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Abstract—We introduce a new approach to the modeling of
network traffic, consisting of a semi-experimental methodology
combining models with data and a class of point processes (cluster
models) to represent the process of packet arrivals in a physically
meaningful way. Wavelets are used to examine second-order
statistics, and particular attention is paid to the modeling of
long-range dependence and to the question of scale invariance at
small scales. We analyze in depth the properties of several large
traces of packet data and determine unambiguously the influence
of network variables such as the arrival patterns, durations, and
volumes of transport control protocol (TCP) flows and internal
flow structure. We show that session-level modeling is not relevant
at the packet level. Our findings naturally suggest the use of
cluster models. We define a class where TCP flows are directly
modeled, and each model parameter has a direct meaning in
network terms, allowing the model to be used to predict traffic
properties as networks and traffic evolve. The class has the key
advantage of being mathematically tractable, in particular, its
spectrum is known and can be readily calculated, its wavelet spec-
trum deduced, interarrival distributions can be obtained, and it
can be simulated in a straightforward way. The model reproduces
the main second-order features, and results are compared against
a simple black box point process alternative. Discrepancies with
the model are discussed and explained, and enhancements are
outlined. The elephant and mice view of traffic flows is revisited
in the light of our findings.

Index Terms—Internet data, long-range dependence, multifrac-
tals, point processes, scaling, time series analysis, traffic modeling,
wavelets.

I. INTRODUCTION

WE seek to model, and understand, the statistical nature
of the flow of data packets passing through telecommu-

nications links, such as high-speed links in the Internet “back-
bone.” By data packets, we meanInternet protocol(IP) packets,
which are the universal medium of transport in the present-day
Internet. For our purposes, the effect of the highly complex, lay-
ered structure of the network on data can be abstracted to the
concept offlow. A flow is a set of packets that are part of an in-
dentifiable exchange between two end points; for example, they
may carry the bytes of a file transfer between two computers (see
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Section III-A for a technical definition). At a given measurement
point in the interior of the network, packets from many thou-
sands of intermingled flows pass, and individual flows are seen
to begin, pass through bursty and idle phases, and end. Flows are
highly variable, with durations ranging from less than a second
to many hours, from just a single packet to billions [see Fig. 2(b)
and (c)].

The set of arrival times of packets can be viewed as a point
process on the real line. A central aim of traffic modeling is to
be able to describe key features of this process, using parame-
ters with direct and verifiable physical meaning in terms of the
nature of traffic sources and the network’s transformations of
them. This is important for network engineering because the de-
gree and nature of traffic burstiness determines the properties of
queuing delays (and losses) in switching devices and, thereby,
the quality of the services delivered over the network.

Although many traffic models have been proposed to date (for
point process examples, see [1] and [2]), none have been ac-
cepted as definitive. The complexity required to adequately de-
scribe the statistics of traffic is potentially very high. First, the
structure of packet arrivals within flows could in itself be rich.
Then, packet arrivals could be correlated across flows through
interactions in queues and through reactive flow control such
as the transport control protocol (TCP) that is active in the In-
ternet. This feedback mechanism attempts to control the rate of
most flows to avoid packet loss and maximize link utilization,
effectively linking different flows dynamically. At another level,
the statistics of “sessions,” which are groups of flows correlated
through a higher level protocol or computer application, could
be essential to take into account (this approach is adopted in [3]).
For example, the downloading of a webpage results in the gener-
ation of multiple correlated TCP file transfers corresponding to
the text, data, and images constituting the page. In this paper, we
propose the use of a particular class of point processes:Poisson
cluster models[4]. They are relatively simple, yet strongly mo-
tivated by empirical features of traffic, in particular, the role of
flows, and their tractability allows the quantitative investigation
of key properties as a function of meaningful network param-
eters. They are also easily synthesized and have marginals that
are intrinsically positive. Through these models, we are able to
give strong answers to several outstanding questions and clarify
many issues. Although cluster models have been used in various
fields such as meteorology, we are not aware of prior applica-
tions to IP packet traffic modeling. Very recent applications of
cluster processes in networking have concerned the Web’s hy-
pertext transfer protocol (HTTP) request arrivals [5] and TCP
packet losses [6].

1053-587X/03$17.00 © 2003 IEEE
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Our primary statistical tool is wavelet analysis. Apart from
the high computational efficiency of the discrete wavelet trans-
form that is necessary for the examination of the huge data
sets typical in telecommunications, this is motivated by their
natural suitability for signals with scale invariance. The dis-
covery of scale invariance in packet data—the so called “fractal
traffic”—was the most significant development in tele-traffic in
the 1990s. On the whole, it refers to the near universal presence
of long-range dependence (LRD), or persistent memory over
“large” time scales, in time series extracted from raw traffic
data such as byte or packet counts in successive time intervals
[7]. The accepted physical explanation for this phenomenon
lies in the heavy-tailed (finite mean, infinite variance) nature
of source characteristics including session durations and file
sizes. Long memory, however, is not the only issue concerning
scaling. An equally remarkable feature, but one receiving far
less attention, is the ubiquity and distinctiveness of the char-
acteristic onset scale of LRD, which is found at around 1 s.
One unresolved issue is what features of traffic determine this
scale? Evidence for other kinds of scaling behavior have also
been reported. Multifractal scaling [8], [9] has been suggested
as a model of the extreme burstiness often observed at small
scales (below 1 s) and sometimes above it [10], and infinitely
divisible cascades [11] have been put forward as a means of
unifying the scaling behavior across all scales. For a recent
survey of wavelet methods and their application to scaling be-
havior in traffic, see [12].

One of our main goals was to explain all forms of scaling
present in both statistical and networking terms. The impor-
tance of this arises from the fact that scaling typically implies
high variability, which, in the case of traffic entering switches,
implies worse queuing performance, as explored, for example,
in [13]. Furthermore, its presence implies an underlying mech-
anism or mechanisms that need to be understood. Unless the
source of such behavior is known, it will not be possible to pre-
dict how it, and its impact, will evolve over time. We contribute
substantially to this issue. Through a model with a firm phys-
ical basis, we show that there are good reasons to believe that
there is in fact no true scaling behavior at second order over
small scales, which in turn implies no true multifractal behavior
over those scales. We also provide explicit formulae capable of
predicting the onset scale of LRD as a function of meaningful
parameters.

Another goal is to contribute to a clarification of the meaning
and role of the elephant (large but rare) and mice (small but nu-
merous) flow concept, which has become popular in describing
packet traffic. Rather than proposing fixed definitions of these
categories, we let the data speak for itself and point out the or-
thogonal roles of “volume” versus “rate”-based approaches and
the importance of time-scale.

