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Adaptive Multiscale Complexity Analysis
of Fetal Heart Rate

H. Helgason*, P. Abry, P. Gonçalvès, Cl. Gharib, P. Gaucherand, and M. Doret

Abstract—Per partum fetal asphyxia is a major cause of neona-
tal morbidity and mortality. Fetal heart rate monitoring plays an
important role in early detection of acidosis, an indicator for as-
phyxia. This problem is addressed in this paper by introducing a
novel complexity analysis of fetal heart rate data, based on pro-
ducing a collection of piecewise linear approximations of varying
dimensions from which a measure of complexity is extracted. This
procedure specifically accounts for the highly nonstationary con-
text of labor by being adaptive and multiscale. Using a reference
dataset, made of real per partum fetal heart rate data, collected
in situ and carefully constituted by obstetricians, the behavior of
the proposed approach is analyzed and illustrated. Its performance
is evaluated in terms of the rate of correct acidosis detection versus
the rate of false detection, as well as how early the detection is
made. Computational cost is also discussed. The results are shown
to be extremely promising and further potential uses of the tool are
discussed. MATLAB routines implementing the procedure will be
made available at the time of publication.

Index Terms—Fetal heart rate (FHR) monitoring, multiscale ap-
proximations, network flow algorithms, per partum acidosis detec-
tion, time series complexity.

I. INTRODUCTION

A. Per Partum Asphyxia Detection

P ER PARTUM fetal heart rate (FHR) monitoring aims at
reducing neonatal morbidity and mortality due to asphyxia.

Intrapartum foetal asphyxia is responsible for 30% of cerebral
palsy in term neonates [1]. Commonly, in making their deci-
sions, obstetricians analyze FHR visually and follow the the
International Federation of Gynecology and Obstetrics (FIGO)-
guidelines [2] or the American College of Obstetricians and
Gynecologists (ACOG) classification and guidelines [3]. This
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approach has shown to exhibit high sensitivity (high True Posi-
tive rate); however, at the price of very low specificity (high False
Positive rate) to detect fetal asphyxia and subsequent cerebral
palsy [4]. This results in a significant number of unnecessary op-
erative deliveries (instrumental delivery, caesarean) performed
for fetuses showing at birth, hence a posteriori, no sign of as-
phyxia (False Positives) [5]. Compared to spontaneous vaginal
delivery, operative deliveries are associated with higher short-
and long-term morbidity risk, both for the newborn and for the
mother [6]–[8]. For that reason, providing obstetricians with a
robust and efficient statistical index aiming at assisting them in
detecting per partum asphyxia efficiently constitutes an impor-
tant goal and challenge in daily clinical practice.

B. FHR Analysis

FHR is mainly regulated by the autonomic nervous system
whose activity highly depends on blood oxygenation content
and pressure. This makes quantitative and systematic analysis
of per partum FHR meaningful for predicting asphyxia. The
automated and statistical analysis of FHR during labor, how-
ever, appears challenging, especially since FHR during labor is
highly nonstationary and continuously evolving until delivery.
Moreover, FHR is, in many cases, characterized by decelera-
tions, occurring more or less regularly, sometimes induced by
contractions, and consisting of sharp drops in heart rate that dif-
fer radically from the normal evolution of the FHR variability
(which classically refers to high-frequency fluctuations of heart
rate). Both the FHR variability and the sharp onset of decelera-
tions may, however, have energies in the same frequency bands.
Moreover, in forming their decisions, obstetricians take into ac-
count both the number and the shapes of the decelerations and
the short-time variability of the FHR, hence making the use of
local information over of a wide range of timescales of the data.
This prevents one from using classical tools in heart rate variabil-
ity analysis that strongly rely on data stationarity and/or mostly
concentrate uniformly along time on the short-time fluctuations,
as is the case for methods based on standard spectral analysis
(see, e.g., [9]). Instead, techniques that account for multiple
timescales have recently been applied to fetal and adult heart
rate, such as fractal and multifractal analysis [10]–[13], and lo-
cal regularity analysis [14], [15]. Other appealing approaches
aim at measuring the complexity of the data using entropy (see,
e.g., [16], [17]) or nonlinear data modeling (see, e.g., [18]),
and are, therefore, grounded on concepts very different from the
ones underlying the method being presented here. Time-varying
modeling of adult heart rate has been proposed in [19], but is
rather dedicated to smooth changes that may turn inappropriate
for analysis of FHR where abrupt and transient changes occur.
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Another important challenge is that the methodology has to be
extendible for online processing of FHR in order to actually help
obstetricians and not only provide off-line postanalysis. Conse-
quently, the computational cost and memory requirements have
to allow for real-time analysis to be implemented in delivery
rooms.

