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Scale invariance and multifractal analysis constitute paradigms nowadays widely used
for real-world data characterization. In essence, they amount to assuming power law
behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The
exponents of these power laws, the scaling exponents, are then measured and involved in
classical signal processing tasks. Yet, the practical estimation of such exponents implies
the selection of a range of scales where the power law behaviors hold, a difficult task with
yet crucial impact on performance. In the present contribution, a nonparametric bootstrap
based procedure is devised to achieve scaling range automated selection. It is shown to be
effective and relevant in practice. Its performance, benefits and computational costs are
assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal
processes and shown to yield robust and accurate estimation of multifractal parameters,
despite various difficulties such as noise corruption or inter-subject variability. Finally, its
potential is illustrated at work for the analysis of adult heart rate variability on a large
database.

& 2014 Elsevier B.V. All rights reserved.
1. Motivation, context and contribution

1.1. Scale invariance and multifractal analysis

After Mandelbrot's seminal intuitions and contribu-
tions [1,2], the paradigm of scale invariance, also referred
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to as scaling, or sometimes fractal, has been used to model
and/or analyze the temporal dynamics of many different
real-world data sets produced by applications of very
different natures, including biomedical [3], internet [4],
physics [5], geophysics [6], finance [7], etc.

Irrespective of the details of the considered applica-
tions, the scale invariance concept amounts to assuming
that no specific scale plays a dominant role in the temporal
dynamics of the data, and that instead time scales, spread
within a large range, are all equally contributing to data
temporal dynamics. For such situations, data analysis
should no longer consist in identifying preferred scales,
but instead in essentially quantifying mechanisms that
relate scales ones to the others. Assessing scale invariance
requires the use of multiresolution quantities, TXða; tÞ, i.e.,
quantities that depend jointly on time (or space) and scale.
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Classical choices are increments, oscillations, or the nowa-
days commonly used wavelet coefficients. In practice, scale
invariance can be evidenced and measured via a power-
law (or algebraic) behavior of the time averages of TXða; tÞ,
with respect to analysis scales a, over a large range of
scales,

1
na

∑
k
jTX a; kð ÞjqCCqaζðqÞ; amraraM ;

aM
am

b1; ð1Þ

where na denote the number of such TXða; kÞ available
at scale a and the ζðqÞ are usually termed the scaling
exponents. These scaling exponents are classically used to
analyze, characterize and classify signals or images (cf. e.g.,
[8,9]). More recently, multifractal analysis (cf. e.g., [10,11]),
that aims at quantifying the fluctuations of regularity
along time (or space) via the so-called multifractal spec-
trum, has received considerable interest in signal and
image processing and is now considered a standard
analysis tool. A recent and powerful formulation of multi-
fractal analysis relies on a choice of specific multiresolu-
tion quantities, referred to as wavelet leaders, and is
largely used in the sequel.

1.2. Scaling range selection

The practical use of the concept of scale invariance
essentially amounts to estimating the scaling exponents
ζðqÞ. Whatever the estimation procedure, Eq. (1) above
clearly shows that practical estimation strongly relies on
the choice of the range of scales, from now on referred to
as the scaling range, where the power-law behavior holds.
While the theoretical assumption that data X are exactly
self-similar would imply an infinite scaling range (i.e.,
am-0 and aM-þ1), in practice, the scaling range must
often be considered limited, which may stem from many
different causes. At the theoretical level, models used to
describe data often yield asymptotic only power law
behaviors, as in Eq. (1). For instance, multiplicative con-
struction (underlying multifractal models) implies am-0
[10], while Long Memory models implies aM-þ1 [12].
At the practical level, finite scaling range may result from
physical (or physiological) mechanisms whose dynamics
involve a large yet bounded range of scales, while other
competing mechanisms may become dominant at finer or
coarser scales (e.g., dissipation in turbulence [5], beat-to-
beat nature in heart rate variability [13]). Also, data are
digitalized at a given rate, with sampling devices necessa-
rily destroying the power law behaviors at fine scales.
Along the same line, the necessarily finite duration of
recordings is likely to introduce power-law cut-off at
coarse scales. Additionally, noise can be superimposed to
truly scaling data, often leading to a substantial narrowing
of the range of scales where scale invariance can actually
be observed. These different mechanisms thus imply that
scale invariance in practice necessarily holds only within a
potentially large but finite range of scales, bounded below
and above by lower and upper cutoffs. Further, purely from
a performance perspective, estimation of the scaling
exponents ζðqÞ requires a careful selection of the range
of scales, where estimation should be performed. Essen-
tially, that selection is driven by a classical bias-variance
trade-off: A large scaling range yields a low variance at the
risk of bias, due to the often asymptotic nature of scale
invariance; a narrow range, centered over scales where
power law holds, reduces bias but at the price of an
increased variance.

1.3. Related works

Though most practitioners are perfectly aware both of
the crucial impact of scaling range selection on estimation
performance and of the difficulties an objective and auto-
mated selection raise, this issue remains barely addressed.
Essentially, scaling range can be selected either from
fundamental arguments related to the physics (the phy-
siology, etc.) underlying the data at hand (e.g., Kolmogorov
dissipation scale in hydrodynamic turbulence [5], sympa-
thetic–parasympathetic frequency band split in heart rate
variability [14]), or from empirical data analysis. In this
latter perspective, visual inspection and empirical experi-
ence remain the dominant practice amongst practitioners.
This is however obviously a tedious and error prone
procedure, notably for large databases, where each signal
needs to be inspected and where noise level corruption is
likely to vary individually from one signal to another, a
very common observation in biomedical data notably.
Amongst the rare attempts to address the issue in an
automated way, χ2-statistics and F-statistics based proce-
dures were devised and studied in [15] and [16] respec-
tively, to obtain the lower cutoff scale in the analysis of
Gaussian long memory processes. In [17], attempts were
made to relax the Gaussian assumption, relying on the use
of Theil's inequality coefficient. Yet, those approaches do
not straightforwardly nor relevantly extend to multifractal
analysis, toward which we concentrate in the present
contribution, where Gaussian assumptions do not a priori
constitute valid approximations.

1.4. Goals, contributions and outline

In this context, the present contribution aims at pro-
posing and assessing a practically effective procedure for
the automated selection of the scaling range in the general
wavelet leader framework for empirical multifractal ana-
lysis, thus not assuming a priori Gaussianity of the multi-
resolution quantities actually used [8,11]. To that end, a
short introduction for empirical and practical multifractal
analysis is recalled in Section 2. Inspired from the use of
the χ2-statistics in [15] and of the bootstrap framework
developed in [8], a bootstrap-based procedure is motivated
and constructed in Section 3 that permits an automated
scaling range selection. Its performance is assessed by
means of Monte Carlo simulations based on synthetic
multifractal processes according to the protocol detailed
in Section 4.1. Performance is reported and discussed with
respect to optimal mean square error, data length and
trade-off between estimation and analysis, for perfect
multifractal processes in Section 4.2. Performance and
robustness are further evaluated against noise corrupted
multifractal processes (cf. Section 4.3), or multifractal
processes with upper cutoff (cf. Section 4.4), or multifractal
processes suffering from both corruptions at fine and
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coarse scales, with in addition random amplitude effects
(cf. Section 4.5). To finish with, the procedure is illustrated
at work for adult heart rate variability analysis, and
applied to a large database (cf. Section 5). A MATLAB

procedure, designed by ourselves, will be made publicly
available from our webpages at the time of publication.

