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Cluster Processes: A Natural Language
for Network Traffic
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Abstract—We introduce a new approach to the modeling of Section Ill-Afor atechnical definition). Ata given measurement
network traffic, consisting of a semi-experimental methodology point in the interior of the network, packets from many thou-

combining models with data and a class of point processes (Cluster o, ¢ of intermingled flows pass, and individual flows are seen
models) to represent the process of packet arrivals in a physically

meaningful way. Wavelets are used to examine second-order {0 b€gin, passthrough bursty andidle phases, and end. Flows are
statistics, and particular attention is paid to the modeling of highly variable, with durations ranging from less than a second

long-range dependence and to the question of scale invariance atto many hours, from just a single packet to billions [see Fig. 2(b)
small scales. We analyze in depth the properties of several large and ()]

traces of packet data and determine unambiguously the influence h f arrival ti f k be Vi d .
of network variables such as the arrival patterns, durations, and 1 h€ Set of arrival times of packets can be viewed as a point

volumes of transport control protocol (TCP) flows and internal  process on the real line. A central aim of traffic modeling is to
flow structure. We show that session-level modeling is not relevant be able to describe key features of this process, using parame-
at the packet level. Our findings naturally suggest the use of yarq \yith direct and verifiable physical meaning in terms of the
cluster models. We define a class where TCP flows are directly i , .
modeled, and each model parameter has a direct meaning in Nature of tr.af.ﬂc sources and the netwprks.transformanons of
network terms, allowing the model to be used to predict traffic them. This is important for network engineering because the de-
properties as networks and traffic evolve. The class has the key gree and nature of traffic burstiness determines the properties of
advantage of being mathematically tractable, in particular, its queuing delays (and losses) in switching devices and, thereby;,

spectrum is known and can be readily calculated, its wavelet spec- th litv of th - deli d th twork
trum deduced, interarrival distributions can be obtained, and it € quality of the services delivered over thé network.

can be simulated in a straightforward way. The model reproduces  Although many traffic models have been proposed to date (for
the main second-order features, and results are compared against point process examples, see [1] and [2]), none have been ac-
%Simp'g tl"aCk sz pOimdpm‘éeSS at't.emgtive' dDiSCkr]epa“CieS tW“h cepted as definitive. The complexity required to adequately de-
E)uetli?e?j.eThaereel e'gﬁ;ﬁts anapnichxﬁ:\;vngf }rgfr;i c ﬁ ngr}gerg\ﬁgitz;rescribe the statistics of _traffic i_s potentially very h?gh. First,.the
in the light of our findings. structure of packet arrivals within flows could in itself be rich.
Index Terms—Internet data, long-range dependence, multifrac- .Then’ p.aCke.t arfivals could be correlated .across flows through
tals, point processes, scaling, time series analysis, traffic modeling,INteractions in queues and through reactive flow control such
wavelets. as the transport control protocol (TCP) that is active in the In-
ternet. This feedback mechanism attempts to control the rate of
most flows to avoid packet loss and maximize link utilization,
effectively linking different flows dynamically. At another level,
E seek to model, and understand, the statistical natyr@ statistics of “sessions,” which are groups of flows correlated
of the flow of data packets passing through telecommehrough a higher level protocol or computer application, could
nications links, such as high-speed links in the Internet “backe essential to take into account (this approach is adopted in [3]).
bone.” By data packets, we mekmernet protocol(IP) packets, Forexample, the downloading of a webpage results in the gener-
which are the universal medium of transport in the present-dagion of multiple correlated TCP file transfers corresponding to
Internet. For our purposes, the effect of the highly complex, lashe text, data, and images constituting the page. In this paper, we
ered structure of the network on data can be abstracted to #iepose the use of a particular class of point proce§&gsson
concept oflow. A flow is a set of packets that are part of an incluster model$4]. They are relatively simple, yet strongly mo-
dentifiable exchange between two end points; for example, th@yated by empirical features of traffic, in particular, the role of
may carry the bytes of a file transfer between two computers (S&sws, and their tractability allows the quantitative investigation
of key properties as a function of meaningful network param-
eters. They are also easily synthesized and have marginals that
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Our primary statistical tool is wavelet analysis. Apart fronthe IP level due to or influenced by the corresponding features
the high computational efficiency of the discrete wavelet tranat the flow level? Of the conclusions, the following, based on a
form that is necessary for the examination of the huge daacond-order wavelet analysis, directly inspires the models we
sets typical in telecommunications, this is motivated by thdinvestigate here.

natural SUltabl'lty for signals with scale invariance. The dis- « The Sca“ng in the flow arrival process is not responsib|e

covery of scale invariance in packet data—the so called “fractal  for that at the IP level, and further, it does not influence it
traffic’—was the most significant development in tele-traffic in significantly at either small or large scales.

the 1990s. On the whole, it refers to the near universal presence. Dependencies between packet arrival processes across dif-
of long-range dependence (LRD), or persistent memory over ferent flows are very weak.
“large” time scales, in time series extracted from raw traffic « The structure at small scales has its origin in the packet
data such as byte or packet counts in successive time intervals patterns within flows.
[7]. The accepted physical explanation for this phenomenon « The LRD has its origins in the heavy-tailed nature of flow
lies in the heavy-tailed (finite mean, infinite variance) nature  yolumes (a known result) and does not have a component
of source characteristics including session durations and file  due to packet processes within flows (new result).
sizes. Long memory, however, is not the only issue concerningThese findings (which are both discussed more fully and
scaling. An equally remarkable feature, but one receiving fapnsiderably extended in Section Il and are consistent with
less attention, is the ubiquity and distinctiveness of the chagcent work of [15]) have two very strong implications for
acteristic onset scale of LRD, which is found at around 1 fraffic mode”ng_ They Suggest theor the purpose of mod-
One unresolved issue is what features of traffic determine thifng the overall process of IP packefows can be treated
scale? Evidence for other kinds of scaling behavior have algg statistically independent. Thus, the point process of packet
been reported. Multifractal scaling [8], [9] has been suggestggtivals is seen as the superposition of independent point pro-
as a model of the extreme burstiness often observed at sngaises: one for each flow. Second, the lack of impact of the
scales (below 1 s) and sometimes above it [10], and infinitef}tailed nature of the flow arrival statistics suggests that they
divisible cascades [11] have been put forward as a meanscgh be effectively modeled as a Poisson process. Finally, the
unifying the scaling behavior across all scales. For a recegélation of the LRD as a property of the number of packets
survey of wavelet methods and their application to scaling bger flow allows them to be modeled using simple and intuitive
havior in traffic, see [12]. heavy-tailed ingredients. Cluster models are ideally suited to
One of our main goals was to explain all forms of scalinghodeling the above features.
present in both statistical and networking terms. The impor-We point out that although the arrival process of flows is not
tance of this arises from the fact that scaling typically impliggnportant for the overall packet process, it is of great interest
high variability, which, in the case of traffic entering switchesin other contexts, such as the performance of web servers and
implies worse queuing performance, as explored, for exampjgoxies. Flow arrivals themselves have arich structure, and there
in [13]. Furthermore, its presence implies an underlying mechre many open questions. Some recent results can be found in
anism or mechanisms that need to be understood. Unless [tg] and [17].
source of such behavior is known, it will not be possible to pre- The traces studied here and in [14] are of lightly loaded links.
dict how it, and its impact, will evolve over time. We contributeThe central observation of independent flows underlying our
substantially to this issue. Through a model with a firm physnodel is likely to break down on heavily loaded links; however,
ical basis, we show that there are good reasons to believe #adctly when this will occur is not clear. Low utilization
there is in fact no true scaling behavior at second order owgstwithstanding, it is likely that a backbone link transports
small scales, which in turn implies no true multifractal behavigjroups of flows that share bottleneck links elsewhere in the
over those scales. We also provide explicit formulae capablertwork, resulting in in-group dependencies. Nonetheless,
predicting the onset scale of LRD as a function of meaningfslich interactions were found to be negligible for the traces
parameters. considered here, suggesting that the model could still apply at
Another goal is to contribute to a clarification of the meaninguite high utilizations and be a useful dimensioning tool for
and role of the elephant (large but rare) and mice (small but neere networks.
merous) flow concept, which has become popular in describingThe paper is structured as follows. Section Il reviews the
packet traffic. Rather than proposing fixed definitions of thesgavelet transform and gives examples of its use for scaling pro-
categories, we let the data speak for itself and point out the gesses. In Section Ill, the technical details of the data and its
thogonal roles of “volume” versus “rate”-based approaches aprbcessing are given, followed by the body of data analysis un-
the importance of time-scale. derlying the choice of the models. Section IV is the main part of
This paper builds on the recent work described in [14]. Thle paper, where the cluster models are introduced, their proper-
starting point of that paper was the surprising observation thags given, and the fit to the data examined. Further analyses on
the scaling seen in the point process of packet arrivals is broathg data are then performed, leading to suggested refinements to
similar to that found in the arrival process of flow arrival pointshe model in Section IV-D, and a discussion on elephants and
only, namely, clear LRD at large scales, evidence for a secomtice. Section V uses the model to examine in a well defined
though less clear, scaling regime at small scales, and a transittontext the question “does traffic become more bursty or more
scale at around 1 s separating them. This similarity led to tRe@isson as link rates increase? and related issues. We conclude
following question: In what way are the twin scaling regimes @b Section VI.
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Fig. 1. LD examples. (a) Poisson and fGn. (b) Poisson and Gamma-renewal. (c) GR and fGn. The upper dashed curves are the LDs of the superpositions. The
mark a characteristic upper saturation sgglg for Gamma renewal.