C. Goals and Contributions

In this context, this contribution aims at proposing a novel
approach for measuring the complexity of FHR data, extracted
from the computation of a family of (near-continuous piece-
wise linear) approximations of FHR data. The originality of the
proposed method stems from the fact that it renews classical
trend versus variability heart rate analysis in the following re-
spect: 1) it is multiscale (allows for nonuniform time-resolution)
and adaptive (data driven), two key properties that efficiently ad-
dress the nonstationary and widely varying nature of per partum
FHR; and 2) it jointly analyzes trend and variability. Moreover,
the method is originally grounded on a network flow algorithm
enabling fast computations of the proposed per partum FHR
approximations. The principles and algorithms related to the
measure of complexity are detailed in Section III. The method
is then applied to a collection of real per partum FHR time
series, carefully constituted by obstetricians and described in
Section II. The potential of the tool in decreasing the False
Positive rate (hence, the number of unnecessary operative de-
liveries) and in performing early detections of per partum fetal
acidosis is discussed in Section IV.

II. DATASET

A. Data Recording

This case-control study was conducted using a dataset col-
lected in the years 2000–2007 at the Department of Obstetrics
of the French Academic Hospital Hôpital Femme-Mère-Enfant
(Bron, France). FHR analysis based on fetal ECG monitoring
is routinely performed for fetus with high risk of per partum
asphyxia, as indicated by suspicious FHR observed on initial
cardiotocographic recordings. The FHR is recorded during la-
bor with either a STAN S21 or a STAN S31 monitor (STAN,
Neoventa Medical, Moelndal, Sweden), using a scalp electrode
with 12-bit resolution and 500-Hz sampling rate. The recordings
typically have durations ranging from 30 min to several hours.

B. Dataset

Forty-seven FHR recordings, among patients with no obstet-
rical pathology, were selected by the obstetricians conducting
this study, according to two independent information: umbilical
cord acid-base status and FHR pattern classifications. Umbili-
cal cord acid–base status is evaluated a posteriori (i.e., after
birth) and yields a classification of the fetuses into: 1) healthy;
or 2) acidotic, to which we will refer, hereafter, as unhealthy.
FHR pattern classification is based on the FIGO criteria [2].
It is conducted by the attending obstetrician in charge during
the delivery process and leads to classifying the FHR pattern as
normal or abnormal, the latter being a key element leading to

TABLE I
DATA DESCRIPTION

the decision to perform an operative delivery. We split the avail-
able database into three groups by combining the a posteriori
information related to the fetus health status to the a priori FHR
pattern classification (also see Table I):

1) FIGO-TN: 15 healthy fetuses, normal FHR pattern;
2) FIGO-FP: 17 healthy fetuses, abnormal FHR pattern;
3) FIGO-TP: 15 unhealthy fetuses, abnormal FHR pattern.
The third group is labeled FIGO-TP, for True Positive, to

indicate acidotic (unhealthy) status of the fetus and the clas-
sification of the FHR pattern as abnormal. The same reason-
ing holds for FIGO-FP, for False Positive, and FIGO-TN, for
True Negative. These three groups can be gathered into the two
classes healthy (FIGO-TN and FIGO-FP, 32 subjects) and un-
healthy (FIGO-TP, 15 subjects). The grouping provides us with
a performance benchmark: using FIGO classification, obstetri-
cians achieved on this dataset a 100% True Positive rate at the
price of a 17/(17 + 15) ≈ 53% False Positive rate. Keeping in
mind that False Positive detection can lead to operative delivery
that should be avoided, the goal of the present contribution is
to evaluate to which extent the classification based on our pro-
posed methodology can decrease the False Positive rate while
preserving a 100% True Positive rate.

C. Preprocessing

The STAN system records and stores lists of time occurrences
of R-peaks {τk , k = 1, . . . , K} (in seconds). A common prac-
tice in heart rate analysis (see, e.g., [9], [20]) is to transform this
sequence of times into a regularly sampled heart rate time series
(yn )N

n=1 (in beats per minute, B/M) constructed by interpolating
the set of points {(τk , 60(τk+1 − τk )−1), k = 1, . . . ,K − 1}
and resampling regularly at times (tn )N

n=1 . Because the fre-
quency content of the data is essentially concentrated in the
range [0, 2.5] Hz, the resampling frequency is set to Fs = 8 Hz
(approximately twice the Shannon sampling rate). The inter-
polation scheme also accounts for missing data. It has been
carefully checked that varying either Fs or the interpolation
scheme does not affect the results reported later.