2. Scale invariance and multifractal analysis

2.1. Wavelet leaders

Let ψ0ðtÞ denote a compact support mother wavelet,
characterized by its number of vanishing moments, a
positive integer Nψ such that

R
R
tkψ0ðtÞ dt ¼ 0,

8k¼ 0;1;…;Nψ �1 and
R
R
tNψ ψ0ðtÞ dta0. ψ0ðtÞ is chosen

such that the set fψ j;kðtÞ ¼ 2� j=2ψ0ð2� jt�kÞ; jAN; kANg
forms an orthonormal basis of L2ðRÞ. The wavelet
coefficients of a signal X are defined as dXðj; kÞ ¼ 2� j=2
R
R
XðtÞψ j;kðtÞ dt (note the use of the nonconventional L1

norm that better matches multifractal analysis). For a
detailed introduction to wavelet analysis, the reader is
referred to e.g., [18].

Let further λj;k ¼ ½k2j; ðkþ1Þ2jÞ denote dyadic intervals
and 3λj;k ¼⋃mA f�1;0;1gλj;kþm, the concatenation of 3 such
intervals. The wavelet Leader LXðj; kÞ is defined from
wavelet coefficients as a local supremum, taken within a
narrow time neighborhood of t ¼ 2jk at any finer scales
2j0 o2j, [11,8]: LXðj; kÞ ¼ supλ0 � 3λjdλ0 j .

2.2. Empirical multifractal analysis

In practice, multifractal analysis amounts to forming
the so-called structure functions, corresponding to time-
averages at given scales, and assuming that they show
power-law behaviors against scales 2j:

Sðj; qÞ ¼ 1=nj∑
k
LqXðj; kÞCCLðqÞ2jζðqÞ: ð2Þ

It is now well known that a Legendre transform, applied to
the function ζðqÞ, for both positive and negative q's, yields
(an upper bound of) the multifractal spectrum D(h), cf. e.g.,
[10,11]. The function D(h) consists of a global and geome-
trical description of the fluctuations along time of local
regularity h of the sample path of X.

To avoid the computation of the function ζðqÞ for all q's,
it has been proposed to make use of a polynomial expan-
sion [8,19]: ζðqÞ ¼∑pZ1cpðqp=p!Þ. Interestingly, it was
shown that the coefficients cp can be related to the
cumulants of order p, Cp(j), of the log-leader ln LXðj; kÞ
according to

CpðjÞ ¼ c0;pþcp ln 2j; 8pZ1: ð3Þ
Often, using only the first two cumulants yields a satisfac-
tory approximation for both ζðqÞCc1qþc2q2=2 and
DðhÞC1þðh�c1Þ2=ð2c2Þ.

2.3. Estimation and scaling range selection

As detailed in [8], estimation of the ζðqÞ (resp., cp) is
commonly performed by linear regressions of log2Sðj; kÞ
(resp., ðlog2eÞCpðjÞ) versus log22

j ¼ j (cf. Eq. (4) below).
The crucial step in actually performing these linear regres-
sions consists in selecting the range of scales across which
it should be carried out so as to obtain the best perfor-
mance estimates. This range selection is the core issue of
the next section.

3. Automated scaling range selection

3.1. Multifractal parameter estimation by linear regressions

To discuss the estimation of the ζðqÞ's and the cp's
within a single framework, θ will from now on denote
either ζðqÞ or cp, and Mðm; jÞ will represent either
log2Sðm; jÞ or ðlog2eÞCmðjÞ. Eqs. (2) and (3) suggest the
generic behavior: Mðm; jÞ ¼ θjþγ. This leads to estimating
θ (and γ) by linear regressions written as

θ̂ðm; jÞ ¼ ∑
jA j

wjMðm; jÞ; γ̂ ðm; jÞ ¼ ∑
jA j

vjMðm; jÞ; ð4Þ

where j denotes the set of octaves over which the regres-
sion is performed. The weights wj and vj can be selected to
achieve weighted or nonweighted linear regressions (cf.
e.g., [4,8]).

3.2. Scaling range selection

Motivated by the most often encountered issues in
processing real-world data, it is assumed, in the present
contribution, that the set V of valid regression ranges j,
forms a continuum of contiguous octaves: j ¼ ½j1; j2�, and
V ¼ fðj1; j2Þ:1r j1o j2r J; j1o j2�1; jiAN; i¼ 1;2g,
where J is the number of octaves actually available.
Further, the restriction j1o j2�1 ensures that at least three
octaves are involved in the regression, thus requiring scale
invariance to hold at least across two octaves.

Following the approach developed in [15], the selection
of the scaling range where linear regression is to be
performed relies on the use of a standard goodness-of-fit
measure in a least-square sense:

Rðm; jÞ ¼ ∑
jA j

½Mðm; jÞ�ðθ̂ðm; jÞjþ γ̂ ðm; jÞÞ�2: ð5Þ

In [15], it is argued that when properly normalized (by the
variances σ2

m;j of the Mðm; jÞ) and when applied to m¼2,
for the wavelet coefficients of Gaussian processes,
Rðm¼ 2; jÞ follows a χ2 distribution with j2� j1þ1 degrees
of freedom. Here, because multifractal processes are con-
sidered, that are usually not Gaussian, because R is
computed from wavelet leaders, and because m is not
restricted to 2, there is no reason why Rðm; jÞ, even if
properly normalized by the variances of Mðm; jÞ, should
follow a χ2 distribution. Instead, let Fm;j denote the a priori
unknown cumulative distribution functions (CDF) of
Rðm; jÞ. Then, the quantity

Λðm; jÞ ¼ 1�Fm;j ðRðm; jÞÞ; ð6Þ

provides practitioners with a convenient measure of the
goodness-of-fit of Mðm; jÞ with θ̂ðm; jÞjþ γ̂ ðm; jÞ across the
range of scales j.

As discussed in Section 1, multifractal analysis requires,
in theory, that the scaling range should be the same for all



Table 1
Proposed algorithm: Pseudocode for the proposed algorithm.

Begin algorithm
Compute LX ðj; kÞ.
for j;m do

Compute Mðm; jÞ.
end for
for jAV do

Estimate θ̂ðm; jÞ, γ̂ ðm; jÞ (Eq. (4)).
Compute Rðm; jÞ (Eq. (5)).

end for
BEGIN PARALLEL REGION
for b in 1;…;B do

Bootstrap Ln;bX ’LX .
for j;m do

Compute Mn;bðm; jÞ.
end for
for jAV do

Estimate θ̂
n;bðm; jÞ , γ̂ n;bðm; jÞ (Eq. (4)).

Compute Rn;bðm; jÞ (Eq. (5)).
end for

end for
END PARALLEL REGION
for jAV do

Estimate F̂ m;j from fRn;bðm; jÞg
b ¼ 1;…;B

(Eq. (9)).