[I. WAVELET ANALYSIS then in the limit of large scales, (2) becomes

To study scale invariant properties Sl_,ICh as long-range de_:p(_an— E|dx(j, k)|2 ~c;C()2%, j — 400 4)
dence we use a wavelet-based analysis. A thorough description
of wavelet transforms can be found in [18]; in addition, see [1%hereC/(«) = [ |v|=*|¥(v)[*dv is close to a constant. In fact,
for theoretical and practical details of their use in the spirit ¢P) can be viewed as defining a kind of wavelet energy spectrum,
this paper. Here, we briefly describe the key features, addre#sich is analogous to a Fourier spectrum but much better suited
some issues of particular importance at small scales, and give #he study of fractal processes. Just as in the Fourier case, the

short guide to interpretation. wavelet spectrum of a sum of independent processes is just the
sum of the individual wavelet spectra, and multiplication by a
A. Definitions and Properties constant results in scaling the spectrum by.

Performing the discrete Wavelet transform (DWT) of a To estimate the wavelet spectrum from data, the time averages

processX consists of computing coefficients that compare, by ) 1 o
means of inner products against a family of functions S2(j) = o > ldx (4, k)|
k
dx (3, k) = (X, k). (1) wheren; is the number oilx (j, k) available at octavg (scale

a = 27), perform very well because of the short-range depen-
The wavelets); ,(t) = 279/24)(277t — k) derive from an ele- dence in the wavelet domain. A plot of the logarithm of these
mentary function), which is called the mother wavelet, dilatedestimates againgtwe call thelogscale diagran{LD):
by a scale factor = 27 and translated bg’k. They are re-
quired to have excellent localization properties jointly in time LD : log, S2(j) versuslogy a = j.

and frequency. The functiahis, moreover, characterized by its . . . . . :
these diagrams, straight lines constitute experimental evi-

number of vanishing moments, which are defined as the largest for th p lina. | traight li
integerV such that/ t*4(t)dt = 0 for k = 0,1,..., N — ence for the presence of scaling. For example, a straight line

Wavelets with higherV are smoother and are capable of anqbserved in the range of the largest scales with stoge(0, 1)

alyzing signals with higher order divergences. A key practicgﬁee_F'g' _1) betrays Iong memaory. More_ generally, semi-para-
advantage of the DWT is the fact that the coefficients can lIgr‘);,etnc estimates of scaling exponents with excellent properties

computed from a fast recursive algorithm with computationgfm btﬁ formed ufsmg Ivvelgr;]ted rt(re]gressipn to mfasure the slope
complexity O (n). over the range of scales where the scaling exists.

Let X (¢) be a continuous-time stationary process with powey Making Sense at Small Scales

spectral density'x (). It can be shown that the variance of its _ ) ) .
wavelet coefficients satisfies The analysis at small scales is considerably more difficult

than at large scales. We address two relevant issues that are fre-

) ; PN guently ignored in applied work, in particular, in network traffic
E |dx(j, k)] = /rX(y)gﬂ W @ s
_ 1) Confidence intervals often receive little attention or are
whereV () denotes the Fourier transform¢f If X possesses based strongly on Gaussian assumptions. Since, at small

scale invariance over arange of scales, for example, ifitis LRD  time scales, TCP/IP data is highly non-Gaussian, we use
defined as a power law divergence of the spectrum at the origin 3 semi-parametric technique based on the short-range de-
pendence property of the sequenégs, -) for eachj to
Tx(v) ~crlv|™%, [v| — 0, witha € (0,1) 3 estimate them from data in a robust way.
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2) The O(n) pyramidal algorithm that calculates the TABLE |

dx (j, k) requires initialization by projecting (¢) into TIME PERIODS
some initial approximation spaceat an initial scale Traces Date Local Time | Rate (Mbps) Link
a = 4. If this step is omitted, initialization errors result, MelbISP-1 | 20000425 | 19:00 to 22:00 0.03 Unknown
which can be very significant for the smallest scales MelblSP-2 | 20000427 | 19:00 to 22:00 0.03 Unknown
j = js + 1 andjs + 2, wherejs = log, 6. Furthermore, MelbISP-3 | 20000428 | 19:00 to 22:00 0.03 Unknown
frequentlyX (¢) is only available via a discretised version AYCK-a0 | 19991201 | 18:00 to 16:00 1.5 0C3
X, (k): the result of a nonoverlapping averaging filter AUCK™bO | 20010830 | 18:00 to 16:00 32 ocs