D. Sliding-Window Analysis

In daily clinical practice, obstetricians implicitly perform a
time-sliding analysis of the data, considering the characteristics
of FHR within the few previous minutes and tracking their evo-
lution along time. Once a start of acidosis is suspected and deci-
sion has been made, an operative delivery should be performed
within the next 15–30 min. At their suggestions, we perform a
sliding time window analysis of the data. To comply with the
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time from decision to operative delivery, time window lengths
are chosen close to 15/2 = 7.5 min; the dyadic specificity of
our algorithm led us to consider a 8.5-min window length, cor-
responding to the closest sample size equal to a power of two.
This could be easily changed. For the sake of simplicity, results
are presented for nonoverlapping windows, but in practice one
could overlap them to get closer to continuous monitoring. We
analyzed the last 90 min of the FHR recordings before birth
(some of the recordings were shorter than this).

III. GRAPH-BASED ADAPTIVE MULTISCALE APPROXIMATIONS

AND MEASURE OF COMPLEXITY

A. Sequence of Multiscale Approximations of FHR

1) Approximations: The adaptive multiscale (near-) contin-
uous piecewise approximations of FHR time series (yn )N

n=1 will
be of the form

ỹW (t) =
∑

v∈W

gv (t) (1)

where W denotes a finite collection of indices labeling templates
gv assumed to have disjoint time supports and to be of the form

gv (t) = (a(t − tI ,0) + b) · 1I (t), v = (a, b, I) (2)

with a, b, and I := [tI ,0 , tI ,1) referred to as the slope, offset,
and support of gv . Furthermore, the set (gv )v∈W is required to
satisfy continuity constraints, as described in Section III-B.

2) Discretization: For the purpose of constructing fast al-
gorithms, we will consider dyadic interval template sup-
ports, which when working on the time interval [0, 1) (the
data can always be rescaled to satisfy this) are of the form
Ij,k = [k2−j , (k + 1)2−j ), where j ≥ 0 is the scale index and
k ∈ {0, . . . , 2j − 1} is the dyadic index for the interval. Slopes
and offsets of templates at scale 2−j are discretized as a =
lΔb 2j , b = mΔb, l,m ∈ Z, for some predetermined offset
step size Δb > 0; see Fig. 1(left) for a schematic diagram of
two templates. Consequently, all template endpoints necessar-
ily fall on a discrete grid {(k2−J1 ,mΔb) : k = 0, . . . , 2J1 ,m =
M0 ,M0 + 1, . . . ,M1}, where 2−J1 is the finest scale and M0
and M1 are determined by the range of offsets to be considered.
Note that here the range of available templates can be further
restricted according to a priori available physiological informa-
tion, such as, natural bounds on heart rate, maximum rate of
change in heart rate, etc. A more detailed discussion about dis-
cretization and approximation theoretical issues can be found
in [21].

3) Sequence of Best Constrained Fits: We define the “best”
L-constrained approximation (or fit) ŷL as the approximation
that minimizes the mean square difference between the data
among all admissible approximations ỹW with |W | = L

C(L) := min
|W |=L

‖y − ỹW ‖2
�2

= ‖y − ŷL‖2
�2

. (3)

In this setting, L = |W |, the number of templates in (1), acts
as a measure of sparsity, with a natural interpretation as the
approximation’s dimension. For small L, ŷL mainly models the
global trends in the data (L = 1 amounts to approximating data
with a single linear trend). When increasing L, ŷL will typically

Fig. 1. Left diagram: two templates satisfying continuity constraint. gv has
time support Iv , offset m0 Δb, and slope a = (m1 − m0 )Δb |Iv |−1 ; all dyadic
intervals have endpoints of the form k 2−J 1 where the finest time scale is 2−J 1 .
Right diagram: depiction of a template graph; vertices represent templates,
broken lines show connectivities, solid lines show a path.