Compute Λ̂ðm; jÞ (Eq. (9)).
end for

Solve jD’arg max
j

∑mΛðm; jÞ (Eq. (7)).
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m. Therefore, the optimal scaling range jD can be defined
as the one that maximizes Λðm; jÞ on average across m:

jD ¼ arg max
j

∑
m
Λðm; jÞ; ð7Þ

where summation is performed over the selected statis-
tical orders m. However, in practice and with real-world
data, either because of noise issues or because data only
approximately follows scale invariance, it can prove fruit-
ful to estimate the scaling ranges independently for c1 and
c2 and analyze the extent to which they match (cf. Section
5). This can be easily achieved by measuring jD indepen-
dently for different m's:

jD
m
¼ arg max

j
Λðm; jÞ: ð8Þ

The use of Eq. (7) or (8) implies however the explicit
calculation of Λðm; jÞ, as in Eq. (6), which, in turn, implies
that distributions Fm;j must be estimated. The combined
use of wavelet leaders, consisting on a nonlinear transform
of wavelet coefficients, of various statistical orders m, and
the fact that data may a priori be not Gaussian, preclude
the theoretical derivation of Fm;j for all m and j. Instead, a
nonparametric bootstrap procedure in the time-scale
domain enables an efficient estimation, as detailed in the
next section.
Output jD , θ̂ ðm; jDÞ, γ̂ ðm; jDÞ
End algorithm
3.3. Bootstrap-based estimation of Fm;j and Λðm; jÞ

3.3.1. Nonparametric block-bootstrap procedure
Following [8], where a bootstrap procedure was devi-

sed in the time-scale domain to construct confidence
intervals for multifractal parameter estimation or for
hypothesis testing, a bootstrap based estimation of the
Fm;j is proposed here.

Nonparametric bootstrap consists of a now classical
drawing with replacement procedure [20,21]. When data
show dependencies, the drawing with replacement pro-
cedure must be applied to blocks of data [20,21]. Because
the LXðj; kÞ are dependent quantities both along time k and
scale 2j, the drawing with replacement procedure must be
applied to time-scale strips.
3.3.2. Bootstrap-based estimation
A large number, B, of time-scale block bootstrap surro-

gates, Ln;bX ðj; kÞ, b¼1,…,B, are drawn with replacement.
For each b, from the Ln;bX ðj; kÞ, the Mn;bðm; jÞ,
the ðθ̂n;bðm; jÞ; γ̂ n;bðm; jÞÞ (cf. Eq. (4)) and the Rn;bðm; jÞ (cf.
Eq. (5)) are computed. These bootstrap surrogates are used
to produce bootstrap-based estimates for Fm;j and Λ:

F̂ m;j xð Þ ¼
#fb:Rn;bðm; jÞoxg

B
; Λ̂ðm; jÞ ¼ 1� F̂ m;j ðRðm; jÞÞ:

ð9Þ

The scaling range selection finally stems from the use of
Eq. (7) or (8) with Λ̂ðm; jÞ.
3.4. Algorithm for scaling range selection and estimation

The overall procedure for the automated scaling range
selection, and multifractal parameter estimation, can be
summarized in the algorithm in Table 1.

The computational cost of the sole procedure produ-
cing estimates of θ is essentially that of the computation of
a Discrete Wavelet Transform, in OðNÞ, plus the computa-
tion of leaders (negligible) and of linear regressions, in
OðJÞ, where J ¼ log2ðNÞ. For the scaling range selection
procedure, there are three extra costs. First, linear regres-
sions yielding estimates need to be computed for each
bootstrap resample, i.e., B times. Second, linear regressions
need to be repeated for all jAV, whose size is of the order
of J2, yielding a partial cost in OðJ3Þ. Third, the optimization
problem in Eq. (7) or (8) can be solved by exhaustive
search across all jAV, at a cost in OðJ2Þ. The total cost
is thus OððBþ1ÞðNþ J3Þþ J2ÞCOðBðNþ logðNÞ3ÞÞCOðBNÞ,
which, thus, remains perfectly acceptable in practice.
Moreover, the bootstrap procedure can be easily run in
parallel, thus yielding a time complexity of OððB=PÞNÞ,
where P is the number of processing units that are used.

4. Performance assessment

To assess the performance of the proposed automated
scaling range selection procedure, to show its adaptivity
and benefits, and to illustrate its robustness against noise,
Monte Carlo simulations are conducted. They rely on the
use of a large number of independent copies of synthetic
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stochastic processes, whose characteristics are aiming at
reproducing a variety of realistic situations, ranging from
pure scale invariance processes to data corrupted by noise,
either at fine or coarse scales (or both). Simulation set-up
and statistical performance evaluation are reported below
in this section.

4.1. Methodology and numerical experiments

4.1.1. Performance evaluation
A large number NMC of realizations of a process with

perfect and controlled scale invariance and multifractal
properties are synthesized numerically. For each realiza-
tion, the scaling range is automatically selected by the
proposed procedure and used to estimate various multi-
fractal parameters, ζðqÞ or cp, arbitrarily referred to as θ. To
assess the quality of the scaling range selection procedure
with respect to multifractal parameter estimation, perfor-
mance is systematically compared against that obtained
from the MSE-optimal scaling range, i.e., the scaling range
that yields the minimum mean-squared error (MSE) esti-
mates of θ. That MSE-optimal scaling range is found by
computing, exhaustively across all possible scaling ranges
jAV, averages over Monte Carlo realizations of MSE(j ),
thus used as an ensemble average for E½ðθ� θ̂Þ2�.

A second set of simulations involve the more realistic
case where scaling is not perfect but corrupted either at
fine or coarse scales. This is simulated by either adding
Gaussian noise, which pollutes fine scales, or by high-pass
filtering, which breaks the scaling at coarse scales. These
simulations permit to address the issue of whether the
proposed algorithm is able to select a scaling range that
excludes the corrupted scales.

To report results, the following notations are used:
�
 jM ¼ ½jM1 ; jM2 � ¼ arg minjAVMSEðjÞ: scaling range that pro-
duces the minimum MSE for θ̂ , obtained from inde-
pendent copies of the process, and thus regarded as the
target to reach for the proposed procedure.
�
 jD ¼ ½jD1 ; jD2 �: automatically selected scaling range.

�
 〈jD〉¼ ½medianðjD1 Þ;medianðjD2 Þ� and madðjDÞ ¼ ½madðjD1 Þ;

madðjD2 Þ�, computed over Monte Carlo realizations.

�
 MSEj1 ðj2Þ ¼minj1MSEðj1; j2Þ and

MSEj2 ðj1Þ ¼minj2MSEðj1; j2Þ.

4.1.2. Synthetic multifractal processes
In this section, the multifractal processes used in the

numerical simulations are described. All the processes that
are considered show perfect scaling across all available
scales. In Sections 4.3–4.5 below, these processes with
perfect scaling are further corrupted either with noise at
fine scales or by filtering at coarse scales.