: ' : AUCK-cO | 20010402 | 02:00 to 05:00 0.4 0oC3
being applied ta¥ (¢) about the point¢ = k/7, wherer  auck-c1 | 20010402 | 02:00 to 05:00 05 0c3
is the sampling period. This limits the available scalest AUCK-d0 | 20010402 | 13:00 to 16:00 37 ocs3
those above, = log, 7 and again results in errors over_AUCK-d1 | 20010402 | 13:00 to 16:00 2.5 OCs3
the first two available octaves= j, + 1 andj, + 2. This ﬂmg'z? ggggggg; 1228 :g gg?g 14768 82}2
is important as three fourths of the data is concentrated Abilone—| 20020812 1 70.00 10 7010 418 G486

these scales! For point processes, however, the initialize=
tion can be performed exactly. For simplicity, we use the
Haar wavelet, where the initialization amounts simpl Raw Data

to taking normalized counts, and use the higher order ] )
(N > 1) Daubechies wavelets to check the robustness Ve analyze Internet traffic traces taken from lightly loaded
of the conclusions. links in a variety of geographical regions, with a wide range of

average bit rates. The main body of traces we study—a selec-
tion from the Auckland Il and Auckland IV data sets [20]—were
recorded from the Internet access link of the University of Auck-
In Fig. 1, LDs are given of some continuous time processggnd. High precisioDAG hardware allowed loss-less measure-
The Fourier spectrum of each of these is known analytically, apgbnt of the OC3 ATM (155 Mb/s) link with timestamp accu-
so, we can evaluate the exact wavelet spectrum through (2). He{8y of 100 ns [21]. The traces gather the timestamp of each IP
and below, the horizontal axis is calibrated both in sea®op packet, the packet size, and whether it is transporting TCP data
edge of plot, in “microseconds” (mus), “seconds,” or “hours,or data from other protocols such as treer datagram protocol
as appropriate) and octaye= log, a. (UDP). UDP offers a simple transfer service with no flow con-
In plot (a), the horizontal line is for a Poisson procesgo| and is used for example for video streaming. As TCP “fla-
with A = 1, viewed as a continuous-time process with deltgored” |P traffic makes up over 80% of all packets and bytes, we
functions at each arrival point, with spectrdiy (v) = A (in  extract and focus on this component. As summarized in Table I,
this paper, we exclude th’(v) term corresponding to the we focus on two 3-h periods during weekdays: 2:00 to 5:00 and
“mean”). Equation (2) predict&|dx (j,k)|*> = A, which is 13:00 to 16:00, corresponding to apparently stationary traffic at
a flat wavelet spectrum corresponding to perfect but triviajow” and “high” rate, respectively. The PrecisiddAG mea-
second-order scalingx = 0). It is important to understand syrement was also used for the very recent high-rate Abilene
that this level corresponds to variance and not to rate: Meafgce collected at an OC48 (2.45 Gb/s) Internet backbone in In-
are eliminated by the wavelet analysis. The other straight "%napolis, made available by NLANR [22].
with slopea = 0.6 is a continuous timéractional Gaussian e also study some traces with less accurate timestamps.
noise(fGn): a generalized process with perfect scaling givagNnC-a0 and UNC-al, which were recorded by the DiRT group
by I'x (v) = cf|v|*. The dashed curve in plot (a) is the LD[23] at the University of North Carolina, are noteworthy for their
of a superposition of the above two processes. Its form ish@yh bit rate. The three traces included from a small Internet
reminder that to add two curves in a log-log plot, one is reallyovider based in Melbourne (MelbISP) provide diversity in the
adding the underlying quantities and then taking the logarithigacket rate within individual flows, owing to the speed limita-
of the total. This same point is illustrated further in plot (b)ions of modems.
where a Poisson process with= 0.01 and a Gamma renewal For time and space reasons, not all analyses were performed,
process with shape parameter of 0.2 are plotted; the dashed §pgeported on, over all traces; however, conclusions were al-

representing their superposition is visually much closer to thgyys based on consistent results over multiple traces.
Gamma renewal curve at large scale. Finally, plot (c) combines

a Gamma renewal process with a f{Gn. The spectrum of Gam@ajme Series Extraction

renewal processes will be explored in detail in Section IV, .
where plot (c) will be particularly instructive in relation both 1€ raw traces are processed with the CAIDA Coralreef tool

to data and to cluster models. suite [24] and our own C programs, allowing the extraction
of each IP packet header and timestamp (for further details of
TCP/IP protocols, see [25]). The information therein allows IP
packets to be categorized into differdlotvs A flow is defined

In this section, we describe the main experimental findings a set of time-ordered packets with the same 5-tuple: IP pro-
underlying the models we subsequently select. We begin witicol carried, source address, destination address, source port
some details on the data itself and then summarize and extend destination port, where no packet inter-arrival exceeds a
prior work. given time interval, fixed here at 64 s [24].

C. Examples

I1l. EXPERIMENTAL RESULTS
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Fig. 2. TCP packet arrivals. (a) Ubiquity of biscaling behavior. (b) Heavy-tailed body and fai(lmfimber packets in flows). (c) Heavy-tailed flow duratidns

From the raw data, many different time series can be coprocessor 900-MHz Dell workstation running Linux with 1 GB
structed. At the “IP level,” where flows are not individuallyof fast memory.
tracked, the key quantity is the set of arrival timggk) of )
packets indexed in arrival ordér= 1,2, --- K. This time se- C. Central Observations

ries defines the continuous time point proceSg) of packet  The founding observation underlying our approach is the
arrivals we wish to model or, equivalently, the interarrival sgsrevalence of “biscaling,” that is the observation of dual scaling
quenceA(k) = tp(k) — tp(k — 1). At the “flow level,” sta- regimes separated by a distinct “knee” in the packet arrival
tistics of individual flows are collected, beginning with the orprocessX (¢). This is shown in Fig. 2(a) for the traces of
dered arrival instants: (i), i = 1,2,--- I of flows. The intrin-  Table I, where for ease of comparison the plot ordinates have
sically discrete serie®’(i) and D(i), i = 1,2,---1 give the Dbeen normalized (for more details, though on different traces,
number of packets and durations in seconds respectively of sgee [14]). At large scales, the LRD is clearly seen in each trace,
cessive flows D(i) is only defined if (i) > 1). We also lo- and the “knees” in the curves are distinctive and all located in a
cated and stored, for each flow, a complete list of packetinter-aarrow band at about 1 s. At smaller scales evidence for scaling
rival times. is also present, which, although much noisier, recurs consis-
Considerable computation is required to perform the packently across traces. Fig. 2(b) shows the remarkable power-law
and flow level analyses here. The UNC-a0 trace, for exampterm of the distribution ofP across traces and similarly f&
consists of 2 GB compressed and contains 800 000 flows andplot (c). In Section 1V, we discuss the consequences of the
77 million packets, all individually tracked. To run our C andact that P, in addition to a power-law tail that contains only
Matlab programs, we used a dedicated file server deliveriagound 1% (depending on the exact definition of “tail”) of the
compressed data off a RAID over Gigabit Ethernet to a dualass, also has a distribution body which is close to power-law
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Fig. 3. Dissecting AUCK-c1 with the semi-experimental method. (a) Flow arrivals have negligible impact. (b) Small scales determined by irtiloey sind
D can be taken as proportional 1@ P (note thafA-Pois; P-Uni] and[A-Pois; P-Pois]are almost indistinguishable), and flow rate changes translate large scale
behavior. (c) Thinning has no structural effect, and LRD is carried by heavy tRiledd/orD.

but with different parameters. In all cases, results from tipatterns within each flow. More precisely, the flow arrival
same group (AUCK, UNC, MelbISP) are very consistent.  times are replaced by a sample path of a homogeneoisson

We now employ a technique we call tkemi-experimental process (conditional on the observed number of flows), the
method which is invaluable as a means to track down the orilow order is randomly permuted, and the flows themselves
gins of, the connections between, and to selectively test modate then translated to the corresponding new arrival times.
of, portions of the traffic structure, without having to postulat®espite this radical erasure of the flow arrival structuaed
a full model from the outset. It involves transforming the originterflow dependencies, the resulting LD is barely altered. The
inal packet process in selective ways. Three categories of swebult for other traces is just as striking (in Fig. 3, confidence

“manipulation” will be used. intervals are placed on only one curve for readability). These
A Flow Arrival manipulation. results contradict modeling approaches which postulate the
P Packet-in-flow manipulation. need for “session level” structure linking flows, at least for
S Flow Selection manipulation. lightly loaded links.