Fig. 2. Examples of FHR tracings (for a FIGO-FP) and best constrained
approximations ŷL for four different choices of L = |W |: L = 1, 8, 16, 32.

first refine the approximation of the largest decelerations or
variations, and then start progressively capturing the small-scale
FHR variability. In this sense, C(L) can be regarded as an
L-dependent (multiscale) measure of the complexity of the data.
Illustrations of a collection of approximations ŷL for various
L are shown in Fig. 2 for an FHR tracing from the dataset
described in Section II. Examples of (L,C(L)) curves, together
with best constrained approximations are illustrated in Fig. 3.
A description of an algorithm for efficiently obtaining ŷL and
C(L) is postponed to Section III-B.

Rather than considering (3) for a sequence of Ls, a classical
strategy could be to seek for an “optimal” L according to some
criteria. One classical approach that arises in model selection
(see, e.g., [22]) would be to consider complexity functionals of
the form Lλ(ỹW | y) = ‖y − ỹW ‖2

�2
+ λ|W |, for fixed λ > 0,

and without any constraint on |W |. Since, in general, C(L) is a
monotonously decreasing function of L, it is easy to show that
this complexity functional is actually minimized at ŷL∗ where
L∗ := arg minL (C(L) + λL). However, choosing a parameter
λ for Lλ (or picking another relevant penalization functional)
seems difficult due to the large variety of possible shapes FHR
tracings one can have. Instead, it is proposed here to use the full
curve (L,C(L)) since it avoids both the difficulties of choosing
a model selection scheme, and it also contains more information
than restricting to a single value of L. Perhaps more importantly,
as supported by the FHR analysis in [12] and [13], there is evi-
dence of scaling in FHR tracings that suggests that one should,
in fact, look at how C(L) changes with varying L.



HELGASON et al.: ADAPTIVE MULTISCALE COMPLEXITY ANALYSIS OF FETAL HEART RATE 2189

Fig. 3. Some FHR tracings (left) and corresponding plots of
(L, log(C(L)/Nw )) (right) with least-squares fits κL + θ in the range L =
1, . . . , 32 (dashed lines). Nw is the number of samples in the 8.5-min time
window being analyzed (see Section IV-A). Inserts show close-ups of the over-
laid constrained best fits (arrows point at the corresponding Ls). The method’s
adaptive capability is illustrated on arbitrarily chosen examples of FIGO-TN
(top), FIGO-FP (middle), FIGO-TP (bottom).

In the present contribution, we claim that the shape of the
curve (L,C(L)) provides information that can help to charac-
terize FHR and can be used in acidosis detection in fetus during
labor.

B. Constrained Shortest Path Algorithm

This section presents an algorithm for computing C(L) and
finding the corresponding “best” L-approximation ŷL in (3)
for a range of different and fixed dimensions L. The algorithm
elaborates on ideas presented in [21] and [23] and is based on
a graph structure and a constrained shortest path algorithm akin
to the one introduced in [24].

Although the constrained shortest path problem is, in gen-
eral, NP-complete, the special topology of our graph—namely,
that it is directed and acyclic—allows it to be solved in polyno-
mial time, i.e., with a number of operations proportional to the
number of edges in the graph; this latter depending on the dis-
cretization of templates and continuity constraints. Because the
algorithm proposed here elaborates on the constrained shortest
path algorithm framework, theoretically devised and analyzed
in [21], [23], and [24], it benefits of the properties shown to hold
therein, which fully justifies that it provides best approximations
[as defined in (3)] as well as the evaluation of its computational
complexity. Key elements are overviewed as follows.

1) Template Costs: We define the template cost (or the local
fit) cv (y) for template gv , given data y, by

cv (y) := ‖y − gv‖2
I = ‖y‖2

I − 2〈y, gv 〉I + ‖gv‖2
I (4)

where 〈f, g〉I :=
∑

tn ∈I f(tn )g(tn ) and ‖f‖2
I := 〈f, f〉I , and

writing I instead of Iv (for cleaner notation). Using (1) together
with the constraint that the templates in the collection (gv )v∈W

have disjoint time supports yields

‖y − ỹW ‖2
�2

=
∑

v∈W

‖y − gv‖2
Iv

=
∑

v∈W

cv (y) (5)

so that the squared difference between the data and an approxi-
mation ỹW is simply the sum of the template costs (cv (y))v∈W .
The terms in (4) can be broken down as follows:

‖gv‖2
I = a2〈t2 , 1〉I + (2ab − 2a2tI ,0)〈t, 1〉I

+ (a2t2I ,0 − 2abtI ,0 + b2)|I| (6)

〈y, gv 〉I = a〈y, t〉I + (b − atI ,0)〈y, 1〉I (7)

where |I| is the number of samples in I = [tI ,0 , tI ,1). The terms

〈y, 1〉I 〈y, t〉I ‖y‖2
I |I| 〈t, 1〉I 〈t2 , 1〉I (8)

can, therefore, be calculated once for every dyadic interval and
then (6) and (7) used to calculate local fits (4) for different
slopes and offsets. The property 〈u, v〉I ′′ = 〈u, v〉I + 〈u, v〉I ′ ,
for I ′′ = I ∪ I ′, I ∩ I ′ = ∅, can be used to calculate the terms (8)
recursively, going from coarse to fine scales. The full calculation
procedure is sketched in Algorithm 1.