This paper builds on the recent work described in [14]. The
starting point of that paper was the surprising observation that
the scaling seen in the point process of packet arrivals is broadly
similar to that found in the arrival process of flow arrival points
only, namely, clear LRD at large scales, evidence for a second,
though less clear, scaling regime at small scales, and a transition
scale at around 1 s separating them. This similarity led to the
following question: In what way are the twin scaling regimes at

the IP level due to or influenced by the corresponding features
at the flow level? Of the conclusions, the following, based on a
second-order wavelet analysis, directly inspires the models we
investigate here.

• The scaling in the flow arrival process is not responsible
for that at the IP level, and further, it does not influence it
significantly at either small or large scales.

• Dependencies between packet arrival processes across dif-
ferent flows are very weak.

• The structure at small scales has its origin in the packet
patterns within flows.

• The LRD has its origins in the heavy-tailed nature of flow
volumes (a known result) and does not have a component
due to packet processes within flows (new result).

These findings (which are both discussed more fully and
considerably extended in Section III and are consistent with
recent work of [15]) have two very strong implications for
traffic modeling. They suggest that,for the purpose of mod-
eling the overall process of IP packets, flows can be treated
as statistically independent. Thus, the point process of packet
arrivals is seen as the superposition of independent point pro-
cesses: one for each flow. Second, the lack of impact of the
detailed nature of the flow arrival statistics suggests that they
can be effectively modeled as a Poisson process. Finally, the
isolation of the LRD as a property of the number of packets
per flow allows them to be modeled using simple and intuitive
heavy-tailed ingredients. Cluster models are ideally suited to
modeling the above features.

We point out that although the arrival process of flows is not
important for the overall packet process, it is of great interest
in other contexts, such as the performance of web servers and
proxies. Flow arrivals themselves have a rich structure, and there
are many open questions. Some recent results can be found in
[16] and [17].

The traces studied here and in [14] are of lightly loaded links.
The central observation of independent flows underlying our
model is likely to break down on heavily loaded links; however,
exactly when this will occur is not clear. Low utilization
notwithstanding, it is likely that a backbone link transports
groups of flows that share bottleneck links elsewhere in the
network, resulting in in-group dependencies. Nonetheless,
such interactions were found to be negligible for the traces
considered here, suggesting that the model could still apply at
quite high utilizations and be a useful dimensioning tool for
core networks.

The paper is structured as follows. Section II reviews the
wavelet transform and gives examples of its use for scaling pro-
cesses. In Section III, the technical details of the data and its
processing are given, followed by the body of data analysis un-
derlying the choice of the models. Section IV is the main part of
the paper, where the cluster models are introduced, their proper-
ties given, and the fit to the data examined. Further analyses on
the data are then performed, leading to suggested refinements to
the model in Section IV-D, and a discussion on elephants and
mice. Section V uses the model to examine in a well defined
context the question “does traffic become more bursty or more
Poisson as link rates increase? and related issues. We conclude
in Section VI.
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Fig. 1. LD examples. (a) Poisson and fGn. (b) Poisson and Gamma-renewal. (c) GR and fGn. The upper dashed curves are the LDs of the superpositions. The�

mark a characteristic upper saturation scalej for Gamma renewal.

II. WAVELET ANALYSIS

To study scale invariant properties such as long-range depen-
dence we use a wavelet-based analysis. A thorough description
of wavelet transforms can be found in [18]; in addition, see [19]
for theoretical and practical details of their use in the spirit of
this paper. Here, we briefly describe the key features, address
some issues of particular importance at small scales, and give a
short guide to interpretation.

A. Definitions and Properties

Performing the discrete Wavelet transform (DWT) of a
process consists of computing coefficients that compare, by
means of inner products, against a family of functions

(1)

The wavelets derive from an ele-
mentary function , which is called the mother wavelet, dilated
by a scale factor and translated by . They are re-
quired to have excellent localization properties jointly in time
and frequency. The function is, moreover, characterized by its
number of vanishing moments, which are defined as the largest
integer such that for .
Wavelets with higher are smoother and are capable of an-
alyzing signals with higher order divergences. A key practical
advantage of the DWT is the fact that the coefficients can be
computed from a fast recursive algorithm with computational
complexity .

Let be a continuous-time stationary process with power
spectral density . It can be shown that the variance of its
wavelet coefficients satisfies

(2)

where denotes the Fourier transform of. If possesses
scale invariance over a range of scales, for example, if it is LRD
defined as a power law divergence of the spectrum at the origin

with (3)

then in the limit of large scales, (2) becomes

(4)

where is close to a constant. In fact,
(2) can be viewed as defining a kind of wavelet energy spectrum,
which is analogous to a Fourier spectrum but much better suited
to the study of fractal processes. Just as in the Fourier case, the
wavelet spectrum of a sum of independent processes is just the
sum of the individual wavelet spectra, and multiplication by a
constant results in scaling the spectrum by.

To estimate the wavelet spectrum from data, the time averages

where is the number of available at octave (scale
), perform very well because of the short-range depen-

dence in the wavelet domain. A plot of the logarithm of these
estimates againstwe call thelogscale diagram(LD):

versus

In these diagrams, straight lines constitute experimental evi-
dence for the presence of scaling. For example, a straight line
observed in the range of the largest scales with slope
(see Fig. 1) betrays long memory. More generally, semi-para-
metric estimates of scaling exponents with excellent properties
can be formed using weighted regression to measure the slope
over the range of scales where the scaling exists.

B. Making Sense at Small Scales

The analysis at small scales is considerably more difficult
than at large scales. We address two relevant issues that are fre-
quently ignored in applied work, in particular, in network traffic
analysis.

1) Confidence intervals often receive little attention or are
based strongly on Gaussian assumptions. Since, at small
time scales, TCP/IP data is highly non-Gaussian, we use
a semi-parametric technique based on the short-range de-
pendence property of the sequences for each to
estimate them from data in a robust way.
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2) The pyramidal algorithm that calculates the
requires initialization by projecting into

some initial approximation spaceat an initial scale
. If this step is omitted, initialization errors result,

which can be very significant for the smallest scales:
and , where . Furthermore,

frequently is only available via a discretised version
: the result of a nonoverlapping averaging filter

being applied to about the points , where
is the sampling period. This limits the available scales to
those above and again results in errors over
the first two available octaves and . This
is important as three fourths of the data is concentrated at
these scales! For point processes, however, the initializa-
tion can be performed exactly. For simplicity, we use the
Haar wavelet, where the initialization amounts simply
to taking normalized counts, and use the higher order

Daubechies wavelets to check the robustness
of the conclusions.