Our presentation is similar to but different from that of [14], In Fig. 3(b), we turn our attention to the packet statistics
and we examine the data in more depth both here and latemiithin flows. The curvgA-Pois; P-Uni] retains the flow place-
Section IV. ment of [A-Pais], as well as the originaP (i) and D(7), but
The thick grey curve in Fig. 3(a) is the LD of the tracesmooths out the packet arrivals within each flow. More pre-
AUCK-cl. The other curve[A-Pois]) is constructed from the cisely, if P(i) = 1 for flow 4, then the sole packet is simply
data by completely randomising the arrival process of flowplaced at its surrogate arrival poitit(:). If P(i) = 2, then the
while maintaining in full the integrity of the packet arrivalsecond point is placed at= (i) + D(%). If P(i) > 3, then
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Fig. 4. Examining flow variability (AUCK-d1). (a) Flow density plot oveR(:), P(¢)) showing high mass over a distribution of rates. (b) Packet density plot
(flow density weighted by number of packets). (c) Coefficient of variation per flow. In the main high mass region, flows are overdispersed.

the P(7) — 2 internal points are independently placed accordingtions below the 90% percentile. The resultis the removal of the
to a uniform distribution over the duration of the flow. A cleat.RD. A similar result is obtained witfA-Pois; P-Uni; S-Pkt],
difference is apparent at small scales. The wavelet spectrum tdren a selection is made based on the 90% percentite of
become flat, and the level in the LD is consistent with a PoissonThe result offA-Pois; P-Uni; S-Pkt] is in keeping with the
process with the same average rateXgs). We conclude that findings of [26] that show how the LRD at the IP level can be
the richness at small scales, and the (possible) scaling behawaplained by the heavy-tailed distribution of file sizes. To ex-
is due to the internal structure of flows and that conversely, tipdain that of[A-Pois; P-Uni; S-Dur], we are led to examine
LRD is not due to this structure. the relationship betweeh and P. However, although duration
After performing[A-Pois; P-Uni], the only original features is a natural descriptor of a flow, it is a highly derivative one in
of the traffic left, where the origin of the LRD must lie, are thehat it is a dependent function of both the traffic source and the
flow durationsD(4) and the flow packet counf3(:). To narrow effect of the network. On the other hanBl(¢) acts like an in-
down this statistical origin more precisely, we select flow sulslependent variable describing the source, andtlezage rate
sets according to different criteria. In Fig. 3(c), we first examinB&(:) = P(i)/D(i), ¢ > 2 combines source and link character-
the effect of random thinning in the manipulati§®-Thin], istics, since the average (and peak) rate of a flow is conditioned
where the flow and packet structure is fully retained, flows beirty the bandwidths of links it traversed before reaching the mea-
randomly selected with probability 0.9. The resulting LD hasurement point. Focussing, therefore, on rate rather than dura-
the same shape as the original, with a variance which is apprtign suggests that one might extend the in-flow packet manipu-
imately 90% of it, which is consistent with an independent ardtion so thatD(¢) is no longer preserved but made alinear func-
identically distributed (i.i.d.) superposition model. In contrastion of R(7). A simple way to do this (in an average sense) is to
in [A-Pois; P-Uni; S-Dur], we select only those flows with du- reposition the packets in a flow according to a Poisson process,
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which is a manipulation we ca]P-Pois]. As seen in Fig. 3(b), (a)
the two curve$A-Pois; P-Uni] and[A-Pois; P-Pois]are almost '
indistinguishable. This shows that flows for which it would no
be appropriate to slav@ (%) to rate (effectively td / P(7)), such
as those with very large gaps, have a negligible impact. Makii gg}
D(3) a dependent variable in this way opens up the possibili
of renewal models for packets in flows and explains the obs¢—
vations of[A-Pois; P-Uni; S-Dur] as a simple consequence 01\>/<|0.6- SRR
those offA-Pois; P-Uni; S-Pkt].

We now consider flow behavior as a function of the “quasi ir =
dependent” variables: average rate and flow volume. Bedaus:t
is discrete, a scatter plot oR(4), P(4)) hides mass along dis-
crete lines and is very misleading. We therefore discretise t
scatterplot to form the density plot [see Fig. 4(a)], where ea
square in the R, P) plane is shaded according to the numbe
of points within it. The mass is highly concentrated (most flow ==
have a small number of packets), and therefore, a logarithn —6 -5 -4 -3 -2
scale is used to greatly enhance the outer regions. For a fi>.... log(x)
packet volume, the average rates cover a wide range and, si~ (b)
larly, a flow with a given rate may contain many packets or ¢
few as the minimum of 2. Furthermore, although the spread
values indicates high variability across flows, we do not see a .
bimodality that would suggest a need to classify flows intotw 0.8+ PR PRI : e .
or more classes. Simplifying things somewhat, the picture tr '
emerges is that, in the range of rate values where the densit §
highest, the packet volume distribution is approximately ind«'go-s'
pendent of rate (and is heavy tailed). In Fig. 4(b), we giaeket @ - : :
densityrather than flow density, in effect weighting plot (a) by & S0.4f | : R .
the packet impact of each underlying flow. The dark elemer o '
at largeP (i) correspond to volume-elephant flows, which hav 3
an appreciable packet impact despite arising from a very sm  0.2f
percentage of flows—they were invisible in plot (a). Our cor
clusions are not altered however the epicentre of activity is st
located at the dark region of plot (a). We return to the questi
of elephants in Section IV-D. We next look more deeply insid 0 50 100 150 200 250 300
flows in two orthogonal ways. lag

Fig. 4(c) gives the value of the index of dispersiefy. of
the inter-arrivals within a flow, calculated individually for eaclFig. 5. Examining the inter-arrival process (AUCK-d0).(a) Inter-arrival
flow with at least three packets and then averaged over squafggbution with fitted Gamma (shape 0.6, mean= 1.2 ms). (b) Auto-

correlation of (detrended) inter-arrivals.

in alog-log plot. We see that they cover a wide variety of values,
but the most extreme of these are not in the main region of h|gh
mass, as revealed in Fig. 4(b), which is of the same trace dhdcaledR](not shown), a uniform rescaling' (i) = sR(i) re-
shares the same scale. (At very small rate, we have a snsalited in a simple horizontal translation of the LD byog,(s)
number of very regular flows. These, due to TREepalive (thisis not surprising given Poisson flow arrivals). We conclude
packets, have little impact.) On the contrary, the values in tiigat rate acts as a scale parameter but that the wide distribution
main high mass region are reasonably uniform, with a weightefirates noted from Fig. 4(b) cannot be easily represented by a
average value around 1.4; this is overdispersed comparedsitagle value at medium to large scales, unless it is tuned very
Poisson but not extremely so. carefully. The question of how to determine and interpret such

Fig. 3(b) includes two experiments designed to reveal tlevalue is investigated below.
role of rate. The manipulatigi\-Pois; P-ConstR]rescales the = We now disregard flows and examine the inter-arrival series
packet inter-arrivals within each flow by a constafit) such A(k). Fig. 5 shows its histogram for AUCK-dO, which fits well
that the average flow rates are moved to a common véltie: to a Gamma random variable witty, = 1.29. The autocor-
s(7)R(7), which is chosen here to be the median rate. Despitgation in plot (b) is negligible over small lags (small scale).
preservingP(i) as well as the individuality of packet struc-Similar results apply for other traces, but it should be remem-
tures within flows, the impact is notable; the entire large scabered that the time scale corresponding to a lag varies inversely
behavior is translated by a significant amount. This is moges the packet rate. Whilst these results are true as such, they are
clearly seen ifA-Pois; P-Pois; P-ConstR] where the small in fact misleading. This can be revealed using a multiscale anal-
scale structure is simplified. In a third experimefA;Pois; ysis and explained using a cluster model.

