quality, i.e., there are in general
few outliers or missing beats in the R-peak occurrence time
list; Recordings are well-documented by obstetricians. The
documentation include umbilical cord artery acid-base (pH)
status describing fetal acid-status at delivery, AGPAR score,
delivery mode, delay from end-of-recording to delivery time.
It also includes description of further obstetrician motivations
for operative delivery, related to the occurrence of final brady-
cardia, shape of decelerations and their delay with respect to
contractions, level of variability and reactivity.

The database is organized into 3 classes:
i) FIGO-TN: 15 fetuses with normal fetal outcome (defined
as Apgar score of 10 at 5 minutes of life and arterial umbilical
cord pH > 7.30, hence non acidotic thus healthy) and CTG
classified as normal, thus referred to as FIGO-True Negatives ;
ii) FIGO-TP: 15 fetuses with fetal acidosis (arterial umbilical
cord pH < 7.05, hence abnormal) and CTG classified as
abnormal (hence correctly diagnosing fetal state as abnormal),
thus referred to as FIGO-True Positives ;
iii) FIGO-FP: 15 fetuses with normal fetal outcome (Apgar
score of 10, arterial umbilical cord pH > 7.30, hence healthy),
yet with pathological CTG (hence incorrectly diagnosed as
abnormal), thus referred to as FIGO-False Positives.

These 3 classes correspond to only two groups for fetal
health status: Non Healthy, equivalent to the FIGO-TP class;
and Healthy corresponding to the union of the FIGO-TN and
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FIGO-FP classes.
This three-class database provides us with a FIGO reference

benchmark reported in Table II. The goal of this case study
analysis is twofold: To improve performance, by decreasing
the number of false positives and ; To produce a typology of
these false positives to analyze why they were misclassified.

IV. RESULTS

A. Fractal dynamics and scattering transform: scaling range
and scaling exponents as discriminating features

Fig. 1. Fractal Dynamics. log2 SC(j) versus log2 2j = j (top left),
and log2 SC(j1, j2) versus log2 2j2−j1 = j2 − j1 for j1 = 2 (top right),
j1 = 3 (bottom left) and j1 = 4 (bottom right).

1) Fractal dynamics and scattering transform: It has often
been argued in the literature that fractal temporal dynamics
constitutes a relevant and fruitful model for F-HRV modeling
(cf. e.g., [14], [19], [17]). Eqs. 5 and 6 in Section II-B indicate
that, for time series with fractal dynamics and stationary
increments, the scattering coefficients are expected to show
power-law behaviors with respect to scales. To investigate such
behaviors on F-HRV BpM time series, let us compute SC(j)
and SC(j1, j2), corresponding respectively to the averages,
per class, for each class C = TP, TN,FP , of the first order
SX(j, t) and normalized second order SX(j1, j2, t) scattering
coefficients, over the last-3-windows. The choice K = 3,
which (given the overlap) corresponds to the last 17min before
delivery, and hence matches the decision time frame in clinical
situation, is further justified in Section IV-C.

Fig. 1 displays log2 SC(j) as a function of log2 2j = j
and log2 SC(j1, j2) as a function of j2 − j1, for different
j1 (95% confidence intervals, computed from within-class
standard deviations are superimposed). Linear behaviors in
such log-log plots (superimposed dashed lines) indicate that
power law behaviors such as those modeled in Eqs. 5 and 6
are observed in F-HRV BpM time series, and hold on average
across octaves 3 ≤ j ≤ 9 for SC(j) (top left plot) and for
3 ≤ j2 − j1 ≤ J − 2− j1 for SC(j1, j2). These observations

validate the relevance of the concept of fractal to describe F-
HRV temporal dynamics across time scales ranging from 1s
≤ 2j ≤ 1min approximately (or equivalently for frequencies
in 0.01 ≤ f ≤ 1Hz). That range encompasses and slightly
enlarges the frequency range involved into the Low-Frequency
vs. High-Frequency band decomposition, classically used for
adult HRV analysis [9], [14] and much debated in the context
of intrapartum F-HRV (cf. e.g.,

Fig. 1 also clearly evidences that the log2 SC(j1, j2), as
functions of j2 − j1 do not overlap when computed for
various j1, and thus that z2(j1) do depend on j1, in con-
tradistinction with the theoretical results in [25] that show
that for processes with exact scale invariance and stationary
increments SC(j1, j2) and z2(j1) should not depend on j1.
These empirical observations clearly indicate that the z2(j1)s
for different j1s do not probe the same information beyond
correlation and also fractal constitutes only a global and
approximate model for F-HRV temporal dynamics, rather than
a strictly exact one.