2) Template Graph: Having a discretized set of templates,
we consider approximations (1) where the collection (gv )v∈W

satisfies certain a priori chosen constraints: 1) the support of ỹ is
the whole interval [0, 1]; 2) the templates (gv )v∈W have disjoint
time supports; and 3) for every two adjacent templates, gv and
gv ′ where t = t′ is their time of junction, |gv (t′) − gv ′(t′)| is
small (i.e., the approximation is near continuous).

The whole set of discretized templates gv can be regarded
as vertices v in a template graph, where the directed edges
(v, v′), connecting vertices v and v′, are determined by the
constraints earlier; Fig. 1(right) is a schematic diagram showing
part of a template graph. Let the cost associated with vertex v
be defined as cv (y) (i.e, the template cost for gv ). A path in
the graph is a collection W of connected vertices originating
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from a template starting at time t = 0 and terminating at a
template ending at time t = 1. Note that the set of paths in
the graph exactly corresponds to the set of approximations (1)
we wish to consider. Moreover, the squared difference (5) for an
approximation ỹW is the cost of the path W in the graph, defined
by the sum of the costs of the vertices it visits. The length L
of a path is the number of vertices (templates) it visits. Thus,
solving the minimization problem (3) for a fixed L corresponds
to finding the path of length L in the template graph that has
the minimum cost, that is, it amounts to solving a constrained
shortest path problem.

The graph is directed and vertices on any path in the graph
are visited exactly once, i.e., the graph is acyclic and, hence,
contains no loops. This fact is of extreme importance since it
gives access to fast network flow algorithms for solving (3).

3) Constrained Best Paths: Because the graph is directed
and acyclic, the vertices (vi), i = 1, . . . , |V | can be ordered us-
ing a topological ordering [25] such that for each edge (vi, vj ),
i < j is satisfied. This can be done easily by moving along the
time axis from left to right, taking time steps corresponding to
the smallest template scale under consideration. At each step,
the templates are labeled starting from the current time posi-
tion; these templates can be ordered freely since they do not
connect to each other due to connectivity constraint 2). Since
templates starting at later times are assigned a larger label, this
gives us a topological ordering. Vertex vi is referred to directly
by its topological order i. Let di(�) be the tentative cost of the
shortest path up to vertex i constituted by exactly � edges (i.e.,
paths visiting exactly � vertices). The lengths � range from 0 to
Lmax , where Lmax is the maximum number of edges allowed
in a path and is either determined by the smallest template scale
considered or chosen a priori. Define a source node v0 , who
connects to all templates (vertices) starting at time t = 0 (all
paths W start from the source node). Denote by predi(�) the
vertex that precedes vertex i in the tentative best path of length
� from the source node to vertex i. The algorithm used to extract
the constrained best path of length L is given in Algorithm 2.
Its output di(�) consists of the lowest path cost up to vertex i
constituting � edges and predi(�) is the vertex that precedes ver-
tex i on this path. Thus, Algorithm 2 finds the constrained best
cost for all vertices in the graph in just one sweep over the set
of vertices. Note that this algorithm is a simple extension of the
classical (unconstrained) shortest path algorithm and is justified
in an almost identical fashion (see [25] for detailed discussion
about shortest path algorithms).

4) Computational Costs: For Algorithm 1, Step I requires at
most 6N additions and 3N multiplications, where N denotes
the number of samples yn . In Step II, a recursion over coarser
scales is performed where each step in the inner loop requires
a constant number of additions of order O(2J1 − 2J0 ). There-
fore, the computational complexity for Algorithm 1 is O(N).
Algorithm 2 is of fixed and known computational complexity
that depends only on the size and topology (discretization and
constraints) of the template graph. Its overall computational
and memory cost scale as O(Lmax |E|) and O(|V | × Lmax),
respectively, where |V | and |E| denote the number of vertices
and edges in the graph. Thus, solving the optimization problem

(3) to calculate C(L) and the corresponding best approxima-
tions ŷL for L = 1, . . . , Lmax has low computational cost and
memory requirements.