Canonical Mandelbrot Cascades: Multiplicative cascades
were introduced in hydrodynamics to model turbulence
and were later gathered into a unified framework by
Mandelbrot [22]. They are here thus referred to as the
Canonical Mandelbrot Cascades (CMC). Their construction
relies on an iterative split-and-multiply random procedure
on the interval. These cascades were shown to have a rich
multifractal behavior (cf. e.g., [10]), controlled by the
nature of the splitting procedure and the distribution of
the random variables that are involved. In the present
contribution, use is made of the binary CMC with log-
Poisson variables Wk ¼ 2γ expðlnðβÞπλÞ, where πλ is a
Poisson random variable with parameter λ¼ �γlnð2Þ=
ðβ�1Þ. In the following, this process will be denoted
CMCðβ; γÞ.

Lévy-stable process: The so-called α-stable Lévy process
LαðtÞ is built from a symmetric α-stable measure M(ds) as
LαðtÞ ¼

R
R
f ðt; sÞMðdsÞ, where f ðt; sÞ ¼ 1ðt�s40Þ�1ð�s40Þ

[12]. Its multifractal properties are fully controlled by the
parameter α, as shown in [23]. In the following, this
process will be denoted Lévy(α).

Multifractal random walk: Multifractal random walk
(MRW) was defined as a multifractal variation of fractional
Brownian motion (fBm), cf. e.g., [24]: XðkÞ ¼∑kGHðkÞ
expðωλðkÞÞ, where GH(k) are the increments of fBm with
parameter H, and ωλ is a Gaussian process, independent of
GH, with a particular covariance structure [24] chosen to
mimic that of CMC. MRW is not Gaussian and with
stationary increments. Its multifractal properties are con-
trolled by the parameters H and λ. In the following, this
process will be denoted as MRW ðH; λÞ.

Fractional Brownian motion in multifractal time: Frac-
tional Brownian motion in multifractal time (MF-fBm) acts
as a well-known and reference process for multifractal
behavior [25] (as Fractional Brownian motion BH(t) does
for self-similarity [1]). Use is made here of the compound
Poisson cascade version of MF-fBm, referred to as CPC-
fBm, VH;AðtÞ, introduced in [26] and abundantly studied (cf.
e.g., [27,28]): It is constructed by subordinating BH(t)
to a compound Poisson cascade A(t): VH;AðtÞ ¼ BHðAðtÞÞ.
The multifractal properties of CPC-fBm depend both on
the Hurst parameter of the fBm and on the distribution of
the random variables associated with the compound
Poisson motion. For the purposes of the present contribu-
tion, these random variables are restricted to being log-
normal, thus depending only on their mean μM and
variance σM

2
. Further, we will restrict ourselves to the case

μM ¼ 0. In the following, this process will be denoted as
CPC-fBm ðH;σ2

MÞ.
4.1.3. Simulation setup
For the numerical simulations, various sample sizes are

considered: NAf215;218g. The synthesis parameters of all
processes are set to:
�
 CMC(β,γ): β¼ 2=3, γAf1=3;2=3g.

�
 Lévy(α): αAf0:6;1:6g. ffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffip
�
 MRW(H,λ): H¼0.8, λAf 0:03; 0:08g.

�
 CPC-fBm(H,σ2): H¼0.5, and σ2

MAf0:01;0:1g.
For the analysis, Orthonormal Daubechies wavelets
with Nψ ¼ 3 vanishing moments are used. Bootstrap para-
meters are set to B¼500 bootstrap resamples. For estima-
tion, nonweighted linear regression (Eqs. (2) and (3)) is
used (cf. Section 3.1).



Table 3
Exact scaling: selected scaling range and minimum MSE: ζðqÞ.

q �2 �1 1 2 All q's

j1 j2 j1 j2 j1 j2 j1 j2 j1 j2

CMC(2/3,1/3) jM 2 11 5 11 1 3 1 3 2 11

〈jD〉 3 9 2 8 1 8 1 8 2 10

madðjDÞ 1 2 0 2 0 1 0 2 0 2

CMC(2/3,2/3) jM 2 10 5 13 1 3 1 12 2 11

〈jD〉 4 10 2 8 2 7 1 8 3 10

madðjDÞ 2 2 0 2 0 1 0 2 1 2

Lévy(0.6) jM 3 8 5 9 3 12 2 8 4 8

〈jD〉 4 9 4 9 2 6 1 5 4 10

madðjDÞ 2 2 1 1 1 1 0 1 1 1

Lévy(1.6) jM 2 6 4 6 8 12 2 8 4 10

〈jD〉 3 9 3 9 3 7 2 6 3 9

madðjDÞ 1 2 1 2 1 1 1 1 1 1

MRWð0:8;
ffiffiffiffiffiffiffiffiffiffi
0:03

p
Þ jM 2 8 2 4 2 4 2 6 2 4

〈jD〉 3 9 3 9 3 8 3 8 3 9

madðjDÞ 1 2 1 2 2 1 1 2 1 1

MRWð0:8;
ffiffiffiffiffiffiffiffiffiffi
0:08

p
Þ jM 2 7 2 4 9 11 1 4 2 4

〈jD〉 2 9 2 8 2 8 1 8 2 9

madðjDÞ 0 2 0 2 1 1 0 1 0 1

CPC-fbm(0:5;0:01) jM 1 11 1 11 1 4 4 9 4 10

〈jD〉 4 9 4 9 4 9 4 9 4 9

madðjDÞ 1 1 1 1 2 2 1 2 1 1

CPC-fbm(0:5;0:1) jM 2 4 1 11 1 8 1 3 4 9

〈jD〉 3 8 3 8 3 8 3 8 3 9

madðjDÞ 1 1 1 1 1 2 1 2 1 1
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It has been checked that results equivalent to those
reported below are obtained when either the analysis or
the synthesis parameters are varied.

4.1.4. Bootstrap parameter selection
A crucial issue in nonparametric block bootstrap pro-

cedure consists in selecting the block size (cf. [21]). The
intrinsic time-scale nature of the wavelet Leaders leads to
apply bootstrap to time-scale strips in the wavelet coeffi-
cient domain. An alternative, computationally less expen-
sive choice, consists of using time-block bootstrap
independently at each scale 2j. An extensive and huge
set of Monte Carlo simulations, not reported here, leads to
conclude that, while it is crucial to make use of time-
blocks, the use of time-scale strips does not bring sig-
nificant improvement in performance. These simulations
further showed that the time-block length W does not
significantly impact the performance of the procedure on
condition that it is chosen of the order of magnitude of the
wavelet time-support. These results are in clear agreement
with those reported in [8]. Therefore, in the sequel, all
reported results are obtained with a bootstrap procedure
applied independently, scale by scale, to time blocks of
LXðj; kÞ of size W ¼ 2 � Nψ .