C. Examples

In Fig. 1, LDs are given of some continuous time processes.
The Fourier spectrum of each of these is known analytically, and
so, we can evaluate the exact wavelet spectrum through (2). Here
and below, the horizontal axis is calibrated both in scale(top
edge of plot, in “microseconds” (mus), “seconds,” or “hours,”
as appropriate) and octave .

In plot (a), the horizontal line is for a Poisson process
with , viewed as a continuous-time process with delta
functions at each arrival point, with spectrum (in
this paper, we exclude the term corresponding to the
“mean”). Equation (2) predicts , which is
a flat wavelet spectrum corresponding to perfect but trivial
second-order scaling . It is important to understand
that this level corresponds to variance and not to rate: Means
are eliminated by the wavelet analysis. The other straight line
with slope is a continuous timefractional Gaussian
noise(fGn): a generalized process with perfect scaling given
by . The dashed curve in plot (a) is the LD
of a superposition of the above two processes. Its form is a
reminder that to add two curves in a log-log plot, one is really
adding the underlying quantities and then taking the logarithm
of the total. This same point is illustrated further in plot (b),
where a Poisson process with and a Gamma renewal
process with shape parameter of 0.2 are plotted; the dashed line
representing their superposition is visually much closer to the
Gamma renewal curve at large scale. Finally, plot (c) combines
a Gamma renewal process with a fGn. The spectrum of Gamma
renewal processes will be explored in detail in Section IV,
where plot (c) will be particularly instructive in relation both
to data and to cluster models.

III. EXPERIMENTAL RESULTS

In this section, we describe the main experimental findings
underlying the models we subsequently select. We begin with
some details on the data itself and then summarize and extend
prior work.

TABLE I
TIME PERIODS

A. Raw Data

We analyze Internet traffic traces taken from lightly loaded
links in a variety of geographical regions, with a wide range of
average bit rates. The main body of traces we study—a selec-
tion from the Auckland II and Auckland IV data sets [20]—were
recorded from the Internet access link of the University of Auck-
land. High precisionDAGhardware allowed loss-less measure-
ment of the OC3 ATM (155 Mb/s) link with timestamp accu-
racy of 100 ns [21]. The traces gather the timestamp of each IP
packet, the packet size, and whether it is transporting TCP data
or data from other protocols such as theuser datagram protocol
(UDP). UDP offers a simple transfer service with no flow con-
trol and is used for example for video streaming. As TCP “fla-
vored” IP traffic makes up over 80% of all packets and bytes, we
extract and focus on this component. As summarized in Table I,
we focus on two 3-h periods during weekdays: 2:00 to 5:00 and
13:00 to 16:00, corresponding to apparently stationary traffic at
“low” and “high” rate, respectively. The PrecisionDAG mea-
surement was also used for the very recent high-rate Abilene
trace collected at an OC48 (2.45 Gb/s) Internet backbone in In-
dianapolis, made available by NLANR [22].

We also study some traces with less accurate timestamps.
UNC-a0 and UNC-a1, which were recorded by the DiRT group
[23] at the University of North Carolina, are noteworthy for their
high bit rate. The three traces included from a small Internet
provider based in Melbourne (MelbISP) provide diversity in the
packet rate within individual flows, owing to the speed limita-
tions of modems.

For time and space reasons, not all analyses were performed,
or reported on, over all traces; however, conclusions were al-
ways based on consistent results over multiple traces.

B. Time Series Extraction

The raw traces are processed with the CAIDA Coralreef tool
suite [24] and our own C programs, allowing the extraction
of each IP packet header and timestamp (for further details of
TCP/IP protocols, see [25]). The information therein allows IP
packets to be categorized into differentflows. A flow is defined
as a set of time-ordered packets with the same 5-tuple: IP pro-
tocol carried, source address, destination address, source port
and destination port, where no packet inter-arrival exceeds a
given time interval, fixed here at 64 s [24].
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Fig. 2. TCP packet arrivals. (a) Ubiquity of biscaling behavior. (b) Heavy-tailed body and tail ofP (number packets in flows). (c) Heavy-tailed flow durationsD.

From the raw data, many different time series can be con-
structed. At the “IP level,” where flows are not individually
tracked, the key quantity is the set of arrival times of
packets indexed in arrival order . This time se-
ries defines the continuous time point process of packet
arrivals we wish to model or, equivalently, the interarrival se-
quence . At the “flow level,” sta-
tistics of individual flows are collected, beginning with the or-
dered arrival instants , of flows. The intrin-
sically discrete series and , give the
number of packets and durations in seconds respectively of suc-
cessive flows ( is only defined if ). We also lo-
cated and stored, for each flow, a complete list of packet inter-ar-
rival times.

Considerable computation is required to perform the packet
and flow level analyses here. The UNC-a0 trace, for example,
consists of 2 GB compressed and contains 800 000 flows and
77 million packets, all individually tracked. To run our C and
Matlab programs, we used a dedicated file server delivering
compressed data off a RAID over Gigabit Ethernet to a dual

processor 900-MHz Dell workstation running Linux with 1 GB
of fast memory.

C. Central Observations

The founding observation underlying our approach is the
prevalence of “biscaling,” that is the observation of dual scaling
regimes separated by a distinct “knee” in the packet arrival
process . This is shown in Fig. 2(a) for the traces of
Table I, where for ease of comparison the plot ordinates have
been normalized (for more details, though on different traces,
see [14]). At large scales, the LRD is clearly seen in each trace,
and the “knees” in the curves are distinctive and all located in a
narrow band at about 1 s. At smaller scales evidence for scaling
is also present, which, although much noisier, recurs consis-
tently across traces. Fig. 2(b) shows the remarkable power-law
form of the distribution of across traces and similarly for
in plot (c). In Section IV, we discuss the consequences of the
fact that , in addition to a power-law tail that contains only
around 1% (depending on the exact definition of “tail”) of the
mass, also has a distribution body which is close to power-law
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Fig. 3. Dissecting AUCK-c1 with the semi-experimental method. (a) Flow arrivals have negligible impact. (b) Small scales determined by in-flow structure, and
D can be taken as proportional to1=P (note that[A-Pois; P-Uni] and[A-Pois; P-Pois]are almost indistinguishable), and flow rate changes translate large scale
behavior. (c) Thinning has no structural effect, and LRD is carried by heavy tailedP and/orD.

but with different parameters. In all cases, results from the
same group (AUCK, UNC, MelbISP) are very consistent.

We now employ a technique we call thesemi-experimental
method, which is invaluable as a means to track down the ori-
gins of, the connections between, and to selectively test models
of, portions of the traffic structure, without having to postulate
a full model from the outset. It involves transforming the orig-
inal packet process in selective ways. Three categories of such
“manipulation” will be used.
A Flow Arrival manipulation.
P Packet-in-flow manipulation.
S Flow Selection manipulation.
Our presentation is similar to but different from that of [14],
and we examine the data in more depth both here and later in
Section IV.