These empirical observations (first, scaling behaviors of the
scattering coefficients over scales that range from 0.01 ≤
f ≤ 1Hz ; second, departures from exact scale invari-
ance) suggest to measure systematically the scaling exponents
{z1(k), z2(j1, k), j1 = 2, 3, 4}, for each subject of each
class and for each time window k, and for different j1, and
to investigate their potential as discriminating features for
acidosis detection.

2) Scaling exponent estimation: Estimation of the scal-
ing exponents {z1(k), z2(j1, k), j1 = 2, 3, 4}, per subject
and per time window, is achieved by linear regressions in
log2 SX(j, k) vs. j diagrams (for 3 ≤ j ≤ 8) and in
log2 S̃X(j1, j2, k) vs. j2 − j1 (for 3 ≤ j2 − j1 ≤ J − 3− j1.

TABLE I
Discrimination. P-VALUES FROM WILCOXON RANKSUM TEST FOR THE

NULL HYPOTHESIS OF EQUALITY IN MEAN OF THE DISTRIBUTIONS.

TP vs. TN TP vs. FP FP vs. TN nonH vs. H
z1 <0.001 <0.001 0.320 <0.001
z2(j1 = 2) <0.001 <0.001 0.263 <0.001
z2(j1 = 3) 0.038 0.967 0.009 0.243
z2(j1 = 4) 0.901 0.047 0.010 0.284

3) Discriminating power of z1: Fig. 2 compares, by means
of BoxPlots, for the last-3-windows, the distributions per class
(TP, FP, TN) or health status (Non healthy; Healthy) of the cor-
relation scaling exponents z1 and z2(j1). It is complemented
by Table I, reporting the p-values obtained using the Wilcoxon
ranksum test, with equality in mean of the distributions as
null hypothesis. Both Fig. 2 and Table I clearly indicate that
scaling exponent z1 efficiently discriminates Healthy from
Non Healthy, and further also distinguishes the three pairs of
classes, with the distributions of z1 for the TN and FP classes
being much closer than they are from that of the TP class.
This is a clear indication that z1 sees the FIGO-FP as closer
to the FIGO-TN, than to the FIGO-FP and thus actually as
Healthy subjects. This is in close agreement with what has
been observed using Hurst parameter, or some multifractal
attributes as discriminative features (cf. [27], [19], [17].
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Fig. 2. BoxPlots comparing, for the last-K-windows, the distributions per
class (TP, FP, TN) and group (Non H, H) of the scaling exponents z1 (top
left) and z2(j1) for j1 = 2 (top right), j1 = 3 (bottom left) and j1 = 4
(bottom right). Central marks and box edges correspond to median and 25th-
75th percentiles, whiskers indicate extreme values that are not considered
outliers, while outliers are plotted individually.

4) Discriminating power of z2(j1): Fig. 2 and Table I show
that the intermittency scaling exponent z2(j1 = 2) achieves
a good discrimination between Healthy and Non Healthy and
between the three pairs of classes, and that the distributions of
z2(j1 = 2) for the TN and FP classes are much closer between
each other than they are from the distribution for TP class.
Interestingly, for z2(j1 = 3) and z2(j1 = 4), conclusions differ
as those two scaling exponents do not discriminate neither
Healthy from Non Healthy subjects nor the FP from the TP
classes, which constitutes the contribution major target.

This clearly indicates that the z2(j1) for different j1 do
not probe the same information, and thus confirms that F-
HRV BpM fractal dynamics are only approximately (and not
exactly) described by exact scale invariant processes.

5) Frequency band analysis: This analysis can be made
more precise in terms of frequency bands. Octave j1 = 2
represents frequencies ranging from 1 to 2Hz, i.e., around and
above 1 Hz (or equivalently time scales ranging from 0.5 to
1s), which correspond to the highest frequencies contributing
to F-HRV temporal dynamics ; z2(j1 = 2) thus measures
the temporal dynamics beyond correlation specifically at-
tached to that range that will be referred to as the highest
frequency, that thus turns out to be crucial to discriminate
Healthy from Non Healthy temporal dynamics. Note that
octave j1 = 2 corresponds to frequencies beyond the tradi-
tional High Frequency band, stemming from the adult-devised
High Frequency/Low Frequency band splitting, corresponding
respectively to [0.15, 0.40] and [0.04, 0.15] Hz. Conversely,
Octaves j1 = 3 and j1 = 4, ranging respectively from 0.5 to
1Hz and 0.25 to 0.5Hz, essentially match the High Frequency
band. The dependence structure for those frequency ranges,
measured by z2(j1 = 3) and z2(j1 = 4), is found to be non
discriminative between Healthy and Non Healthy.