4.2. Multifractal processes

4.2.1. Automated selection versus optimal-MSE
Performance is first examined for the nominal situation

of perfectly scaling processes. Tables 2 and 3 show
Table 2
Exact scaling: selected scaling range and minimum MSE: c1 and c2.

c1 c2 c1 and c2

j1 j2 j1 j2 j1 j2

CMC(2/3,1/3) jM 2 4 2 5 2 4

〈jD〉 2 8 2 8 2 9

madðjDÞ 1 1 0 2 0 1

CMC(2/3,2/3) jM 2 10 2 5 2 5

〈jD〉 2 6 2 7 2 8

madðjDÞ 0 1 0 1 0 1

Lévy(0.6) jM 4 6 1 4 2 5

〈jD〉 4 8 2 6 4 9

madðjDÞ 1 1 1 1 1 1

Lévy(1.6) jM 3 5 2 4 2 5

〈jD〉 3 8 2 7 3 8

madðjDÞ 1 1 0 1 1 1

MRWð0:8;
ffiffiffiffiffiffiffiffiffiffi
0:03

p
Þ jM 1 5 2 8 2 8

〈jD〉 3 9 3 8 3 9

madðjDÞ 1 1 1 2 1 1

MRWð0:8;
ffiffiffiffiffiffiffiffiffiffi
0:08

p
Þ jM 2 5 1 9 2 5

〈jD〉 2 8 2 8 2 8

madðjDÞ 1 1 0 1 0 1

CPC-fbm(0:5;0:01) jM 1 6 3 10 4 10

〈jD〉 4 9 4 9 4 9

madðjDÞ 2 2 1 2 1 1

CPC-fbm(0:5;0:1) jM 1 11 3 8 4 9

〈jD〉 2 8 3 8 3 8

madðjDÞ 1 2 1 1 1 1
satisfactory matches between the automatically selected
scaling range 〈jD〉 and the optimal-MSE range jM . Discre-
pancies between jD and jM , that can be observed in
Tables 2 and 3, are actually low or of minor practical
impacts. Indeed, Figs. 1 and 2 (black solid lines) clearly
illustrate, for several processes, that MSE is relatively flat
around its minimum value, so that a selected scaling range
that differs by 1, or even 2 octave(s), from the optimal-MSE
value does not cause a significant increase in MSE and is
thus an acceptable practical choice. Moreover, these fig-
ures also show the median of the bootstrap estimation of
the MSE (blue dashed lines), on which the proposed
procedure relies, that closely follows the MSE Monte Carlo
estimation. Further, both figures display the histograms of
the selected jD1 and jD2 . It can be seen that most values of jD

coincide with minimum MSE and, moreover, that MSE
remains very flat in the interval that includes most of the
selected values.

Tables 2 and 3 and Figs. 1 and 2 thus suggest that, for a
large variety of different multifractal processes, the pro-
posed procedure satisfactorily selects scaling ranges that
yield close to optimal MSE for multifractal parameter
estimation. These results further call for a number of
comments detailed in the following subsections.

4.2.2. Automated selection versus common practice
These results shed an interesting light on actual prac-

tice in multifractal analysis conducted on real world data:
Commonly, practitioners would select the largest range of



Fig. 1. Selected jD1 : Histograms of selected lower cutoff octaves jD1 for CMC(2/3,1/3) (top row), Lévy(1.6) (2nd row), MRWð0:8;
ffiffi
ð

p
0:08ÞÞ (3rd row) and CPC-

fBm(0.5,0.01) (bottom row), and for estimates ĉ1 (left column) and ĉ2 (right column). Black solid lines: MSEj2 ðj1Þ computed from Monte Carlo realizations.
Blue dashed lines: median of MSEj2 ðj1Þ computed from bootstrap replications for each realization. MSEj2 ðj1Þ is shown in arbitrary units. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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scales where a scaling behavior is visually acceptable, with
the underlying a priori intuition that the larger the scaling
range the better the estimation performance.1 On the
example illustrated in Fig. 3, such practice would likely
result in the selection of the range j ¼ ½2;11� (dashed red).
However, Tables 2 and 3 suggest that the optimal range is
actually much narrower: j ¼ ½4;9� (green mixed vertical
lines) corresponds to the optimal-MSE range and j ¼ ½3;9�
(solid blue vertical lines) is consistently obtained from the
proposed selection procedure. Therefore, the use of the
proposed automated scaling range selection procedure
leads to better estimations, even in the simple case of
perfectly scaling processes, by handling the bias-variance
trade-off in a better manner than intuition or visual
inspection would do.
1 At least, this has been our regular practice in multifractal analysis
conducted on the numerous datasets we have been analyzing.
4.2.3. Estimation versus analysis
Theoretically, multifractal analysis requires that the

scaling range is the same for all orders m. The proposed
automated range selection procedure can either be applied
to all orders jointly (cf. Eq. (7)) or independently for each
order (cf. Eq. (8)). This permits to address a very important
practical issue: Practitioners inspect visually and indepen-
dently C1ðjÞ and C2ðjÞ, when scaling ranges observed on
both plots match, this constitutes a satisfactory evidence in
favor of the relevance of the multifractal paradigm to
describe the data at hand. Conversely, significant
mismatches between the scaling range automatically
extracted independently from C1ðjÞ and C2ðjÞ constitute
indications that multifractal models are strongly ques-
tioned by data. This is further discussed in Section
5. Table 2 shows excellent matches between the selected
scaling ranges obtained from C1ðjÞ or C2ðjÞ independently
and jointly, as expected for a purely multifractal
process.



Fig. 2. Selected jD2 : Histograms of selected upper cutoff octaves jD2 for CMC(2/3,1/3) (top row), Lévy(1.6) (2nd row), MRWð0:8;
ffiffi
ð

p
0:08ÞÞ (3rd row) and CPC-

fBm(0.5,0.01) (bottom row), and for estimates ĉ1 (left column) and ĉ2 (right column). Black solid lines: MSEj1 ðj2Þ computed from Monte Carlo realizations.
Blue dashed lines: median of MSEj1 ðj2Þ computed from bootstrap replications for each realization. MSEj1 ðj2Þ is shown in arbitrary units. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Exact scaling: Logscale diagram for a perfectly scaling process (black line), as well as the detected scaling range (vertical blue line), MSE-optimal
range (vertical green-mixed line) and visually acceptable range (vertical red-dashed line), for C1ðjÞ (left) and C2ðjÞ (right). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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4.2.4. Importance of the lower and upper cutoffs
Figs. 1 and 2 (and later Figs. 5 and 8) further show that

the widths of the histograms for jD2 are much larger than
those for jD1 . This is a direct consequence of the fact that
structure functions themselves have much larger variance
at coarse scales than they do at fine scales (mostly because
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the number of available wavelet leaders decreases when
scales increase). Therefore, accurately picking j1 impacts
estimation performance far more than carefully selecting
j2 does, another crucial fact for practitioners to be aware of,
which constitutes a clear outcome of the analysis
conducted here.
4.2.5. Influence of sample size
To study the influence of the size of the realization on

the detection performance, MRW with parameters H¼0.8
and λ¼

ffiffiffiffiffiffiffiffiffiffi
0:08

p
and of length NAf210;212;214;216;218g was

studied. Table 4 reports the statistics of the automatically
selected scaling ranges. It shows excellent matches
between the automatically selected scaling range 〈jD〉 and
the optimal-MSE range jM , for all sample sizes. Table 4
shows increased discrepancies between 〈jD〉 and jM for
large sample sizes. This is a direct consequence of the fact
that MSE is more flat around its minimum, and therefore
the algorithm has more “good” scaling ranges to choose
from. To the contrary, and interestingly enough, Table 4
indicates that the proposed procedure performs even
Table 4
Exact scaling: selected scaling range and minimum MSE: Influence of data

length on selected ranges on MRWð0:8;
ffiffiffiffiffiffiffiffiffiffi
0:08

p
Þ for c1 and c2.