IV. ACIDOSIS DETECTION USING FHR DATA

The procedure for computing C(L) (see Section III-B) is
now applied to the dataset described in Section II with the aim
of evaluating the benefits for per partum fetal acidosis detection.

A. Exploiting C(L)

The shape of the curve (L, log(C(L)/Nw )) (where Nw is the
number of samples in the analyzed time window), as shown in
Fig. 3, is viewed as a functional representation of the complexity
of the analyzed data and appears interesting for discriminating
unhealthy from healthy subjects. Given the limited number of
patients available in this study, blindly feeding all the values of
points on the curve into a standard classification technique is
unreasonable. Instead, we chose to model the curve paramet-
rically. Inspection of the curves for all patients in the dataset
suggests to use piecewise linear models: two-piece (four pa-
rameters) and one-piece (two parameters) models were inves-
tigated. Interestingly, and surprisingly, it has been observed a
posteriori that the best classification performance are obtained
when curves are characterized by the slope and offset parame-
ters in a least-squares linear fit κL + θ to the curve in the range
L = 1, . . . , 32. Notably, the use of the change point in values
of L in a 2-piece model did not improve classification. Further
exploration of these issues will be conducted on larger datasets
(see Section V).

We retain the model κL + θ in the remaining analysis, also
because its parameters receive simple physiological interpreta-
tions. The intercept θ corresponds to the sample variance of the
data, and thus measures the variability of the FHR, a criterion
widely used by obstetricians; very low variability indicates bad
health for the fetuses. The global variability alone is usually not a
sufficient index and obstetricians further refine it by considering
long-term (∼60 s) versus short-term (∼3.75 s) variabilities [26].
This is notably the case in situations such as per partum FHR
analyzed here, where various phenomena occurring during the
delivery process (contractions notably) complicate the use of
well-established time scale ranges. In the modeling proposed
here, as explained in Section III-A, C(L) consists of the re-
maining variability after an approximation using L segments
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has been removed from the data. Hence, it measures a pa-
rameter dependent variability of the data. The tool proposed
here offers two refinements to the usual long-term versus short-
term variability analysis: 1) it is multiscale since the time seg-
ments in the approximations can have different lengths; and
2) it is adaptive, since the set of analyzing scales are not chosen
a priori, as is the case in, e.g., spectral analysis—instead, rele-
vant scales are selected by the data as a reaction to constraining
L, the number of segments. In that second respect, the slope
parameter κ receive a natural interpretation: the smaller the
absolute value of κ (note κ ≤ 0), the heavier the short term vari-
ability. Steep slopes κ give indication that there are large scale
trends in the FHR, such as decelerations. These interpretations
are illustrated in Fig. 3.

B. Online FHR Monitoring

For each subject, the curve (L, log(C(L)/Nw )) is computed
independently for each of the M available time windows, giving
a set of characterization parameters {(κm , θm ),m = 1, . . . ,M}
(M depends on the length of the FHR recording). Fig. 4 (top
plot) shows examples of time evolutions of (κm , θm ) for the
three groups. Fig. 4 (middle plot) shows a scatter plot of the
parameters for all subjects and all windows. These plots indicate
that large absolute values of κm and θm provide evidence of
unhealthy subjects (i.e., the FIGO-TP group) and also that the
κm and θm of the FIGO-FP group differ from those of the
FIGO-TN group. Also, it can be noticed that the two parameters
appear more correlated for the unhealthy subjects.

Each data recording begins at an arbitrary time decided by the
obstetrician and ends at the time of delivery. To abide with prac-
tical clinical conditions, the following analysis will consider
quantitative detection rules that monitor the parameter values
(κm , θm ) sequentially; i.e., as m grows, sliding from one win-
dow to the next. The detection rule will either decide at some
window m = m∗ that the subject is unhealthy, or continue until
the end of the FHR recording, in which case the scheme would
classify the subject as healthy.