Interestingly, this indicates that dependence information

beyond correlation, relevant to discriminate between the tem-
poral dynamics of Healthy and Non Healthy fetuses, must be
associated to the highest frequencies around and above 1 Hz of
F-HRV, beyond the classical HF band. This provides us with
new lights on the temporal dynamics of F-HRV.

From now on, further analyses are therefore focused on the
two scaling exponents, z1 and z2(j1 = 2), as they show the
largest powers in discriminating Healthy from Non Healthy
and FIGO-TP from FIGO-FP.

6) Interpretations in terms of frequency contents of F-HRV
and Good Variability: The boxplots in Fig 2, as well as the
scatterplot of z1, z2(j1 = 2) for the last-3-windows, in Fig. 3
(middle plot), reveal that z1 and z2(j1 = 2) for Healthy
subjects takes systematically lower values compared to those
of Non Healthy subjects.

From Eq. 5, lower z1 indicate larger contributions of high
frequencies (or fine scales) to F-HRV temporal dynamics,
compared to low frequencies (coarse scales) (where fine scales
refer to j1 = 3, hence to a ' 1s and to f ' 1Hz, and coarse
scales to j1 = 8, hence to a ' 1min or f ' 0.015Hz). This
High Frequency dominant contribution for Healthy subjects is
in agreement with earlier results obtained using multifractal
analysis (cf. [19], [17]).

Exponent z2(j1 = 2), computed from normalized second
order scattering coefficients and from Eq. 6 requires more
subtle interpretations: First, Figs 1 and 2 unambiguously show
that the log2 SC(j1, j2), and thus the z2(j1 = 2) for j1 = 2,
computed from the Non Healthy class, are systematically
larger than those obtained from the Healthy FIGO-FP subjects,
themselves larger that those produced by the Healthy FIGO-
TN subjects. This indicates that the temporal dynamics of
Non Healthy fetuses are more intermittent and bursty that of
Healthy fetuses. This can naturally be expected generically
via the interpretation that a biological system under stress
likely yields complicated reactions, materialized by bursty and
intermittent temporal dynamics. Second, resulting from the
dependence structure beyond the simple correlation structure,
z2(j1 = 2) measures the way the energy at high frequen-
cies (around 1 and 2Hz) is modulated along time: Smaller
z2(j1 = 2) for Healthy fetuses thus also indicate that such
modulations occur at higher frequency than they do for Non
Healthy subjects.

Such analyses renew the notion of good variability: Instead
of being defined as the amplitude of the fluctuations of the
BpM time series, at a a priori chosen scale, being larger than
a given threshold, it is proposed here that good variability
can be measured via the fractal paradigm, i.e., by the way
such fluctuations vary from one scale to the other, or, in
other words, by a scaling exponent. In this framework, good
variability is assessed by low correlation and intermittency
scaling exponents, that indicate a larger contribution of high
frequencies to temporal dynamics. High frequencies and low
frequencies are empirically (and not a priori) defined as the
upper and lower limits of the observed scaling behaviors
matching Eqs. 5 and 6 and corresponding to time scales of
the order of respectively, one second (or 1Hz) and one minute
(or 0.015Hz).
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Fig. 3. Classification. Left, scatterplot of z1, z2(j1 = 2) for the all time windows, for the three classes (FIGO-TP: red ’o’, FIGO-FP, black ’+’, FIGO-TN,
blue ∗), the spontaneous fluctuations of the FIGO-TN scaling exponents defines the Healthy Domain as the union of an ellipse level line, corresponding to
the largest achieved MCC, of the best fit bivariate Gaussian and z1 ≤ T1, z2(j1 = 2) ≤ T2 zones ; Middle, scatterplot of the median of z1, z2(j1 = 2) for
the last-K-windows (black numbers correspond to the identifiers s of the FIGO-FP subjects, as used in the typology in Section IV-D); ROC curve obtained
by varying ellipse level line, with best MCC shown as a (red) ’o’ (and compared to the ROC stemming from the use of the sole z1).