log2ðNÞ c1 c2 c1 and c2

j1 j2 j1 j2 j1 j2

10 jM 2 5 2 6 2 5

〈jD〉 2 5 2 5 2 5

madðjDÞ 1 1 1 1 1 1

12 jM 2 6 2 7 2 6

〈jD〉 2 7 2 6 2 6

madðjDÞ 1 1 0 1 0 1

14 jM 2 7 2 7 2 7

〈jD〉 2 7 3 7 2 7

madðjDÞ 1 1 1 1 0 1

16 jM 2 8 2 8 2 8

〈jD〉 3 9 3 8 3 9

madðjDÞ 1 1 1 1 1 1

18 jM 3 6 2 10 2 9

〈jD〉 4 10 4 10 3 10

madðjDÞ 1 2 2 2 1 2

Fig. 4. Fine scale scaling departure: Average logscale diagrams (solid black) of no
line) and median selected range (vertical dashed black line), for C1ðjÞ (left) and C2

noise-free case. (For interpretation of the references to color in this figure capti
better for short sample sizes, since in this case MSE is
sharper around its minimum.
4.3. Lower cutoff for scale invariance and robustness to noise

To assess the ability of the proposed procedure to bring
robustness against departures from perfect scaling across
all scales, the situation where an additive noise corrupts
the finest scales is first studied. Departure from exact
scaling behavior at fine scales can easily be achieved by
additively superimposing a white Gaussian noise, with
controlled and prescribed signal to noise ratio (SNR), as
illustrated in Fig. 4. The range of finer scales contaminated
by noise depends on the SNR and can thus be expressed as
½1; jNðSNRÞ�, with jN a monotonously decreasing function of
SNR. Results are reported here for CPC-fBm only (consis-
tent results were obtained for all processes).

Fig. 4 displays C1ðjÞ and C2ðjÞ, averaged across Monte
Carlo realizations, comparing the perfect scaling (‘þ ’-blue)
to the noise-corrupted (‘n’-black) cases. Fine scale corrup-
tion is obviously visible. The MSE-optimal range jM and
the median selected range 〈jD〉, both obtained from the
noisy data, are reported with dashed-black and mixed-red
lines, respectively, again showing an excellent match of
the latter to the former. This is further comforted by
the results reported in Table 5 for various SNRs,
jNðSNRÞAf4;5;6;7;8g. A large sample size is used so
ise-corrupted CPC-fBm with jN¼6, optimal MSE range (vertical mixed red
ðjÞ (right), σ2M ¼ 0:1 and N¼ 218. The blue solid line with crosses shows the
on, the reader is referred to the web version of this paper.)

Table 5

Fine scale scaling departure: Selected lower cutoff jD1 for ĉ1 and ĉ2.

jN

4 5 6 7 8

c1 jM1 5 6 7 8 9

〈jD1 〉 6 6 7 7 9

madðjD1 Þ 1 1 1 1 1

c2 jM1 5 6 6 7 9

〈jD1 〉 6 6 7 7 8

madðjD1 Þ 1 1 1 1 1

c1&c2 jM1 5 6 7 8 9

〈jD1 〉 5 6 6 7 9

madðjD1 Þ 1 1 1 1 1



Fig. 5. Fine scale scaling departure: Histograms of selected jD1 (upper row) and jD2 (lower row) for C1ðjÞ, for CPC-fBm corrupted with white noise, jN¼4 (left),
jN¼6 (middle) and jN¼8 (right). Red vertical lines indicate jM1 . (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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that enough scales remain available for estimation despite
noise.

Fig. 5 shows the histograms of the selected jD1 and jD2 for
three different SNRs. The modes of the distributions of jD1
shift towards coarser scales as the SNR decreases. Also,
the distributions are highly peaked, meaning that the
algorithm performs satisfactorily in the detection of the
corruption at fine scales. Interestingly, histograms for jD2
also shift towards coarser scales, because the algorithm
tries to compensate the loss of fine scales to achieve better
estimation performance. Fig. 5 thus clearly illustrates the
adaptivity of the procedure, in a nonsupervised manner, to
the increasing level of noise at fine scales, by selecting
both higher jD1 and jD2 .

Fig. 6 (top row) illustrates estimation performance as a
function of SNR and compares it against estimation in the
pure scaling case (SNR¼ þ1, with fixed scaling range
j ¼ ½3;15� (F) and with the automatically selected one
(denoted by jN¼0)). To the contrary, Fig. 6 (bottom row)
displays estimation performance using the fixed scaling
range j ¼ ½3;15� for all jN. Overall, Fig. 6 clearly shows that
the automated selection of the scaling range permits to
avoid the significant bias that stems from the use of the a
priori fixed range of scales j ¼ ½3;15�. An expected increase
in variance is also observed as SNR decreases because
(1) there are fewer octaves available for estimation, and
(2) the procedure is forced to select coarser octaves, which
themselves show larger variances.

The analyses reported in this section all yield similar
conclusions: The scaling range is correctly, automatically
and adaptively selected to ensure robustness against noise
and (close to) optimal MSE.

4.4. Upper cutoff for scale invariance

Let us now turn to the situation where scale invariance
is broken at coarse scales. In applications, this naturally
arises as the physical, physiological, etc., mechanisms that
produce scale invariance may cease to act at coarse enough
scales: this is e.g., the case in hydrodynamic turbulence
where the mechanisms permitting to inject energy in
flows are bounded above by the so-called integral scale
(cf. e.g., [5]).

To produce the coarse scale cutoff effect in a controlled
manner, CPC-fBm(0.5,0.01) with N¼ 215 is high-pass fil-
tered. The frequency response of the filter is chosen such
that its cutoff scale varies as 2jC , with 6r jCr10 and so
that it is maximally flat within the band-pass domain.
Results are reported here for the sole CPC-fBm processes
(consistent results were obtained for all processes). Fig. 7
displays C1ðjÞ and C2ðjÞ, averaged across Monte Carlo
realizations, comparing the perfect scaling (blue) to the
high-pass-filtered (black) case. Coarse scales corruption is
obviously visible. The MSE-optimal range jM and the
median selected range 〈jD〉, both obtained from the filtered
data, are illustrated with dashed-black and mixed-red
lines, respectively, again showing a satisfactory match of
the latter with the former, selecting scaling ranges that
differ in one or two scales from the optimal, but still inside
the scaling region in both cases. This observation is further
comforted by the results reported in Table 6 for various
cutoff scales (corresponding to jCAf6;7;8;9;10g). Table 6
however shows that, for c2, the match between jM and the
median selected range 〈jD〉 is less accurate. Fig. 7 provides a
potential explanation: The practically achieved corruption
of coarse scales, consisting of linear filtering, appears to be
much less effective for c2 (than it is for c1).