1 — Déta
-- Gamma distribution
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IV. CLUSTER MODELS Aal(1/c¢—1)| between the asymptotic levels. The result, which

In this section, we define and evaluate two models for tﬁgspects the role of the scale paraméies

point processX (¢) of packet arrivals, inspired by the observa- 1 19¢ \ 3

tions above. = — (=), 0. 8
= 27h <c+1> €2 (8)

A. Black Box Model: Gamma Renewal (GR) The LD equivalentjs,, = — log, v. is marked by asterisks in

A renewal process is a simple point process, where the intéig. 1 (e = 0.1). Expressions for the center of the zone where
arrival variables{ A(k)}, k € Z are i.i.d. We will examine its such a pseudo scaling exists, and its slope, can also be derived,
utility as a direct model for the inter-packet times. Althoughllowing predictive tests of the model. Approximate expressions
we seek meaningful constructive models rather than thosefof c € (0.2, 1] are given byj&r (b, ¢) = 1/b- 1, andagr(c) =
black box type, there are good reasons to first examine a renegat- ¢)/4.
model. First, Fig. 5(b) directly suggests it. The second reason isThe model is easily calibrated through the sample mean
the observation from Fig. 1(c) that a renewal process has the pod variance of the inter-arrivals. Comparing the resulting GR
tential to generate scaling (or apparent scaling) behavior at snvedivelet spectrum against the AUCK-c1 trace in Fig. 8(a), we
scales. The possibility of gaining a statistical understanding g€ reasonable agreement at low scales and up to the onset
this effectin a very simple context is worth pursuing. Finally, thef LRD. In general, however, the predictive ability of the GR
spectrum of a renewal process plays a direct role in the clusteedel fails badly. The reasons for this become clear when one

models introduced in Section IV-B. moves to the cluster model and result in useful insights, as we
The spectrum of the continuous time renewal procégg is  presently show.
[4] Our final but important comment relates to the pitfalls in in-

terpretation that “pseudo slopes” can cause. Since, for realistic
. . values ofc, jé&r (b, ) is the same order of magnitude as,
Px(v) = Aa [(1 —Pa(w) +(1-Pa(-w))” — 1} (5)  for both practical and physical reasons one is led to focus anal-
ysis on scales above it. This is standard practice in traffic anal-
where® 4 (w) = Elexp(iwA)] is the characteristic function of ysis, as it seems inefficient to study time series that are mostly
the inter-arrival distribution, and = 2zv is the unnormal- zeros. We have verified that if one does so, pseudo-slopes exist
ized frequency. Fig. 5(a) justifies a Gamma distributionAor not only at second order but also more generally. Consequently,
with characteristic functio® 4 (w; b, ¢) = (1 —ibw)~¢, where if one performs, for example, a wavelet multiscaling analysis
¢ > 0 is the shape parameter. The exponential cage=s1, of the type described in [12] over a range of moment orders,
corresponding to the Poisson processbAsa scale parameter, one finds empirical indications of multiscaling (possibly multi-
@ 4(w;b,c) = ®a(bw;1,c). The mean and standard deviatioffractal) behavior. This can lead to an erroneous belief that the
are given byus = be ando 4 = by/c the coefficient of varia- data is much richer than a mere renewal process when, in fact,
tionbyoa/na = 1/4/c, and the arrival intensity 4 = 1/14, in this respect, it is entirely consistent with it. Indeed, it is likely
respectively. The following properties of the GR spectrum holthat in many cases, the evidence for multifractal behavior over
time scales below 1 s has been misinterpreted. In this paper, we
do not present results beyond second order. Nonetheless, it is

v— 1 2 - 1 )\A . . . .
Tgr(v) :0/\A {— + (e D )(bw)Z + O(w“)] — 24 (6) clear that if scaling (over some given scale range) is aply
¢ ¢ ¢ parentat second order, then the process cannot be multifractal
2 cos (m as multifractality would imply true scaling over a range of or-

DN [1 + 07) + o(w_”)] — X ()

ders, including second order. Exploring this issue in detail is the
subject of ongoing work (see also [15]).

One can show that in the over-dispersed ¢ase 1) of interest
here, Ré® 4(w)) is monotonic decreasing, from which it fol-B. Flow Based Model: Poisson-Gamma Renewal (P-GR)

lows that the spectrum is as well. Since a monotonic SpectiuMrhe main observations of Section I1l, that flows can been
implies a monotonic waveletspectrum, the LD of GRWAtR 1 seen as independent entities arriving according to a Poisson
monotonically increases from the asymptotic léwgh(As) UP  process, fits naturally into a cluster process framework. A sta-
tolog,(Aa/c), as in Fig. 1(b). The small-scale asympotic levelgnary Poisson cluster process on the real line [4], [27] con-
is that of a Poisson process as well as of paieHowever, this  gisis of a Poisson process defining the locations of “seeds” about
limit is not specific to Poisson but is due to tgeneral point yhich a group of points are placed according to i.i.d. copies of
process property that points do not coincide another process. In a harmless abuse of notation, symbols al-
Fig. 1(c) illustrates how, for a range of scales close to th@ady defined for the data will be reused.

upper asymptotic level, the LD of a GR process can appear q et the arrival times{tp (i)} of flows (the seeds) follow a

follow a straight line: a “pseudo scaling.” To quantify this, Wepgjsson process, also of rate. The packet arrival process can
define a lower cutoff frequency*, where the spectrum can beyg \yritten as

said to “first” deviate from its asymptotic value. Fix a deviation
parametet € (0,1). Definev* as the smallest such that the X(t) = Z Gi (t — tp(i)) 9)

(bw)

second term of (6) deviates from the firstbfmes the distance
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whereg; (t) represents the arrival process of packets within flow One sees immediately that the flow arrivals enter only through
i. Let the{G;} be i.i.d., and consider a representatig). It Ar, which is a simple variance prefactor with an interpreta-
is a point process containing a finite numkér> 1 of points tion that one independently superposas™of the same thing.
(packets) with the first located at= 0. Furthermore, the parametéf\, acts as a scale parameter:
Determining an appropriate process(t), given the com- T'x(w; Ar, Aa, ¢, Fp) = I'x(w/Aa; Ar, 1, ¢, Fp). This is a di-
plexity of TCP dynamics and network heterogenity, is a chalect consequence of chosifkg, with a scale parameter obeying
lenge (see [28] for an interesting fluid model approach). Recall,x /\;1. The third striking feature is that the expression con-
however, from Section I1I-C that the manipulatidRsUni] and  sists of two terms of which the fir§t x /Ao ) T'gr (v) is familiar
[P-Pois] showed that simple “constant rate” models accountdéebm Section IV-A. To understand the second, we note that
for most of the second-order properties seen at the packet level. w—0 8 (9
A (finite) renewal process model is a simple way to obey this Re(Sg(w)) “~" LB(B)(2mAa)*~ w #7 =00 (13)
finding, which has the advantage of falling within the theoret- w—oo  COS (%)
ical framework ofBartlett—Lewiscluster processes. We choose (bw)©
the inter-arrival random variabld to be Gamma distributed where B(8) = ¢(1 — ) COS(W[J/Q)/(%)@_,@) > 0, () de-