B. Classification performance

From the scatterplots in Fig. 3, it can be observed i) that
z1 and z2(j1 = 2) are, for the last-3-windows (middle plot)
systematically larger for Non Healthy subjects that thus live
in the upper right corner of the z1, z2(j1 = 2) plan ; and ii)
that the joint distribution of z1, z2(j1 = 2) for the FIGO-TN
class, for all time windows (left plot), can be well modeled by
a bivariate Gaussian law. This lead us to define the Healthy
Domain as the inside of the ellipse corresponding to the level
line of the fitted bivariate Gaussian law that maximizes the
Matthews correlation coefficient (MCC) of a classification
performed using the last-3-windows, complemented with the
union of the portions of the plan delimited by z1 ≤ T1,
z2(j1 = 2) ≤ T2, with Ti defined as the mean of zi for
the FIGO-TN class. That definition of the Healthy Domain as
well as the choice K = 3 is further justified in Section IV-C2.

From that definition of the Healthy Domain, each time
window can be classified as Healthy or Non Healthy. Then
a per subject majority vote procedure classifies each subject
as Healthy or Non Healthy. This is illustrated in Fig. 3 (center
plot) which shows the median last-3-window position for
each of the 45 subjects, compared to the Healthy Domain.
A Receiver Operational Characteristic (ROC) curve can be
computed by varying the bivariate Gaussian distribution el-
liptic level line. It is plotted in Fig. 3 (left plot) and shows
first that the ROC curve obtained from using jointly z1
and z2(j1 = 2) exhibits systematically better performance
than that obtained from the use of the sole z1 (see also
Table II). This clearly validates the empirical observation
reported along Section IV-A: z2(j1), related to higher order
dependence structure, captures temporal dynamics features
that are not already captured in z1 (related to the sole 2nd-
order correlation) and illustrates the benefits on the non-
linear nature of the scattering transform. Fig. 3 (left plot)
and Table II show, second, that the scattering transform based
z1, z2(j1 = 2) exponent classification procedure benefits from
excellent performance, and, at optimum (i.e., for the largest
MCC), yields significant improvements compared to results
obtained from a FIGO-criteria based classification.

TABLE II
Performance: SPECIFICITY, SENSITIVITY, POSITIVE PREDICTIVE VALUE,

F-MEASURE [28]) AND MATTHEWS CORRELATION COEFFICIENT [29].

Se Sp PPV F MCC
FIGO 1.00 0.50 0.50 0.67 0.50
z1 0.60 0.93 0.82 0.69 0.59
z1 & z2(j1 = 2) 0.93 0.97 0.93 0.93 0.90

C. Time evolution

1) Sample paths in the z1, z2(j1 = 2) plan: So far, focus
has been only on the last-3-windows before delivery. However,
the scaling exponents z1(c, s, k), z2(c, s, k, j1 = 2) can be
studied as functions of time k, to analyze the time evolution of
the fetus health status. A Healthy subject remains Healthy from
the beginning to the end of the recording, thus the correspond-
ing sample path remains quasi exclusively within the Healthy
Domain, as illustrated in Fig. 4, left plot. Conversely, for long
enough recordings, a Non Healthy subject starts evolution in
the Healthy domain and moves outside after a certain time,
as shown in Fig. 4, middle left plot. This can also be seen
on the scatterplot gathering the 507 time windows for the 3
classes: A large number of the Non Healthy subject early time
windows (when the subject is presumably still healthy) sit in
the Healthy Domain, while the late windows are outside. For
the FIGO-FP that are correctly identified as Healthy by the
scaling exponents z1, z2(j1 = 2), the corresponding sample
paths quasi-continuously remain within the healthy domain,
as illustrated in Fig. 4, middle right plot. For some FIGO-
FP that are either not correctly identified as Healthy by the
scaling exponents z1, z2(j1 = 2) or close to the border,
the corresponding sample path often leaves temporarily the
Healthy domain, before returning into it and leaving it again,
as illustrated in Fig. 4, right plot. Sample paths for all subjects
are available at perso.ens-lyon.fr/patrice.abry/SamplePaths.pdf.