The thick grey curve in Fig. 3(a) is the LD of the trace
AUCK-c1. The other curve ([A-Pois]) is constructed from the
data by completely randomising the arrival process of flows,
while maintaining in full the integrity of the packet arrival

patterns within each flow. More precisely, the flow arrival
times are replaced by a sample path of a homogeneousPoisson
process (conditional on the observed number of flows), the
flow order is randomly permuted, and the flows themselves
are then translated to the corresponding new arrival times.
Despite this radical erasure of the flow arrival structure,and
interflow dependencies, the resulting LD is barely altered. The
result for other traces is just as striking (in Fig. 3, confidence
intervals are placed on only one curve for readability). These
results contradict modeling approaches which postulate the
need for “session level” structure linking flows, at least for
lightly loaded links.

In Fig. 3(b), we turn our attention to the packet statistics
within flows. The curve[A-Pois; P-Uni] retains the flow place-
ment of [A-Pois], as well as the original and , but
smooths out the packet arrivals within each flow. More pre-
cisely, if for flow , then the sole packet is simply
placed at its surrogate arrival point . If , then the
second point is placed at . If , then
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Fig. 4. Examining flow variability (AUCK-d1). (a) Flow density plot over (R(i), P (i)) showing high mass over a distribution of rates. (b) Packet density plot
(flow density weighted by number of packets). (c) Coefficient of variation per flow. In the main high mass region, flows are overdispersed.

the internal points are independently placed according
to a uniform distribution over the duration of the flow. A clear
difference is apparent at small scales. The wavelet spectrum has
become flat, and the level in the LD is consistent with a Poisson
process with the same average rate as . We conclude that
the richness at small scales, and the (possible) scaling behavior,
is due to the internal structure of flows and that conversely, the
LRD is not due to this structure.

After performing[A-Pois; P-Uni], the only original features
of the traffic left, where the origin of the LRD must lie, are the
flow durations and the flow packet counts . To narrow
down this statistical origin more precisely, we select flow sub-
sets according to different criteria. In Fig. 3(c), we first examine
the effect of random thinning in the manipulation[S-Thin] ,
where the flow and packet structure is fully retained, flows being
randomly selected with probability 0.9. The resulting LD has
the same shape as the original, with a variance which is approx-
imately 90% of it, which is consistent with an independent and
identically distributed (i.i.d.) superposition model. In contrast,
in [A-Pois; P-Uni; S-Dur] , we select only those flows with du-

rations below the 90% percentile. The result is the removal of the
LRD. A similar result is obtained with[A-Pois; P-Uni; S-Pkt],
when a selection is made based on the 90% percentile of.

The result of[A-Pois; P-Uni; S-Pkt] is in keeping with the
findings of [26] that show how the LRD at the IP level can be
explained by the heavy-tailed distribution of file sizes. To ex-
plain that of[A-Pois; P-Uni; S-Dur] , we are led to examine
the relationship between and . However, although duration
is a natural descriptor of a flow, it is a highly derivative one in
that it is a dependent function of both the traffic source and the
effect of the network. On the other hand, acts like an in-
dependent variable describing the source, and theaverage rate

, combines source and link character-
istics, since the average (and peak) rate of a flow is conditioned
by the bandwidths of links it traversed before reaching the mea-
surement point. Focussing, therefore, on rate rather than dura-
tion suggests that one might extend the in-flow packet manipu-
lation so that is no longer preserved but made a linear func-
tion of . A simple way to do this (in an average sense) is to
reposition the packets in a flow according to a Poisson process,
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which is a manipulation we call[P-Pois]. As seen in Fig. 3(b),
the two curves[A-Pois; P-Uni] and[A-Pois; P-Pois]are almost
indistinguishable. This shows that flows for which it would not
be appropriate to slave to rate (effectively to ), such
as those with very large gaps, have a negligible impact. Making

a dependent variable in this way opens up the possibility
of renewal models for packets in flows and explains the obser-
vations of[A-Pois; P-Uni; S-Dur] as a simple consequence of
those of[A-Pois; P-Uni; S-Pkt].

We now consider flow behavior as a function of the “quasi in-
dependent” variables: average rate and flow volume. Because
is discrete, a scatter plot of ( , ) hides mass along dis-
crete lines and is very misleading. We therefore discretise the
scatterplot to form the density plot [see Fig. 4(a)], where each
square in the ( , ) plane is shaded according to the number
of points within it. The mass is highly concentrated (most flows
have a small number of packets), and therefore, a logarithmic
scale is used to greatly enhance the outer regions. For a fixed
packet volume, the average rates cover a wide range and, simi-
larly, a flow with a given rate may contain many packets or as
few as the minimum of 2. Furthermore, although the spread of
values indicates high variability across flows, we do not see any
bimodality that would suggest a need to classify flows into two
or more classes. Simplifying things somewhat, the picture that
emerges is that, in the range of rate values where the density is
highest, the packet volume distribution is approximately inde-
pendent of rate (and is heavy tailed). In Fig. 4(b), we givepacket
densityrather than flow density, in effect weighting plot (a) by
the packet impact of each underlying flow. The dark elements
at large correspond to volume-elephant flows, which have
an appreciable packet impact despite arising from a very small
percentage of flows—they were invisible in plot (a). Our con-
clusions are not altered however the epicentre of activity is still
located at the dark region of plot (a). We return to the question
of elephants in Section IV-D. We next look more deeply inside
flows in two orthogonal ways.

Fig. 4(c) gives the value of the index of dispersion of
the inter-arrivals within a flow, calculated individually for each
flow with at least three packets and then averaged over squares
in a log-log plot. We see that they cover a wide variety of values,
but the most extreme of these are not in the main region of high
mass, as revealed in Fig. 4(b), which is of the same trace and
shares the same scale. (At very small rate, we have a small
number of very regular flows. These, due to TCPkeepalive
packets, have little impact.) On the contrary, the values in the
main high mass region are reasonably uniform, with a weighted
average value around 1.4; this is overdispersed compared to
Poisson but not extremely so.

Fig. 3(b) includes two experiments designed to reveal the
role of rate. The manipulation[A-Pois; P-ConstR] rescales the
packet inter-arrivals within each flow by a constant such
that the average flow rates are moved to a common value:

, which is chosen here to be the median rate. Despite
preserving as well as the individuality of packet struc-
tures within flows, the impact is notable; the entire large scale
behavior is translated by a significant amount. This is more
clearly seen in[A-Pois; P-Pois; P-ConstR], where the small
scale structure is simplified. In a third experiment,[A-Pois;

Fig. 5. Examining the inter-arrival process (AUCK-d0).(a) Inter-arrival
distribution with fitted Gamma (shape= 0:6, mean= 1:2 ms). (b) Auto-
correlation of (detrended) inter-arrivals.