[with c.f. ®4(w: b, ¢)] for several reasons. First, it has a scalfsting Eyler's Gamma function ((13) can be derived using a
p_arameter, making it con5|stenft (see below) with the observ,%fymr expansion ofb 4 (w) and employing a standard Taube-
tions on rate dependence of Fig. 3(b). Second, we have s theorem [29, p. 333]). Thus, at high frequency, the spectrum
that[P-Pois]failed to rgproduce |mportqnt quahtat.lve behay|0(S dominated by the scaled GR term and, at low frequency, by
at small scales. We will see below that incorporating burstinegg, divergent second term. Comparing with (3), we see that the
through the variance to mean ratio is, in many cases, sufficieq}qe|is L RD with parameters;, o) = (2)\FLB([3))\2"8 9_

to reinstate this structure. This is easily and naturally achievgsi. It is significant that (13) deéends only on the iﬁter%éit».y

in the Gamma family, as the second parametirequivalent ot e GR flow processes and not on the second-order statistics:

to this ratio, and: = 1 corresponds t¢P-Pois}. Thus, finally, -t |arge scale, the finer details of the flows cease to matter. This
although the parametess,, ¢ of Gamma are not derived from o 2ins trye if the standard deviatiep of P exists, in which
network “first principles,” they do have physical meaning takep, ¢

directly from data, and two is clearly the minimum number nec-
essary. Tx(v) "= Ap (o2 +u2). (15)
The number of packets in a flow is a random variable
with densityp; = Pr(P = j), probability generating func- Recall that the GR term is mpnotonic decreasing when 1.
tion Gp(z) = 372, p;#%, |z| < 1, and distribution function The second term shares this propertyas— 0 and was
Fp (we takep, = 0). From Fig. 2(b), it is taken to be heavyobserved to obey it f(_)r all where it is nonnegligible. Carrying _
tailed, that is,1 — Fp(j) j—o0 Lj=%, 8 € (1,2), implying over these observations to the_ wa_ve_let spectrum, the generic
E[P] = up < oo but infinite variance. ' shape _of th_e LD for the model is S|m|la_r to that of the dashed
Assembling these components, the flow model can be writtEHVE N Fig. 1(c): a monotomc' function W,'th the form of
as a (scaled) GR process, saturating at medium scales before
crossing over to a LRD behavior at large scale.
i1 An example of a wavelet spectrum for the model, evaluated
Gi(t) = Z o <t - Z Ai(l)) (10) using (2), appears in Fig. 6, where the magnitude of the (scaled)
i=1 =1 GR and LRD components are also plotted. The knee in the LD
wheres(t) is a delta function centered at= 0, 4;(1) denotes IS NOW seen as the zone where these two compete. To capture
thelth inter-arrival for flowi, and the inner sum is defined to bets Position as a function of parameters in a practically useful
zero if j = 1. The average arrival intensity is given By = Way, it is essential to realize that the scale at which the “road
Appup. The parameters of the model axg; A4, ¢; andup, 3. 0 LRD” begins may be very different from where the asymp-
This is the smallest number allowing a packet level descriptid@fic LRD behavior of (13) dominates. We accordingly give two
of traffic with physical meaning: one parameter for flow arrivaldifferent definitions of transition scale. The first is the largest
two for in-flow packet arrivals, and two for flow volume. scale at which the small-scale effects, which are represented by
Apart from its physical motivation, one of the main adthe saturation levelbg, Ax /c of the GR component, accounts
vantages of the model is that its second-order properties &% half of the wavelet spectrum. This scale, which is denoted

tractable. The expressions from [4, p. 417] and [27, p. 79] c&Y Jrar IS the one we use for comparison against data, as it

nition looks for equality between the large-scale asymptotic be-
Ix(v) = Ap <§_Prg(y) + (Sg(w) + Sg(—(u))) (11) haviors of the two spectral componeits () = Ax/c and
A Ix(v) = cyv~ @, yielding
wherel'g(v) is the spectrum of thetationaryrenewal process 1
with the same parameters as the finite flow renewal process, hgpe:r = — 1ogs Aa + -5 (logy pp —logy (2LB(B)) —logy o) -
I'g(v) = T'gr(v;b,c), and (16)
P4 (w) Its greater tractability encourages its use (see Section V) in de-
Re(Sg(w)) = (1-— @A(w))z (Gr (Palw) —1). (12) scr?bing the qualitati\)//e parame?er depend((ance of the kne)e as the

— 0 (14)

P(i)
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Fig. 6. Comparison of LDs of AUCK-d1 and the P-GR model. The asterisk
(resp. square) marks the transition scglg (resp.jpgr)-

parameter dependencies of the two definitions are very similar.
In order to see whether the GR component saturates before the
LRD dominates, creating a plateau at medium scales as schema-
tized in Fig. 1(c), one can compajg againsté.g, which can

be rewritten as

number of packets

4 6 10
time (sec)

2
jaR = — 108;2 A+ 10g2 (L—Zl)> . (17) Fig. 7. Packet process (AUCK-d1). (a) Synthe¥i¢t) data binned withr =

(3ec?) 50 ms. (b) Corresponding original proce¥s).
In Fig. 8(a)j&g < jpar, and so the plateau is visible, although
just barely. Ifj&r = jpar., then the plateau will have negligiblemodel and the black box GR model can therefore never coincide
width; howeverjg, > jicr is not possible since the departureat small scales unlesg p/As = Ax/Aa = 1. Fortuitously,
from small scales leading to LRD can only take effect at scalésis is almost the case in Fig. 8(a), wherg /Ay ~ 2.1 but
where there are many packets in a flow, which is intuitively theot in general. For the Abilene trackx /Ay = 278. This re-
same criterion defining GR saturation. sult is significant since, looking solely at the results in Fig. 5,

Another advantage of the model is that the packet inter-arriv&IGR process seems reasonable at small scales, but such mea-

time distribution can be calculated analytically [4], enablingures cannot resolve important dependencies in the data, which
comparisons against data and fitted Gamma inter-arrivals. &ie captured by the cluster model.

nally, simulation of the model is trivial and fast, apart from the \we now describe the parameter fitting in detail. The flow

long transient induced by the LRD. arrival parameter was estimated directly from the sample
o mean of flow inter-arrivals. Determining an appropriate for
C. Verification in-flow packet arrivals is not trivial. Simple choices such as the

The model works well when fitted to the packet process féRedian of k(i) [see Fig. 3(b)], or the mean, perform poorly.
the AUCK-d1 trace, as seen in Fig. 6. The use of GR flowdhis is because, as we are modeling the packet arrival process,
here witho 4 /114 = 1.58(c = 0.4), succeeds in modeling mostit is essential to capture the impact of each value of rate in terms
of the burstiness which was not reproduced ugPdPois] in  Of packets. We accordingly weight the average rat&’by — 1,

Fig. 3(b). Hereji&y ~ jbap, predicting that the plateau is notwhich is the number of inter-arrivals in each flow. This results
visible. This is the case, and . agrees visually with the onsetin values that are generally considerably above a simple mean,
of LRD. Furthermore, the visual agreement in the procésg ~ Which agree well with semi-experimental comparisons.

itself was found to be excellent, not only over the scales shownThe tail parametersi(, 3) are measured via a least squares
in Fig. 7, but over all scales. This agreement, essentially in tfiein a log-log plot of 1 — Fp(k). The fit is at logarithmically
marginals, goes beyond second-order, even though the expseparated and begins at smalk = 6) or medium (0.8 quan-
ments were judged through the eyes of the wavelet spectruite) values, rather than just the far tail. The exponents of heavy
and indicates that the “physics” has been captured. tails are notoriously difficult to estimate, and the facktds even