C. Acidosis Detection

1) One-Parameter Detection Rules: Fig. 4 (bottom plot)
shows a scatter plot of κ̄ and θ̄ that denote the extreme absolute
values of κm and θm , respectively, taken over the whole FHR
recording for each subject. The plot indicates that unhealthy
subjects form a cluster away from the healthy subjects (i.e., the
FIGO-TN and FIGO-FP groups). Kruskal–Wallis ranksum tests
applied separately to κ̄ and θ̄, to compare the healthy and un-
healthy classes, yield, in both cases, p-values of the order 10−5 ,
hence validating their potential for distinguishing healthy from
unhealthy subjects. Moreover, the dashed lines in Fig. 4 (bottom
plot) show the ideal thresholds Cκ and Cθ chosen so that the
True Positive rate (correct detection) is 100%, when κ̄M > Cκ

OR θ̄M > Cθ . Using these ideal thresholds, the corresponding
False Positive rate is around 65% using only κm , and close to
80% using only θm . Both of these detection rules give worse per-
formance than the available 53% FIGO benchmark. However, a
detection rule based on κ̄M > Cκ AND θ̄M > Cθ , yields False

Fig. 4. Top: time evolution of (κm , θm ) for three subjects; elliptic curve
demonstrates a split of domain into warning and safe zones (see Section IV-C).
Middle: scatter plot of (κm , θm ) for all the subjects and all windows; solid
symbols indicate last time window. Bottom: scatter plot of the extreme values κ̄
and θ̄; broken lines depict the ideal thresholds giving a 100% True Positive rate
using one-parameter detection rules for the dataset, arrows point in the direction
of detection regions. (FIGO-TN: circle “©;” FIGO-FP: triangle “�” FIGO-TP:
box “�”).

Positive rate around 47%, much closer to the benchmark. This
detection rule corresponds to observing a point (κm , θm ) in the
bottom right region of Fig. 4 (bottom plot). This a posteriori
analysis indicates that both κ and θ are meaningful for FHR
analysis and should be considered jointly.

2) Two-Parameter Detection Rules: Fig. 4 (top and middle)
indicates that the parameter values (κm , θm ) “live” in different
regions of the (κ, θ) plane for the two classes of healthy and un-
healthy subjects: healthy subjects concentrate in the upper-left
part, referred to as the Safe Zone; unhealthy subjects are spread
in the lower-right part, the Warning Zone. Searching for classifi-
cation boundaries is the subject of a large corpus in the statistical
learning literature (see, e.g., [22] for an overview), but because
this case study relies on a small dataset, the recourse to such
tools is difficult here (note also that each subject contributes to
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Fig. 5. Left: ROC curves for different values of ρ, the shape parameter for the
elliptical boundary θ2 + (ρκ)2 = r2 . Right: False Positive rate as a function of
ρ in the elliptical boundary θ2 + (ρκ)2 = r2 ; r is chosen a posteriori to give
100% True Positive rate; horizontal broken line corresponds to the FIGO-FP
rate.

TABLE II
PROPORTION OF ALARM TIMES FOR IDEAL BOUNDARIES (ROUNDED IN %)

measurements in a series of time windows, putting us in a sit-
uation of multiple comparisons). Instead, we will use heuristic
elliptical boundaries in the (κ, θ) plane, given by the equation
θ2 + (ρκ)2 = r2 , to explore classification performance. The pa-
rameter ρ is the ratio of minor and major axes of the ellipse and,
hence, controls the shape of the boundary. Small ρ gives more
weight to the intercept parameter θ, while conversely, large ρ
puts emphasis on the slope parameter κ. The parameter r con-
trols the distance of the boundary from origin, hence keeping ρ
fixed, r controls the size of the Safe Zone. Fig. 4 illustrates an
example of the boundary for (ρ, r) = (50, 9.5).

Receiver operating characteristic (ROC) curves, obtained by
varying r, are plotted in Fig. 5 for different values of ρ. They
show that comparable performance can be obtained for various
choices of the pair (ρ, r) and, moreover, a satisfactory closeness
to the upper left corner: for each ρ, a value of r can be found,
such that the False Positive rate does not exceed 53% while
retaining a 100% True Positive rate.

To go further, we now select, for each ρ, the value of r enabling
the lowest False Positive rate, while insuring a True Positive rate
of 100%, in accordance with the obstetrician request that not a
single unhealthy subject is missed. The corresponding False
Positive rate is represented in Fig. 5(right plot) as a function
of ρ. For large ρ, emphasis is put on κ and the False Positive
rate tends to 65%; conversely, for small ρ, emphasis is on θ
and the False Positive rate tends to 80%; in agreement with
the results reported for the one parameter detection rules. The
important observation is that for a wide range of ρ, the False
Positive rate goes down to 30%, hence improving considerably
the performance for fetal acidosis detection. This constitutes the
first major result of this study.