P-ScaledR](not shown), a uniform rescaling re-
sulted in a simple horizontal translation of the LD by
(this is not surprising given Poisson flow arrivals). We conclude
that rate acts as a scale parameter but that the wide distribution
of rates noted from Fig. 4(b) cannot be easily represented by a
single value at medium to large scales, unless it is tuned very
carefully. The question of how to determine and interpret such
a value is investigated below.

We now disregard flows and examine the inter-arrival series
. Fig. 5 shows its histogram for AUCK-d0, which fits well

to a Gamma random variable with . The autocor-
relation in plot (b) is negligible over small lags (small scale).
Similar results apply for other traces, but it should be remem-
bered that the time scale corresponding to a lag varies inversely
as the packet rate. Whilst these results are true as such, they are
in fact misleading. This can be revealed using a multiscale anal-
ysis and explained using a cluster model.
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IV. CLUSTER MODELS

In this section, we define and evaluate two models for the
point process of packet arrivals, inspired by the observa-
tions above.

A. Black Box Model: Gamma Renewal (GR)

A renewal process is a simple point process, where the inter-
arrival variables , are i.i.d. We will examine its
utility as a direct model for the inter-packet times. Although
we seek meaningful constructive models rather than those of
black box type, there are good reasons to first examine a renewal
model. First, Fig. 5(b) directly suggests it. The second reason is
the observation from Fig. 1(c) that a renewal process has the po-
tential to generate scaling (or apparent scaling) behavior at small
scales. The possibility of gaining a statistical understanding of
this effect in a very simple context is worth pursuing. Finally, the
spectrum of a renewal process plays a direct role in the cluster
models introduced in Section IV-B.

The spectrum of the continuous time renewal process is
[4]

(5)

where is the characteristic function of
the inter-arrival distribution, and is the unnormal-
ized frequency. Fig. 5(a) justifies a Gamma distribution for,
with characteristic function , where

is the shape parameter. The exponential case is ,
corresponding to the Poisson process. Asis a scale parameter,

. The mean and standard deviation
are given by and the coefficient of varia-
tion by , and the arrival intensity ,
respectively. The following properties of the GR spectrum hold:

(6)

(7)

One can show that in the over-dispersed case of interest
here, Re is monotonic decreasing, from which it fol-
lows that the spectrum is as well. Since a monotonic spectrum
implies a monotonic wavelet spectrum, the LD of GR with
monotonically increases from the asymptotic level up
to , as in Fig. 1(b). The small-scale asympotic level
is that of a Poisson process as well as of rate. However, this
limit is not specific to Poisson but is due to thegeneral point
process property that points do not coincide.

Fig. 1(c) illustrates how, for a range of scales close to the
upper asymptotic level, the LD of a GR process can appear to
follow a straight line: a “pseudo scaling.” To quantify this, we
define a lower cutoff frequency , where the spectrum can be
said to “first” deviate from its asymptotic value. Fix a deviation
parameter . Define as the smallest such that the
second term of (6) deviates from the first bytimes the distance

between the asymptotic levels. The result, which
respects the role of the scale parameter, is

(8)

The LD equivalent is marked by asterisks in
Fig. 1 . Expressions for the center of the zone where
such a pseudo scaling exists, and its slope, can also be derived,
allowing predictive tests of the model. Approximate expressions
for are given by , and

.
The model is easily calibrated through the sample mean

and variance of the inter-arrivals. Comparing the resulting GR
wavelet spectrum against the AUCK-c1 trace in Fig. 8(a), we
see reasonable agreement at low scales and up to the onset
of LRD. In general, however, the predictive ability of the GR
model fails badly. The reasons for this become clear when one
moves to the cluster model and result in useful insights, as we
presently show.

Our final but important comment relates to the pitfalls in in-
terpretation that “pseudo slopes” can cause. Since, for realistic
values of , is the same order of magnitude as,
for both practical and physical reasons one is led to focus anal-
ysis on scales above it. This is standard practice in traffic anal-
ysis, as it seems inefficient to study time series that are mostly
zeros. We have verified that if one does so, pseudo-slopes exist
not only at second order but also more generally. Consequently,
if one performs, for example, a wavelet multiscaling analysis
of the type described in [12] over a range of moment orders,
one finds empirical indications of multiscaling (possibly multi-
fractal) behavior. This can lead to an erroneous belief that the
data is much richer than a mere renewal process when, in fact,
in this respect, it is entirely consistent with it. Indeed, it is likely
that in many cases, the evidence for multifractal behavior over
time scales below 1 s has been misinterpreted. In this paper, we
do not present results beyond second order. Nonetheless, it is
clear that if scaling (over some given scale range) is onlyap-
parentat second order, then the process cannot be multifractal
as multifractality would imply true scaling over a range of or-
ders, including second order. Exploring this issue in detail is the
subject of ongoing work (see also [15]).

B. Flow Based Model: Poisson-Gamma Renewal (P-GR)

The main observations of Section III, that flows can been
seen as independent entities arriving according to a Poisson
process, fits naturally into a cluster process framework. A sta-
tionary Poisson cluster process on the real line [4], [27] con-
sists of a Poisson process defining the locations of “seeds” about
which a group of points are placed according to i.i.d. copies of
another process. In a harmless abuse of notation, symbols al-
ready defined for the data will be reused.

Let the arrival times of flows (the seeds) follow a
Poisson process, also of rate. The packet arrival process can
be written as

(9)
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where represents the arrival process of packets within flow
. Let the be i.i.d., and consider a representative . It

is a point process containing a finite number of points
(packets) with the first located at .

Determining an appropriate process for , given the com-
plexity of TCP dynamics and network heterogenity, is a chal-
lenge (see [28] for an interesting fluid model approach). Recall,
however, from Section III-C that the manipulations[P-Uni] and
[P-Pois] showed that simple “constant rate” models accounted
for most of the second-order properties seen at the packet level.
A (finite) renewal process model is a simple way to obey this
finding, which has the advantage of falling within the theoret-
ical framework ofBartlett–Lewiscluster processes. We choose
the inter-arrival random variable to be Gamma distributed
[with c.f. ] for several reasons. First, it has a scale
parameter, making it consistent (see below) with the observa-
tions on rate dependence of Fig. 3(b). Second, we have seen
that [P-Pois] failed to reproduce important qualitative behavior
at small scales. We will see below that incorporating burstiness
through the variance to mean ratio is, in many cases, sufficient
to reinstate this structure. This is easily and naturally achieved
in the Gamma family, as the second parameteris equivalent
to this ratio, and corresponds to[P-Pois]. Thus, finally,
although the parameters , of Gamma are not derived from
network “first principles,” they do have physical meaning taken
directly from data, and two is clearly the minimum number nec-
essary.