These time evolutions can be further quantified. On average,
the FIGO-TP spend more than 50% of their time outside the
Healthy Domain, against less than 5% for the FIGO-TN and
FIGO-FP. Moreover, the FIGO-TP spend, on average, 6 time

perso.ens-lyon.fr/patrice.abry/SamplePaths.pdf
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Fig. 4. Sample paths in z1, z2(j1 = 2) plan. A Healthy subject (top left) performs a random walk in the Healthy Domain ; A Non Healthy subject
starts in the Healthy Domain but at some time leaves it definitely towards the upper left corner (top right) ; A FP subject correctly identified as Healthy by
the scaling exponents also remains in the Healthy Domain (bottom left) ; while a FP subject incorrectly classified as Non healthy by the scaling exponents
oscillates around the border of the Healthy Domain. Upper and lower triangles mark respectively the beginning and end of the sample paths.

windows, out of the last 7 (last ' 35 minutes before delivery)
outside the Healthy domain, against less than 1 for the FIGO-
TN and FIGO-FP. This clearly underlines a significant differ-
ence in the health status time evolution between the FIGO-TP
and FIGO-FP classes: While FIGO-TP subjects remain for
long periods of time outside of the Healthy Domain, FIGO-
FP subjects leave it only occasionally and for short periods of
time, before returning into it and possibly leave it again briefly.
The sample path of the scaling exponents z1, z2(j1 = 2) in
the corresponding 2D plan, can thus be considered as a time
evolving diagnostic tool for obstetricians.

2) Last-K-Windows and Healthy Domain: ROC curves
were computed from the last-K-windows vote procedure, for
different choices of K, 1 ≤ K ≤ 41, and compared in
Fig. 5, left plot. This clearly shows that optimal classification
performance are obtained for K = 3 (hence justifying that
choice for the design of the Healthy Domain). This indicates
that the last 17-minutes before delivery provide an optimal
time frame for scaling exponent based decision making. The
ellipse corresponding to the largest MCC for K = 3 has
thus been selected to define the Healthy Domain used for
classification. Fig. 5, right plot, shows how classification
performance degrade for other choices of K. Variance in
estimation of the scaling exponent is likely large enough to
explain that the use of the sole last window, K = 1, performs
worse than K = 3, despite corresponding to a shorter time
before delivery. For K = 5 (last 25 minutes), performance
degrade only slightly (compared to K = 3), in agreement with
the fact that FIGO-TP are found consistently Non Healthy as
early as 6 windows before delivery (cf. Section IV-C1). When
K is further increased, Sensitivity and MCC are monotonously
decreasing, a direct consequence of the fact that during early
windows, Non Healthy subjects are actually still Healthy, thus
the majority vote procedure involving early windows places
Non Healthy subjects into the Healthy Domain.

This time evolution analysis of z1, z2(j1) sample path con-
stitutes one of the rare quantitative measure of the departure
from Healthy to Non Healthy fetus and of the corresponding
departure time. Also, it quantifies objectively the optimal time
frame, K = 3 to 5, corresponding to 17 to 25min, within
which fractal dynamics must be measured to assess the health
status of fetuses and to permit an efficient detection of Non
Healthy subjects. An optimal time varying classification can

thus be constructed using a K = 3 majority vote procedure.

Fig. 5. Time Evolution. Left, ROC curves for different Ks, red ’∗’ indicate
for each K the largest MCC. It shows that K = 3 yields optimal performance.
Right, performance (Sensitivity, Specificity and MCC) as functions of K.

D. Typology for False-Positive subjects

Beyond the classification performance figures reported in
Table II, this database can be further analyzed using the
annotations provided by obstetricians, so as to determine
which FIGO-FP are actually correctly reclassified as Healthy
by scaling exponents z1, z2(j1 = 2).

Obstetrician annotations indicate that FIGO-FP subjects
FP1, FP2, FP4, FP7, FP8, FP10, FP12, FP13 and FP15 were
classified pathological by FIGO-rules because of a Long-
period of Low Variability, which precisely means that the
corresponding BpM time series show a variability of less than
5 BpM over at least 20 minutes. The scatterplot of the scaling
exponents z1, z2(j1 = 2) in Fig. 3, left plot, shows that all such
subjects remain in the Healthy Domain and are thus classified
correctly as Healthy. Obstetrician annotations also indicate
that FIGO-FP subjects FP2, FP3, FP4, FP5, FP7, FP8, FP10,
FP12 and FP15 were classified pathological because of Low
Reactivity, that is a weak reactivity of the fetus heart after
decelerations induced by contractions. Again, the scatterplot
shows that these subjects are correctly classified as Healthy
using the scaling exponents z1, z2(j1 = 2). This illustrates
that subjects annotated by obstetricians as suffering from
either low variability or low reactivity, essentially because they
present BpM time series with low amplitudes in fluctuations,
may actually very well exhibit temporal dynamics that very
much resemble that of Healthy subjects, rather than that of
Non Healthy ones. Interestingly, this confirms that scaling
exponents taking low values constitute a measure of good