We can now explain the failure of the black box GR modemore so. The above procedure includes more data and thus sta-
Simply, a scaled renewal process is not a renewal process. THuilizes the estimation and, in addition, is important in the present
the “GR term"A\pupl'gr /A a Of (11), although sharing the gen-context where the distribution body is also power-law like over
eral form of a GR process, and the possibility of pseudo scaliagange of scales. The resulting behavior in the LD is thus a mix
with the samej¢,z value, is not equivalent to one. The clusteof effects that must be appropriately captured when measuring
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Fig. 8. Comparison of data and P-GR model. (a) Fit to AUCK-c1 is good, whereas the quality of the black box GR model is fortuitous. (b) Fit to UNC-al shows
distortion not present when the empiridahistogram is used. A model using truncated empirieagrees with the predicted level. (c) Abilene deviations remain
even with the empiricaP. The asterisk (resp. square) marks the transition ggale(resp.j;ar)-

(L, B). A measurement from the far tail only would not be condure yields(Ar, Ax,c¢) = (63,8,0.15) and (p, az,v,a,03) =

sistent with ¢, a) estimatesexcept at extremely large scaleg0.0236,0.005,3,0.2711, 1.3510).

beyond the usual observable range. Finally, ¢ can be tuned to fit the LD over scales below the
An entire distribution Fp is required for P to link its LRD. Alternatively, a meaningful value afcan be derived by

physical parametersp, 3, L. The discrete Pareto-like variablepacket weighting as fok, above. The flows with the largest

H(k;a,pB) packet volume, as they also have higher average dispersion
[see Fig. 4(c)], act disproportionately to decrease the effective
Fa(ka,8)=1—(ak+1)"? ~1—Lk™?, k=1,2,-.. cVvalue Thisillustrates a more general point. The detailed pa-

(18) rameter fitting procedures above show that meaningful values
can be given to the (meaningful) parameters, thus completing

wherea = L=/% > 0 is a scale parameter, has méaji] = the physical validation of the model. For some parameters,
a=P¢(B,1/a) for p > 1 [the generalized Riemann Zeta funchowever, notably: and \ 4, this can be computationally inten-
tion {(-, -) can be evaluated to chosen precision]. Unfortunatelive. However, faster methods more akin to “fitting” could be
E[H] can fail to matchup by a large factor. To broaden theused for more routine application of the model.
family while respecting the power-law tail and/or bodies, we de- In Fig. 8(b), the fit to UNC-al is not quite as good, although
fine the mixture distributiorFp (k; p, a, B) = pFu(k;a2,7v))+ the main features are reproduced; in particular, the knee posi-
(1 — p)Fu(k;a,pB)). For fixedy > 2 (finite variance) and tion prediction is satisfactory. Much of the discrepancy is due
as > 0, the mixture parameter € [0, 1] allows the meanp to the more complex form ofp. To see this, we also plot a
to be independently matched. For AUCK-d1, the fitting procésemi-model” fit, where the empirical distribution &f is used
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instead of the fitted model distribution. The improvement rdion, are independent P-GR processes. Thus, the spe€tgum
veals that the body of the distribution &f plays an important of the “multiclass” cluster model is just the weighted sum of two
role in the shape of the “approach” to the LRD asymptote. Iispectra of P-GR type. This construction can easily be extended
deed, we have observed that in many cases, the observed “LR®4a countable number of classes.
can be dominated by the shapefdf at “medium” scales, re-  With these additional tools at our disposal, we return to the
sulting in estimates of the LRD exponentwhich are very mis- Abilene trace with the flow density plot of Fig. 9(a). It tells a
leading. To illustrate the relevance of (15), in the lower part gimilar story to that of Fig. 4(a), albeit with a shift to higher rate
the figure, we show a semi-experimental LD, where the empf{note that the diagonal boundary across the top is an edge effect
ical distribution has been truncated at the 90th percentile, rahue to the short duration of the trace). However, when we move
dering the data short-range dependent. The LD then saturate® dhe packet density plot of Fig. 9(b), we see a striking change
a value (dashed line), which agrees well with (15). in the center of mass that is not found in the AUCK traces,
Finally, Fig. 8(c) shows the result for the high rate Abileng/here the epicentres of “packet” density and flow density coin-
trace. As the fitis poorer, we show only the semi-model fit usingjde [compare Figs. 4(a) and 4(b)]. The locationiit) ) space
the empirical distribution foP. We see that despite eliminatingof this high-density region represents an empirical definition of
mismatches in the shape &f, the model fails to account for “elephant,” which is not tied to rate or packet volume alone. It
some of the variability at medium scales (also reported in [18 characterized by a very small proportion of flows containing
for other OC48 traces). Understanding the reasons for this eehigh proportion of total packets, with a higher average rate
quires a return to the data as well as an enhancement to &mel higher average dispersion (lowevalues), as seen from

model. Fig. 9(c). Thus, the Abilene trace contains very strong, bursty,
_ _ and high rate volume-elephants, and yet, by the argument above,
D. Elephants, Mice, and a Multiclass Cluster Model the volume-mice must still be important for small enough scale,

The term “elephants and mice” has become commd&iiggesting that a multiclass model may be essential for a full
parlance. It refers to the fact that often a small proportig#escription of this data.
of flows—the “elephants”— have a disproportionate impact In future work, we will examine the usefulness of the dual
over the more numerous “mice.” Typically, this distinctiorflass cluster model to explain the form of the wavelet spectrum
is made in terms of flow volume. The heavy-tailed modelinghown in Fig. 8(c) (similar spectra have been observed in
for P respects this idea, and the results for the AucklaffdC-48 commercial backbone links [15]). Alternatives to
and UNC traces show that the P-GR model is capable @@mma renewal models will also be investigated to model
naturally modeling both elephants and mice within a singf@ore extreme in-flow burstiness. Although the number of
model class. However, the concept can, and should, alsoR@ameters increases when moving to multiclass models, it may
applied to the orthogonal dimension of traffic rate (see [10]pe necessary to capture important network features. Network
An important reason for this is that what constitutes a “largéaffic is complex and cannot be reproduced accurately, nor
impact” is scale dependent. Only a small number of packeéfganingfully understood, with just three or four parameters.
from volume-elephant flows intersect a given small intervafts the Abilene trace is a very recent one and is from a large
so their contribution will be negligible compared with that opackbone link, these complexities are exciting to explore since
volume-mice. Instead, flows with very high rate—rate-eldn many ways, they constitute a taste of the future of traffic.
phants—would make themselves felt at such small scales. On
the other hand at large scales, localized high rates are irrelevant, V. TOWARDS UNDERSTANDING TRAFFIC EVOLUTION

and the contribution of volume-elephants is significant. In this section, we examine in more detail the nature of the
_ Although we noted in Section 1l that flow rates vary widelyp_GRr model as a function of parameters and illustrate its use as a
in the P-GR model, they share a deterministic value This 4| 1o speculate on the future shape of traffic. For convenience,

was acceptable as a single valueaf could be found, which . recall that for large, the LD tends tdog, (cfC) + «j, or
represented well the range seen in the high density portions of