Fig. 8 shows the histograms of the selected jD1 and jD2 .
As expected, jD2 is selected larger roughly following
the increase of the filter cutoff scale 2jc . To the contrary,
the procedure mostly selects the lowest available jD1 ¼ 2 as
scaling at fine scales is not altered and using the finest
available scales always leads to lowest estimation variance.
Again, this illustrates the ability of the proposed procedure
to accommodate in a nonsupervised manner departures
from exact scale invariance.



Fig. 6. Fine scale scaling departure: Boxplots for ĉ1 (left) and ĉ2 (right) for increasing SNR, using the selected scaling ranges (top row) and the fixed scaling
range j ¼ ½3;15� (bottom row). The green horizontal line indicates the theoretical value. F and jN¼0 indicates the noise-free case, analyzed using a fixed
scaling range and the selected scaling ranges, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 7. Coarse scale scaling departure: Average logscale diagrams (solid black) of high-pass filtered CPC-fBm with cutoff octave jC¼8, optimal MSE range
(mixed red vertical line) and median selected range (dashed black vertical line), for C1ðjÞ (left) and C2ðjÞ (right). The blue dotted-lines show C1ðjÞ and C2ðjÞ
for the nonfiltered case. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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4.5. Random lower and upper departures from scaling

Let us now turn to a case study that very much
resembles the real-world situation where practitioners
analyze a large dataset, consisting of a large number of
time series: Departures from exact scale invariance may
occur at both fine and coarse scales simultaneously and
may involve scales that vary from one time series to
another. This is notably the case in biomedical applica-
tions, such as the one described in Section 5 below, where
the level of noise varies from one subject to another,
thus changing the lower cutoff, and where either the
mechanisms producing scaling or seasonal trends may
vary from subject to subject, thus modifying the upper
cutoff. For such situations, practitioners must either per-
form a systematic check for each subject or adopt a fixed
scaling range that globally matches the dataset. The for-
mer choice is time consuming, tedious and prone to error
and subjectivity, while the latter option may lead to poor
estimation performance with either dramatic biases for
given subjects or large overall variance.

To reproduce that situation and explore the benefit
of the proposed automated selection procedure, a large
number of realizations of synthetic data are considered,



R.F. Leonarduzzi et al. / Signal Processing 105 (2014) 243–257254
corrupted with white noise, where SNR (and thus jN)
is drawn at random (from the set jN ¼ f2;3;4g) and then
high-pass filtered, where the high-pass cutoff octave jC is
also and independently drawn at random (from the set
jC ¼ f7;8;9g). For each realization, estimation is performed
using: (i) the automated scaling range selection procedure,
(ii) a fixed conservative range j ¼ ð4;6Þ (FC), carefully
chosen to be inside the scaling range for all realizations,
and (iii) a fixed nonconservative range j ¼ ð3;9Þ (FNC),
chosen as the largest scaling range observed across all
time series. Results are reported here for the sole CPC-fBm
processes (consistent results were obtained for all pro-
cesses). Fig. 9 shows that estimations stemming from the
proposed automated selection procedure benefit from
performance far better than those of the nonconservative
fixed range (which shows both large biases and variances
and is thus useless in practice). Fig. 9 also shows that the
automated scaling range selection yields more robust
statistics with slightly better performance when compared
to those obtained from the FC range, while avoiding the
Table 6

Coarse scale scaling departure: Selected jD2 for ĉ1 and ĉ2.

jC

6 7 8 9 10

c1 jM2 4 6 7 7 8

〈jD2 〉 5 6 7 7 7

madðjD2 Þ 0 1 1 1 1

c2 jM2 5 7 6 8 8

〈jD2 〉 10 9 9 9 9

madðjD2 Þ 0 1 1 1 1

c1&c2 jM2 5 6 7 8 8

〈jD2 〉 6 6 7 8 8

madðjD2 Þ 1 0 1 1 1
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Fig. 8. Coarse scale scaling departure: Histograms of selected jD1 (upper row) and j
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tedious and prone to error burden of scanning all time
series independently. These results clearly illustrate the
benefits of the proposed automated scaling range selec-
tion: Its adaptivity to data. When data allow it, a large
range of scales is used (thus permitting low variance), and
conversely, scaling range is narrowed when data suffer
from severe departures from scaling (thus ensuring
low bias).

4.6. Existence of several scaling regimes

If the data under analysis were to show several scaling
regimes, the algorithmwould choose the one with the best
goodness-of-fit. This situation occurs, for example, in
Section 4.3, where multifractal processes are corrupted
with white noise that introduces a new scaling region at
fine scales. However, all other regimes could be easily
detected by running multiple instances of the algorithm
with different restrictions on the search space V. For
instance, if data are suspected to show a scaling regime
at fine scales and a different one at coarse scales, the
algorithm could be run twice with search regions V1 and
V2 such that j1r jmax

1 in V1 and j2Z jmin
2 in V2, for proper

choices of jmax
1 and jmin

2 .

5. Heart rate variability

5.1. Scale invariance in heart rate variability

Heart rate variability (HRV) data is now commonly used
to asses the cardiologic health status, with the leading
theme that a strong variability indicates good health [14]. It
is now well documented that the variability of heart rate
can be interestingly quantified by scale invariance and
multifractal properties and attributes, cf. e.g., [29,13] and
references therein. Recently, it has been shown that the
7 9 11

j
1

j
C
 = 7

7 9 11

j
2

j
C

 = 7

1 3 5 7 9 11
0

200

400

j
1

j
C

 = 10

1 3 5 7 9 110

50

100

150

j
2

j
C

 = 10

D
2 (lower row) for C1ðjÞ of high-pass filtered CPC-fBmwith jC¼6 (left), jC¼7
n of the references to color in this figure caption, the reader is referred to



Fig. 9. Fine and coarse scale scaling departures: CPC-fBm corrupted by additive white noise with random SNR and high-pass filtered with random cutoff
frequency, ĉ1 (left) and ĉ2 (right) from automated selection (A), and from fixed conservative j ¼ ð4;6Þ (FC) and nonconservative range j ¼ ð3;9Þ (FNC) scaling
ranges. The horizontal solid green lines indicate the theoretical c1 and c2. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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wavelet leader multifractal formalism yields fruitful
analysis of HRV (cf. [30,31]).

In the present contribution, 54 (2-hour long) records
are studied, taken from the Normal Sinus Rhythm RR
Interval Database, made available by Physionet (http://
www.physionet.org/physiobank/database/nsr2db/, cf. [32]).
All records correspond to subjects with normal sinus rhythm,
with a balanced male–female ratio (30/24), and with mean
age (7 standard deviation) of 61:36 ð711:63Þ years. Heart
beats are extracted by a standard and automated procedure,
with correction and revision by experts, and are provided for
analysis with annotation files. Heart beat lists are interpo-
lated, with cubic splines, into a regularly sampled time series,
at sampling frequency fs¼4 Hz. Healthy subjects only are
studied here for simplicity.
5.2. Scaling range selection and scaling parameter
estimation

The wavelet Leader multifractal formalism, as described
in Section 2, is applied to each subject to estimate para-
meters c1 and c2, with 3 different settings for the scaling
range selection: (i) automated selection (A), independently
for each time series, and with automation performed on
C1ðjÞ and C2ðjÞ independently, and C1ðjÞ and C2ðjÞ jointly;
(ii) a fixed conservative range j ¼ ð8;10Þ (FC) carefully
chosen to be well into the scaling region for all series;
and (iii) a fixed nonconservative range j ¼ ð4;13Þ (FNC),
corresponding to the largest scaling range observed across
all subjects.