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH 2013 8

variability, that turns out to be more relevant and robust
than the sole thresholding of the amplitude of the BpM time
series fluctuations. Also, it is interesting to note that for low
variability subjects (FP2, FP5, FP7, FP8, FP12, FP15), the
sole exponent z1, taking a low value, is enough to classify
them as Healthy, while for low reactivity subjects (FP1, FP3,
FP10, FP13), z1 takes a large enough value to match the Non
Healthy subject values. However, for these subjects, exponent
z2(j1 = 2) takes a low value thus maintaining them into the
Healthy domain. There is hence a clear benefit in using jointly
the scaling exponents z1 and z2(j1 = 2).

Some FP subjects remain incorrectly classified by the scal-
ing exponents z1 and z2(j1 = 2) (FP9, FP11 and FP14).
For those subjects, obstetrician annotations indicate heart rate
decelerations, which are labeled either as complicated-shape,
or as deep or as delayed after contraction. Also, FP3, FP10
and FP12 (close to Healthy Domain border) are indicated to
suffer from delayed after contraction decelerations. Earlier
studies reported in [19] or [12] on the same database show that
these same subjects were also either not correctly classified or
close to the border, using multifractal attributes or adaptive
complexity measures as features.

These observations tend to suggest that the occurrence of
complicated-shape, or deep or late decelerations in F-HRV
accompanies an actual change in the temporal dynamics of the
BpM time series, which is thus feeled by the scaling exponents.
This change tends to occur jointly on z1 and on z2(j1 = 2)
and thus affects the entire dependence structure of the BpM
time series, and not only their sole correlation structure. Also,
this change corresponds to a reduction of the contribution of
high frequencies, in a manner that tends to resemble the tem-
poral dynamics of Non Healthy subjects. Therefore, Healthy
subjects presenting such types of decelerations have undergone
a change in their temporal dynamics that corresponds, though
less pronounced, to that of Non Healthy subjects. They are
thus less easy to disentangle from Non Healthy subjects.

V. DISCUSSIONS, CONCLUSIONS AND PERSPECTIVES

The potential of the two correlation and intermittency
scaling exponents measured from scattering transforms to
characterize intrapartum fetal heart rate variability has been
explored. Such exponents constitute quantitative measures of
the fractal nature of BpM time series temporal dynamics, with
the particular property, that they explore temporal dynamics,
beyond the sole correlation level (or second statistical order),
via the entire dependence structure of data (at all statistical
order) levels.

These scattering transform based scaling exponents permit
to first confirm that fractal dynamics is characteristic of F-HRV
BpM signal, in frequencies ranging from 10 mHz to 1Hz, but
also that exact scale invariance processes (such as fractional
Brownian motions of multifractal) constitute only approximate
models. Second, they enable to show clear differences between
the temporal dynamics of Healthy and Non Healthy fetuses
(for the former, high frequencies contribute more than for the
later), and thus to renew the practical measure of good vari-
ability. Further, computed from sliding short time windows,

the scaling exponents z1 and z2(j1 = 2) enable to characterize
the evolution along time of the fetus health status, to visualize
when and how fetuses depart from the Healthy Domain, thus
providing obstetricians with a potentially interesting tool to as-
sist forming diagnostics. Combined to obstetrician annotations,
these scaling exponents also enable us to draw a typology of
FIGO-FP subjects.

The results obtained from this case study and documented
database are promising and the present study will continue
along different lines, under current investigations. At the
methodological level, features extracted from scattering co-
efficients will first be compared, both in terms of nature
(what they actually measure in data) and of performance
(how well they classify), against other classical, or less clas-
sical, linear and mostly non linear features (FIGO-criteria;
entropy-rate [15]; fractal and multifractal [27], [19], [17],
. . . ). Notably, attention will be focused on whether, besides
overall classification performance, the misclassified subjects
are always the same or differ, when using different types
of features. Secondly, it will be investigated whether the
use of the entire collection of (54 per window) scattering
coefficients into supervised machine-learning type classifiers
(such as SVM) yields better or complementary classification
performance, compared to those achieved from the sole two
scaling exponents only, retained to achieve a non-supervised
classification. At the practical level, the results obtained on
this case-study database will be comforted and complemented
on the large database currently been constituted at HFME
(above 3000 subjects targeted). A large database should permit
to address two issues: How can the individual classification-
power of various features be compared (cf. [6], [30]) ? How
should supervised classification strategies (relying on sets of
selected features) be implemented and compared ?
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