The number of packets in a flow is a random variable
with density Pr , probability generating func-
tion , , and distribution function

(we take ). From Fig. 2(b), it is taken to be heavy

tailed, that is, , , implying
but infinite variance.

Assembling these components, the flow model can be written
as

(10)

where is a delta function centered at , denotes
the th inter-arrival for flow , and the inner sum is defined to be
zero if . The average arrival intensity is given by

. The parameters of the model are; , ; and , .
This is the smallest number allowing a packet level description
of traffic with physical meaning: one parameter for flow arrivals,
two for in-flow packet arrivals, and two for flow volume.

Apart from its physical motivation, one of the main ad-
vantages of the model is that its second-order properties are
tractable. The expressions from [4, p. 417] and [27, p. 79] can
be coerced into the following instructive real form:

(11)

where is the spectrum of thestationaryrenewal process
with the same parameters as the finite flow renewal process, here

, and

Re (12)

One sees immediately that the flow arrivals enter only through
, which is a simple variance prefactor with an interpreta-

tion that one independently superposes “” of the same thing.
Furthermore, the parameter acts as a scale parameter:

. This is a di-
rect consequence of chosing with a scale parameter obeying

. The third striking feature is that the expression con-
sists of two terms of which the first is familiar
from Section IV-A. To understand the second, we note that

Re (13)

(14)

where , de-
noting Euler’s Gamma function ((13) can be derived using a
Taylor expansion of and employing a standard Taube-
rian theorem [29, p. 333]). Thus, at high frequency, the spectrum
is dominated by the scaled GR term and, at low frequency, by
the divergent second term. Comparing with (3), we see that the
model is LRD with parameters

. It is significant that (13) depends only on the intensity
of the GR flow processes and not on the second-order statistics:
At large scale, the finer details of the flows cease to matter. This
remains true if the standard deviation of exists, in which
case

(15)

Recall that the GR term is monotonic decreasing when .
The second term shares this property as and was
observed to obey it for all where it is nonnegligible. Carrying
over these observations to the wavelet spectrum, the generic
shape of the LD for the model is similar to that of the dashed
curve in Fig. 1(c): a monotonic function with the form of
a (scaled) GR process, saturating at medium scales before
crossing over to a LRD behavior at large scale.

An example of a wavelet spectrum for the model, evaluated
using (2), appears in Fig. 6, where the magnitude of the (scaled)
GR and LRD components are also plotted. The knee in the LD
is now seen as the zone where these two compete. To capture
its position as a function of parameters in a practically useful
way, it is essential to realize that the scale at which the “road
to LRD” begins may be very different from where the asymp-
totic LRD behavior of (13) dominates. We accordingly give two
different definitions of transition scale. The first is the largest
scale at which the small-scale effects, which are represented by
the saturation level of the GR component, accounts
for half of the wavelet spectrum. This scale, which is denoted
by , is the one we use for comparison against data, as it
includes the important medium-scale effects. The second defi-
nition looks for equality between the large-scale asymptotic be-
haviors of the two spectral components and

, yielding

(16)

Its greater tractability encourages its use (see Section V) in de-
scribing the qualitative parameter dependence of the knee as the
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Fig. 6. Comparison of LDs of AUCK-d1 and the P-GR model. The asterisk
(resp. square) marks the transition scalej (resp.j ).

parameter dependencies of the two definitions are very similar.
In order to see whether the GR component saturates before the
LRD dominates, creating a plateau at medium scales as schema-
tized in Fig. 1(c), one can compare against , which can
be rewritten as

(17)

In Fig. 8(a) , and so the plateau is visible, although
just barely. If , then the plateau will have negligible
width; however is not possible since the departure
from small scales leading to LRD can only take effect at scales
where there are many packets in a flow, which is intuitively the
same criterion defining GR saturation.

Another advantage of the model is that the packet inter-arrival
time distribution can be calculated analytically [4], enabling
comparisons against data and fitted Gamma inter-arrivals. Fi-
nally, simulation of the model is trivial and fast, apart from the
long transient induced by the LRD.

C. Verification

The model works well when fitted to the packet process for
the AUCK-d1 trace, as seen in Fig. 6. The use of GR flows,
here with , succeeds in modeling most
of the burstiness which was not reproduced using[P-Pois] in
Fig. 3(b). Here, , predicting that the plateau is not
visible. This is the case, and agrees visually with the onset
of LRD. Furthermore, the visual agreement in the process
itself was found to be excellent, not only over the scales shown
in Fig. 7, but over all scales. This agreement, essentially in the
marginals, goes beyond second-order, even though the experi-
ments were judged through the eyes of the wavelet spectrum,
and indicates that the “physics” has been captured.

We can now explain the failure of the black box GR model.
Simply, a scaled renewal process is not a renewal process. Thus,
the “GR term” of (11), although sharing the gen-
eral form of a GR process, and the possibility of pseudo scaling
with the same value, is not equivalent to one. The cluster

Fig. 7. Packet process (AUCK-d1). (a) SyntheticX(t) data binned with� =
50 ms. (b) Corresponding original processX(t).

model and the black box GR model can therefore never coincide
at small scales unless . Fortuitously,
this is almost the case in Fig. 8(a), where but
not in general. For the Abilene trace, . This re-
sult is significant since, looking solely at the results in Fig. 5,
a GR process seems reasonable at small scales, but such mea-
sures cannot resolve important dependencies in the data, which
are captured by the cluster model.

We now describe the parameter fitting in detail. The flow
arrival parameter was estimated directly from the sample
mean of flow inter-arrivals. Determining an appropriatefor
in-flow packet arrivals is not trivial. Simple choices such as the
median of [see Fig. 3(b)], or the mean, perform poorly.
This is because, as we are modeling the packet arrival process,
it is essential to capture the impact of each value of rate in terms
of packets. We accordingly weight the average rate by ,
which is the number of inter-arrivals in each flow. This results
in values that are generally considerably above a simple mean,
which agree well with semi-experimental comparisons.

The tail parameters (, ) are measured via a least squares
fit in a log-log plot of . The fit is at logarithmically
separated and begins at small or medium (0.8 quan-
tile) values, rather than just the far tail. The exponents of heavy
tails are notoriously difficult to estimate, and the factoris even
more so. The above procedure includes more data and thus sta-
bilizes the estimation and, in addition, is important in the present
context where the distribution body is also power-law like over
a range of scales. The resulting behavior in the LD is thus a mix
of effects that must be appropriately captured when measuring
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Fig. 8. Comparison of data and P-GR model. (a) Fit to AUCK-c1 is good, whereas the quality of the black box GR model is fortuitous. (b) Fit to UNC-a1 shows
distortion not present when the empiricalP histogram is used. A model using truncated empiricalP agrees with the predicted level. (c) Abilene deviations remain
even with the empiricalP . The asterisk (resp. square) marks the transition scalej (resp.j ).