3) Alarm Time: We now investigate the (conservative) alarm
time, which is the position m∗ of the time window, within
which the parameters (κm , θm ) are furthest away from the el-
liptical boundary; that is, we let m∗ be where θ2

m + (ρκm )2

is maximum. This implies that the decision is made at lat-

est (M − m∗) × 8.5 min before delivery. Table II reports, as a
function of M − m∗ for different ρ, the proportion of unhealthy
subjects for which the maximum of θ2

m + (ρκm )2 occurs in
window m∗ (the table shows rounded numbers, e.g., writing 7
instead of 1/15 ≈ 6.7). For only around 10% of the subjects,
detection actually takes place in the last time window. For more
than 50% of the subjects, detections occurs for M − m∗ = 2 or
3, i.e., from 17 to 25 min prior to the operative delivery. Interest-
ingly, in 13% of the cases, detection could have been performed
as early as M − m∗ = 8 or 10, i.e., roughly 70 to 90 min before
delivery, and actually as soon as the monitoring was started,
whereas doctors normally expect that FHR complexity should
change only very gradually to become clearly apparent only in
the last 30 min before birth.

Several possible interpretations of the results can be proposed.
First, acidosis setup could be more progressive than suggested
by clinical studies, based on indirect signs as fetal pH cannot be
continuously monitored. Second, rather than identifying fetal
acidosis, this method could actually detect fetuses challenged
by hypoxia, the step systematically preceding fetal asphyxia
and acidosis. This would be very interesting for clinicians who
aim at reducing fetal exposure to asphyxia. Third, some fetuses
may undergo alternate phases of acidosis and recovery, seen as
a precursor of a permanent acidosis phase. The formulation of
such hypotheses is regarded by the obstetricians as motivating
outcome of this complexity analysis of FHR data and will be
further investigated. Therefore, this potential early detection
capability constitutes the second major result of this study.

V. CONCLUSION AND PERSPECTIVES

We have proposed and evaluated a novel and flexible method-
ology for the analysis of FHR during labor. It is based on ana-
lyzing complexity of FHR data from a collection of multiscale
and adaptive near-continuous piecewise linear approximations,
obtained using a fast network flow algorithm.

The use of the proposed measure of complexity for detecting
fetal per partum acidosis has been evaluated using a dataset
of real FHR data that were collected in situ and selected by
obstetricians as representative for healthy and unhealthy fetuses.
This method could potentially outperform the current FIGO
benchmark. The possibility of early acidosis detection is also
of particular interest on the medical side and demands further
investigation.

The analysis tools developed here can be applied to any FHR
monitoring techniques delivering beat-to-beat RR interval infor-
mation. In clinical situations, this currently excludes techniques
other than scalp electrode ECG, such as abdominal ECG or
cardiotocograph that only provide medium term (∼30 beats)
averaged R wave to R wave interval information. However, re-
cent technological progresses in such techniques may enable to
deliver beat-to-beat data. This is opening further potential uses
of the analysis tools developed in this paper.

To further comfort the potential of this new approach of FHR
analysis, the complexity characterization procedure will be ap-
plied to a much larger dataset, currently under constitution,
consisting of about 4 000 subjects. In that context, it will be
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coupled with more elaborated classification procedures based
on modern statistical learning techniques. The procedure can
also be further tuned to FHR data by incorporating more spe-
cific physiological and medical knowledge into the design of
the templates and the graph underlying the best-constrained ap-
proximation search. We also plan to use this scheme to help
locating and characterizing the per partum FHR decelerations
and, hence, to specifically focus the analysis onto them. At the
moment they are accounted for in the complexity measurements
globally and among other FHR data features.

At the methodological level, further investigations aiming at
providing understanding of the nature of the time series com-
plexity measured here might be obtained from the analysis of
reference processes, such as fractional Brownian motion. An-
other research direction is to refine the framework by consider-
ing different templates or using other measures of local fits. It
seems also necessary to tailor the methodology better to online
monitoring, where one could imagine leveraging the sequential
property of the network flow algorithm being used; it marches
forward in time and does not need to look at data from the
past that makes the algorithm particularly well suited for online
processing of data. Another exciting direction is to extend this
framework for direct processing of RR intervals; this would not
require the data to be interpolated and resampled. This could be
fruitfully compared to the noteworthy method proposed in [19],
which relies on ARMA-based history dependent point process
modeling of the RR interval series.

MATLAB toolbox implementing the methodology will be
made publicly available at the time of publication. The param-
eter settings for the template graph used in the analysis in Sec-
tion IV will also be made available.
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