Fig. 10 compares estimation performance for ĉ1 and ĉ2
obtained with these 3 different choices of scaling ranges
and Tables 7 and 8 report the median of selected jD1 and jD2
(with median absolute deviations and extreme values) and
the statistics for ĉ1 and ĉ2, leading to the following
comments and discussion.

The FNC range yields, for both c1 and c2, estimates with
(slightly) lower variance (compared to the estimates
stemming from the A and FC ranges), thus indicating a
reduced variability in estimation resulting from the use of
a large range of scales for estimation. Yet, the means (and
medians) of the estimates significantly differ from those
computed with the A and FC ranges, thus suggesting a
strong bias, resulting from the poor accounting of the
inter-individual variations of the actual scaling range
bounds.

Table 7 shows that the average selected scaling range,
from the automated selection procedure with a joint
detection for c1 and c2, reads (6, 11), with little dispersion
around the lower bound, thus showing a posteriori a
relative homogeneity of the database and a relatively low
inter-individual variability. The dispersion around the
upper bound appears larger, yet, as already discussed in
Section 4.2, optimal MSE as a function of j2 is flat, thus the
precise determination of the upper bound j2 turns less
critical in estimation performance as the variances of the
quantities over which linear regression is performed
increase with scales. Moreover, the automatically selected
scaling range is found to yield an average scaling range
close to the FC range, (8, 10), as well as estimation
performance which is very comparable to those obtained
with the FC range. The automated scaling range selection
thus performs as well as the conservative scaling range
choice, yet avoiding the issues raised by a systematic
visual inspection of each subject in the database: Feasi-
bility in terms of time devoted to the task and size of the
database; inter-practitioner and even intra-practitioner
subjectivity, etc.

Further, the automated scaling range selection proce-
dure not only yields quasi-MSE-optimal estimates but also
constitutes a data analysis tool, by outputting the range of
scales within which scale invariance holds: Scaling in a
range (6, 11) indicates scale invariance over time scales
ranging from 20 s to 10.6 min (or equivalently for frequen-
cies ranging from 0.0016 to 0.05 Hz), which is in very
satisfactory agreement with findings reported on adults
HRV in earlier contributions (cf. e.g., [13,29]). Note that
visually, inspection of scaling plots for each subject would
lead to conclude in most cases that scaling holds at finer
scales as well (again an observation consistent with earlier
findings), yet, as observed on numerical simulations in the
pure scaling case (cf. Section 4.2), the automated scaling
range selection procedure tends to narrow the scaling
range involved into estimation to optimize estimation
performance (MSE). In addition, the scaling ranges
selected independently for ĉ1 and ĉ2 closely match in a
remarkable way for these real-world data: This is a
requirement from the theory underlying the multifractal
paradigm that is not always observed on empirical data,

http://www.physionet.org/physiobank/database/nsr2db/
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Fig. 10. HRV data: Boxplots for ĉ1 (left) and ĉ2 (right) from the automated selection (A), and from fixed conservative j ¼ ð8;10Þ (FC) and nonconservative
range j ¼ ð4;13Þ (FNC) scaling ranges.

Table 7

HRV data: Statistics for jD1 and jD2 . The upper half shows the detected octaves. The lower half shows the detected scales in physical units (seconds).

jD1 jD2

median mad min max median mad min max

Octaves c1 7 1 5 8 10 1 8 14
c2 6 1 4 8 11 1 7 14
c1&c2 6 1 5 8 11 1 8 14

Seconds c1 40 0.625 10 80 320 0.625 80 5120
c2 20 0.625 5 80 640 0.625 40 5120
c1&c2 20 0.625 10 80 640 0.625 80 5120

Table 8
HRV data: Statistics for ĉ1 and ĉ2.

mean median std min max

ĉ1 A 0.10 0.12 0.09 �0.08 0.28
FC 0.11 0.11 0.09 �0.05 0.30
FNC 0.15 0.15 0.05 0.04 0.26

ĉ2 A �0.04 �0.04 0.06 �0.22 0.11
FC �0.03 �0.03 0.05 �0.18 0.15
FNC �0.07 �0.05 0.06 �0.28 0.00
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and which thus constitutes a solid evidence supporting the
use of the multifractal paradigm to model HRV at least on
that dataset. To finish with, the automated scaling range
selection procedure yields estimates c2 that are quasi-
systematically strictly negative, excluding 0 or positive
estimates but for a few subjects: This constitutes another
clear and solid evidence that scale invariance in HRV is
better modeled by multifractal models rather than by the
more standard self-similar processes, such as fractional
Brownian motion (cf. e.g., [13,29] for detailed discussions).

6. Conclusions and perspectives

In the present contribution, we have defined a proce-
dure for the automated selection of the scaling range
where scaling parameter estimation is to be conducted.
Elaborating on a previous contribution [8], the proposed
procedure relies on a nonparametric bootstrap resampling
scheme, performed on the wavelet leaders. The perfor-
mance of the procedure has been assessed by means of
Monte Carlo simulations, using perfectly scaling processes
as well as processes with significant departures from exact
scale invariance above or below a randomly set scaling
range. For all situations, the proposed procedure was
observed to yield estimates showing the lowest (or close
to the lowest) achievable MSE, thus optimizing the bias-
variance trade-off. Such satisfactory performance is
obtained using wavelet leaders; however, simulations not
reported here show that equivalent results are obtained
when estimation is based on wavelet coefficients rather
than leaders, as needed in specific applications. Also, the
procedure can be extended straightforwardly to multi-
variate analysis or to higher dimensional field (image)
analysis. At the moderate price of an increased computa-
tional cost (essentially due to the bootstrap operation), this
procedure avoids the subjective and tedious (or not
achievable for very large databases) task consisting of the
systematic visual inspection of all subjects, while yielding
comparable and even improved results. In addition to
optimal estimation, the procedure also contributes to the
analysis of scaling in data: By outputting the lower and
upper bounds of the scaling range, it provides practitioners
with indications of possible departures of scaling; also, the
comparison of the scaling ranges selected from different
multifractal attributes (c1 and c2 for instance) yields
indications with respect to the validity of the multifractal
paradigm underlying scale invariance analysis; further, the
selected scaling range itself may constitute an information
as important as the scaling exponent estimates them-
selves, discrimination between patients and healthy sub-
jects may come from the change in the scaling range
rather than changes in the scaling exponents. Finally, the
proposed procedure was shown at work on a real biome-
dical database. Its methodological nature grants the pro-
cedure a general level of validity and it can thus
be applied to real-world data produced by data of very
different natures. A MATLAB procedure, designed by
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ourselves, will be made publicly available from our web-
pages at the time of publication.
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