( , ). A measurement from the far tail only would not be con-
sistent with ( , ) estimatesexcept at extremely large scales
beyond the usual observable range.

An entire distribution is required for to link its
physical parameters , , . The discrete Pareto-like variable

(18)

where is a scale parameter, has mean
for [the generalized Riemann Zeta func-

tion can be evaluated to chosen precision]. Unfortunately,
can fail to match by a large factor. To broaden the

family while respecting the power-law tail and/or bodies, we de-
fine the mixture distribution

. For fixed (finite variance) and
, the mixture parameter allows the mean

to be independently matched. For AUCK-d1, the fitting proce-

dure yields and
.

Finally, can be tuned to fit the LD over scales below the
LRD. Alternatively, a meaningful value ofcan be derived by
packet weighting as for above. The flows with the largest
packet volume, as they also have higher average dispersion
[see Fig. 4(c)], act disproportionately to decrease the effective

value. This illustrates a more general point. The detailed pa-
rameter fitting procedures above show that meaningful values
can be given to the (meaningful) parameters, thus completing
the physical validation of the model. For some parameters,
however, notably and , this can be computationally inten-
sive. However, faster methods more akin to “fitting” could be
used for more routine application of the model.

In Fig. 8(b), the fit to UNC-a1 is not quite as good, although
the main features are reproduced; in particular, the knee posi-
tion prediction is satisfactory. Much of the discrepancy is due
to the more complex form of . To see this, we also plot a
“semi-model” fit , where the empirical distribution of is used



HOHN et al.: CLUSTER PROCESSES: NATURAL LANGUAGE FOR NETWORK TRAFFIC 2241

instead of the fitted model distribution. The improvement re-
veals that the body of the distribution of plays an important
role in the shape of the “approach” to the LRD asymptote. In-
deed, we have observed that in many cases, the observed “LRD”
can be dominated by the shape of at “medium” scales, re-
sulting in estimates of the LRD exponent, which are very mis-
leading. To illustrate the relevance of (15), in the lower part of
the figure, we show a semi-experimental LD, where the empir-
ical distribution has been truncated at the 90th percentile, ren-
dering the data short-range dependent. The LD then saturates at
a value (dashed line), which agrees well with (15).

Finally, Fig. 8(c) shows the result for the high rate Abilene
trace. As the fit is poorer, we show only the semi-model fit using
the empirical distribution for . We see that despite eliminating
mismatches in the shape of, the model fails to account for
some of the variability at medium scales (also reported in [15]
for other OC48 traces). Understanding the reasons for this re-
quires a return to the data as well as an enhancement to the
model.

D. Elephants, Mice, and a Multiclass Cluster Model

The term “elephants and mice” has become common
parlance. It refers to the fact that often a small proportion
of flows—the “elephants”— have a disproportionate impact
over the more numerous “mice.” Typically, this distinction
is made in terms of flow volume. The heavy-tailed modeling
for respects this idea, and the results for the Auckland
and UNC traces show that the P-GR model is capable of
naturally modeling both elephants and mice within a single
model class. However, the concept can, and should, also be
applied to the orthogonal dimension of traffic rate (see [10]).
An important reason for this is that what constitutes a “large
impact” is scale dependent. Only a small number of packets
from volume-elephant flows intersect a given small interval,
so their contribution will be negligible compared with that of
volume-mice. Instead, flows with very high rate—rate-ele-
phants—would make themselves felt at such small scales. On
the other hand at large scales, localized high rates are irrelevant,
and the contribution of volume-elephants is significant.

Although we noted in Section III that flow rates vary widely,
in the P-GR model, they share a deterministic value. This
was acceptable as a single value of could be found, which
represented well the range seen in the high density portions of
Figs. 4(a) and 4(b). This would not be the case if rate-elephants
and rate-mice were present. A cluster model incorporating two
distinct classes would then be needed in order to successfully
describe behavior at all scales. To calculate the spectrum of a
cluster model like P-GR but where the parameters can fall into
two distinct classes: (“E,” with rate , shape , and flow
volume distribution and “M,” with parameters , and

), we proceed as follows. Let be a Bernouilli random vari-
able (independent of etc.) taking value “E” with probability
, else “M.” Consider a cluster process where for each flow an

independent copy of determines its class. By a well-known
splitting property of Poisson processes, the set of seeds of clus-
ters of type “E” (resp. “M”) is also a Poisson process with rate

(resp. ). These two new processes,
which each have constant rate, shape, and flow volume distribu-

tion, are independent P-GR processes. Thus, the spectrum
of the “multiclass” cluster model is just the weighted sum of two
spectra of P-GR type. This construction can easily be extended
to a countable number of classes.

With these additional tools at our disposal, we return to the
Abilene trace with the flow density plot of Fig. 9(a). It tells a
similar story to that of Fig. 4(a), albeit with a shift to higher rate
(note that the diagonal boundary across the top is an edge effect
due to the short duration of the trace). However, when we move
to the packet density plot of Fig. 9(b), we see a striking change
in the center of mass that is not found in the AUCK traces,
where the epicentres of “packet” density and flow density coin-
cide [compare Figs. 4(a) and 4(b)]. The location in (, ) space
of this high-density region represents an empirical definition of
“elephant,” which is not tied to rate or packet volume alone. It
is characterized by a very small proportion of flows containing
a high proportion of total packets, with a higher average rate
and higher average dispersion (lowervalues), as seen from
Fig. 9(c). Thus, the Abilene trace contains very strong, bursty,
and high rate volume-elephants, and yet, by the argument above,
the volume-mice must still be important for small enough scale,
suggesting that a multiclass model may be essential for a full
description of this data.

In future work, we will examine the usefulness of the dual
class cluster model to explain the form of the wavelet spectrum
shown in Fig. 8(c) (similar spectra have been observed in
OC-48 commercial backbone links [15]). Alternatives to
Gamma renewal models will also be investigated to model
more extreme in-flow burstiness. Although the number of
parameters increases when moving to multiclass models, it may
be necessary to capture important network features. Network
traffic is complex and cannot be reproduced accurately, nor
meaningfully understood, with just three or four parameters.
As the Abilene trace is a very recent one and is from a large
backbone link, these complexities are exciting to explore since
in many ways, they constitute a taste of the future of traffic.