Figs. 4(a) and 4(b). This would not be the case if rate-elephantig, (2\r - LB(3)C(2 — 3)) + (2 — 8)(j + logy Aa). (19)

and rate-mice were present. A cluster model incorporating two

distinct classes would then be needed in order to successfully )

describe behavior at all scales. To calculate the spectrum dita oW Arrival Parameten

cluster model like P-GR but where the parameters can fall intoThe role ofAr is to vary the number of flows, which, through
two distinct classes: (“E,” with ratef, shapec?, and flow (11), can be seen as an i.i.d. superposition leavingfdhe
volume distributionF’f" and “M,” with parameters\}!, c™ and of the second-order structur@variant The magnitude of
F31), we proceed as follows. Lt be a Bernouilli random vari- second-order dependencies relative to the mean decreases as
able (independent aP etc.) taking value “E” with probability (Arup)~1/2; therefore, this result is not in contradiction with

q, else “M.” Consider a cluster process where for each flow ahe well-known weak convergence of such a superposition to a
independent copy o8 determines its class. By a well-knownPoisson process [4]. In traffic engineering, this relative decrease
splitting property of Poisson processes, the set of seeds of clakvariability is known asstatistical multiplexing gairand is

ters of type “E” (resp. “M”) is also a Poisson process with rate standard yet powerful argument for using links with higher
AE = ¢)\r (resp A = (1 — g)Ar). These two new processescapacity to enable more flows to mix together, effectively
which each have constant rate, shape, and flow volume distritowering variability, even for LRD traffic. This argument
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Fig. 9. Flow and packet density in Abilene. (a) Flow density plot ovefif, P(7)). (b) Packet density plot (flow density weighted by number of packets).
(c) Coefficient of variation per flow.

follows “open loop” model reasoning, where network feedbadcales. Increased flow burstiness could arise through lower uti-
is weak. This, however, is currently valid for backbone linksizations on network links, resulting in less queueing and there-
as network utilizations are low and are likely to remain so. fore less traffic smoothing, as well as through more aggressive

TCP flow control.
B. Flow Structure Parameters, andc

Sincel /)4 is a scale parameter, increasingresults simply - Flow Volume Parameteysp and (3, L)

in translating the wavelet spectrum toward smaller scales. ThisVe assume that these three can be varied independently, al-
can be seen explicitly in the expressons for the transition scalesugh this can never be entirely realized in a parametric family.
Jbar andjég and in (19) above. Increasing, also obviously Atscales belowpsgr , the tail parametergi( L) have no impact.
scales back flow durations proportionally. At a fixed scale of obFhe plateau onset scajgy is entirely independent aP, and
servation, say at the sampling rate of a particular measuremgptenters only as a variance factor magnifying the burstiness at
infrastructure, one would see the traffic burstiness increase awdles below;t (thus, scaling up the pseudo-slope). At the
become decidedly less Poisson as both the in-flow burstiness attter extreme, the LRD is unaffected py but is strongly in-
scaling behavior translate to smaller scale. In network terms, fluenced by the tail parameters; the asymptotic line moves up
creased\ , could correspond to the same traffic passing througthen the tail is made heavier either by increasingr by de-
faster access networks before reaching the measured link. creasing3. The onset scalgst, ; is the result of competing ef-
Equation (19) is independentafDecreasing results mainly fects. It is pushed up when increased increases short-range
in an increase in burstiness at scales below LRD through therstiness and grows to a limiting value with increasthbut
plateau heighf x /¢ and an increase in the pseudo slope at odecreasesvith increasingL. In terms of networks, a smallgr
taves belowjy. It also results in a monotonic movement otorresponds to an increased spread of file sizes, whéreasl
approximately the same speed of bgth, andjstg to higher pup trade off the proportion of “small” versus “large” files.
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D. Future Scenarios and Scale of Observation sibility of a new, and very simple, alternative explanation for em-

The parameter dependencies above can be combined Rjfical evidence of multiscaling behavior at small scales as atran-

cording to possible future traffic scenarios. For exampléi,tional effect over a narrow range of scales of simple in-flow
assume that increased access link rates promote a pro 'stiness, suggesting that such traffic is not truly multifractal
tional increase in network usage accordingde — A\ over these time scales. An expression for the onset scale of LRD

Aa — A)a, and consider the following question: Will traffic &S given, analyzed as a function of network parameters, and
become more or less bursty? Clearly, the answer must be tifﬂHnd to be accurate. The model is highly structural, rather than

scale dependent. If observing at a scale, which is in the ral
[i&rs Jrer] both before and after the increase, then the muH
tiplexing effect of case | alone will apply, reducing (reIative}
burstiness. At scales abovgs . however, the increase in
Aa largely cancels this out, and in addition, the LRD invad
lower scales. If the more generous access rates also encou
greater transfer volumesp — Apup,
the multiplexing effect will win out.
Care must be taken when one moves the scale of obse
tion as parameters vary,
rivals. There, the characteristic timescale\x = 1/(Arup)
shrinks with increased flow rate or volume. Singg; is in-
variant with respect to each of these pamcreases, the point of
observation in fact moves toward the point process limit of
regardless of the actual change(s) in traffic structure. Indeed by
smaller inter-arrivals occur purely because of greaierthen
absolute burstiness has in fact increased at scales héjoy
whereas the change in perspective might suggest that the tralfl
had become more Poisson-like. At such small scales, one should
also be aware of the physical limitations of the point process
model, which breaks down when packet sizes are reached. Af
[OC48,0C3] speeds (assuming a large 1500 byte packet), the
model breaks down at around [5, 774 or j = [-15, —11]. 2]

VI. CONCLUSION 3]

Our analysis of the structure of TCP packet arrivals in Internet
traffic led to several significant conclusions. Beginning from the [4;
concept of flows of packets, we showed (at least in the context of
lightly loaded links) that both the flow arrival process and depen- (5
dencies between flows have negligible impact, as do higher layer
mechanisms grouping flows such as web browsing sessions. Thigl
key element was found to be the concept of independence be-
tween flows. Using wavelet analysis, the second-order statistic$z]
of packet arrivals were shown to be determined by in-flow packet
arrival burstiness at small scales and heavy-tailed flow volume a
large scale. The scaling-like behavior at small scales was clearly
linked to the burstiness within flows. [9]

A stationary Poisson cluster process class was proposed as
an ideal model capturing these features. Poisson arrival instarnts;
with rate \y denote the arrival of flows. Packets within flows
follow finite GR processes with rate, and shape, flow volume
being given by a heavy-tailed variahlewith infinite variance.
The model has many advantages, including a known spectrum,
positive marginals, simple synthesis, and a minimum number ({52]
parameters, each with direct physical interpretation in terms of
network traffic. Its spectrum can be written as a sum of a scaled
spectrum of a renewal process controlling small-scale behavitgjr?’]
and a term controlling asymptotic large-scale behavior. A de-
tailed description was given of the behavior of the spectrum ant4l
the wavelet spectrum, as a function of parameters and the corre-
sponding interpretation for networks. The model offers the pos-

(11]

@ck box, enabling its use as an investigative tool for the evo-
tion of traffic properties.
The model was verified against large quantities of accurate
nternet data and was found to reproduce the second-order sta-
; distics well. The parameter fitting was described in detail. It led
ng’geaningful para_mefter values and visually convincing model
then\y — AZ\y, and sample paths, confirming that the model actually captures much
of the network “physics.” Some departures from the model were
faund for a recent, very high bit rate traffic trace. Further data
such as when studying packet inter&palysis rgvealed some of the under_lylng reasons,_and a multi-
class version of the model was described as a possible means to
account for them.

It was shown how the model can naturally incorporate the
notion of elephant and mice flows without the need to explic-
itly define them and treat them separately. It was also used to
fllustrate how a packet volume-based definition of elephants is
not sufficient and how “rate-elephants” could be accounted for
éhe model, should they exist.
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