V. TOWARDSUNDERSTANDINGTRAFFIC EVOLUTION

In this section, we examine in more detail the nature of the
P-GR model as a function of parameters and illustrate its use as a
tool to speculate on the future shape of traffic. For convenience,
we recall that for large, the LD tends to , or

(19)

A. Flow Arrival Parameter

The role of is to vary the number of flows, which, through
(11), can be seen as an i.i.d. superposition leaving theform
of the second-order structureinvariant. The magnitude of
second-order dependencies relative to the mean decreases as

; therefore, this result is not in contradiction with
the well-known weak convergence of such a superposition to a
Poisson process [4]. In traffic engineering, this relative decrease
of variability is known asstatistical multiplexing gainand is
a standard yet powerful argument for using links with higher
capacity to enable more flows to mix together, effectively
lowering variability, even for LRD traffic. This argument
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Fig. 9. Flow and packet density in Abilene. (a) Flow density plot over (R(i), P (i)). (b) Packet density plot (flow density weighted by number of packets).
(c) Coefficient of variation per flow.

follows “open loop” model reasoning, where network feedback
is weak. This, however, is currently valid for backbone links,
as network utilizations are low and are likely to remain so.

B. Flow Structure Parameters and

Since is a scale parameter, increasingresults simply
in translating the wavelet spectrum toward smaller scales. This
can be seen explicitly in the expressons for the transition scales

and and in (19) above. Increasing also obviously
scales back flow durations proportionally. At a fixed scale of ob-
servation, say at the sampling rate of a particular measurement
infrastructure, one would see the traffic burstiness increase and
become decidedly less Poisson as both the in-flow burstiness and
scaling behavior translate to smaller scale. In network terms, in-
creased could correspond to the same traffic passing through
faster access networks before reaching the measured link.

Equation (19) is independent of. Decreasing results mainly
in an increase in burstiness at scales below LRD through the
plateau height and an increase in the pseudo slope at oc-
taves below . It also results in a monotonic movement of
approximately the same speed of both and to higher

scales. Increased flow burstiness could arise through lower uti-
lizations on network links, resulting in less queueing and there-
fore less traffic smoothing, as well as through more aggressive
TCP flow control.

C. Flow Volume Parameters and ( , )

We assume that these three can be varied independently, al-
though this can never be entirely realized in a parametric family.
At scales below , the tail parameters (, ) have no impact.
The plateau onset scale is entirely independent of , and

enters only as a variance factor magnifying the burstiness at
scales below (thus, scaling up the pseudo-slope). At the
other extreme, the LRD is unaffected by but is strongly in-
fluenced by the tail parameters; the asymptotic line moves up
when the tail is made heavier either by increasingor by de-
creasing . The onset scale is the result of competing ef-
fects. It is pushed up when increased increases short-range
burstiness and grows to a limiting value with increasingbut
decreaseswith increasing . In terms of networks, a smaller
corresponds to an increased spread of file sizes, whereasand

trade off the proportion of “small” versus “large” files.
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D. Future Scenarios and Scale of Observation

The parameter dependencies above can be combined ac-
cording to possible future traffic scenarios. For example,
assume that increased access link rates promote a propor-
tional increase in network usage according to ,

, and consider the following question: Will traffic
become more or less bursty? Clearly, the answer must be time
scale dependent. If observing at a scale, which is in the range

both before and after the increase, then the mul-
tiplexing effect of case I alone will apply, reducing (relative)
burstiness. At scales above , however, the increase in

largely cancels this out, and in addition, the LRD invades
lower scales. If the more generous access rates also encourage
greater transfer volumes , then , and
the multiplexing effect will win out.

Care must be taken when one moves the scale of observa-
tion as parameters vary, such as when studying packet inter-ar-
rivals. There, the characteristic timescale
shrinks with increased flow rate or volume. Since is in-
variant with respect to each of these, asincreases, the point of
observation in fact moves toward the point process limit of,
regardless of the actual change(s) in traffic structure. Indeed, if
smaller inter-arrivals occur purely because of greater, then
absolute burstiness has in fact increased at scales below,
whereas the change in perspective might suggest that the traffic
had become more Poisson-like. At such small scales, one should
also be aware of the physical limitations of the point process
model, which breaks down when packet sizes are reached. At
[OC48,OC3] speeds (assuming a large 1500 byte packet), the
model breaks down at around [5, 77] or .

VI. CONCLUSION

Our analysis of the structure of TCP packet arrivals in Internet
traffic led to several significant conclusions. Beginning from the
concept of flows of packets, we showed (at least in the context of
lightly loaded links) that both the flow arrival process and depen-
dencies between flows have negligible impact, as do higher layer
mechanisms grouping flows such as web browsing sessions. The
key element was found to be the concept of independence be-
tween flows. Using wavelet analysis, the second-order statistics
of packet arrivals were shown to be determined by in-flow packet
arrival burstiness at small scales and heavy-tailed flow volume at
large scale. The scaling-like behavior at small scales was clearly
linked to the burstiness within flows.

A stationary Poisson cluster process class was proposed as
an ideal model capturing these features. Poisson arrival instants
with rate denote the arrival of flows. Packets within flows
follow finite GR processes with rate and shape, flow volume
being given by a heavy-tailed variablewith infinite variance.
The model has many advantages, including a known spectrum,
positive marginals, simple synthesis, and a minimum number of
parameters, each with direct physical interpretation in terms of
network traffic. Its spectrum can be written as a sum of a scaled
spectrum of a renewal process controlling small-scale behavior
and a term controlling asymptotic large-scale behavior. A de-
tailed description was given of the behavior of the spectrum and
the wavelet spectrum, as a function of parameters and the corre-
sponding interpretation for networks. The model offers the pos-

sibility of a new, and very simple, alternative explanation for em-
pirical evidence of multiscaling behavior at small scales as a tran-
sitional effect over a narrow range of scales of simple in-flow
burstiness, suggesting that such traffic is not truly multifractal
over these time scales. An expression for the onset scale of LRD
was given, analyzed as a function of network parameters, and
found to be accurate. The model is highly structural, rather than
black box, enabling its use as an investigative tool for the evo-
lution of traffic properties.

The model was verified against large quantities of accurate
Internet data and was found to reproduce the second-order sta-
tistics well. The parameter fitting was described in detail. It led
to meaningful parameter values and visually convincing model
sample paths, confirming that the model actually captures much
of the network “physics.” Some departures from the model were
found for a recent, very high bit rate traffic trace. Further data
analysis revealed some of the underlying reasons, and a multi-
class version of the model was described as a possible means to
account for them.

It was shown how the model can naturally incorporate the
notion of elephant and mice flows without the need to explic-
itly define them and treat them separately. It was also used to
illustrate how a packet volume-based definition of elephants is
not sufficient and how “rate-elephants” could be accounted for
in the model, should they exist.
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