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Wavelet Leaders in Multifractal Analysis

Stéphane Jaffard, Bruno Lashermes and Patrice Abry

Abstract. The properties of several multifractal formalisms based on wavelet
coefficients are compared from both mathematical and numerical points of
view. When it is based directly on wavelet coefficients, the multifractal for-
malism is shown to yield, at best, the increasing part of the weak scaling
exponent spectrum. The formalism has to be based on new multiresolution
quantities, the wavelet leaders, in order to yield the entire and correct spec-
trum of Hölder singularities. The properties of this new multifractal formal-
ism and of the alternative weak scaling exponent multifractal formalism are
investigated. Examples based on known synthetic multifractal processes are
illustrating its numerical implementation and abilities.

1. Introduction

The purpose of multifractal analysis is to study functions or signals whose point-
wise Hölder regularity may change widely from point to point. In such situations,
the determination of the pointwise regularity at each point is numerically unsta-
ble; usually, it is quite meaningless since the exact regularity at a particular point
usually does not carry a useful information. Therefore, one rather wishes to derive
some information concerning the size of the sets of points where the pointwise reg-
ularity exponent takes a given value H . This “size” is mathematically formalized
as the Hausdorff dimension d. These dimensions define a function of the exponents
H referred to as the spectrum of singularities (or multifractal spectrum) of f and
denoted df (H). Therefore, performing the multifractal analysis of a function (or
of a signal) f means to determine (or to estimate) its spectrum of singularities
df (H). When working on real-life signals, the spectrum df (H) cannot be computed
by first determining the regularity exponent at each point, since it was precisely
introduced as a substitute for this quantity; hence the necessity to introduce a
method that yields this spectrum from numerically computable quantities derived
from the signal. This is precisely the goal of “multifractal formalisms” and the
purpose of the present work is to introduce a new multifractal formalism, based
on new multiresolution quantities, the wavelet leaders.
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However before introducing wavelet techniques, we will first examine how
such formalisms were introduced in the setting of measures and functions; indeed
a careful inspection of these more simple settings will be the key to a good under-
standing of what the alternative wavelet extensions yield.

In this paper, we first provide the reader with a description of the different
multifractal formalisms which have been introduced in the setting of measures
(Section 2) and in the setting of functions (Section 3). The first wavelet-based
formulas are presented in Section 4; we will discuss the pertinence of these wavelet-
based formulas and show that they lead to numerically unstable computations. The
way to overcome these problems is to give up basing the multifractal formalism
directly on wavelet coefficients but rather on wavelet leaders. This is developed in
Section 5. Finally, In Section 6 we show that the previous multifractal formalism
based on wavelet coefficients can be (partly) interpreted as yielding the spectrum
of singularities based on another pointwise regularity exponent: The weak scaling
exponent.

This paper is partly a review paper and partly a research paper. Its main
novelty is twofold:

• We show that, both numerically and theoretically, a wavelet-based multi-
fractal formalism yields more accurate results if it is built on wavelet leaders
rather than directly on wavelet coefficients. The particular examples sup-
plied by Brownian motion and fractional Brownian motions are investigated
in details and the performances of the different multifractal formalisms are
compared both theoretically and numerically on these examples.
• We show that a multifractal formalism based on wavelet coefficients can only
be expected to yield the weak scaling spectrum (see Definition 19), and
therefore it can yield the spectrum of singularities only in the particular
cases where the two spectra coincide.

The numerical data shown in this paper only involve synthetic signals (Frac-
tional Brownian Motions and multiplicative cascades) whose spectra are knowm
exactly, since they thus supply reliable benchmarks in order to compare the dif-
ferent methods under investigation. Let us mention, however, that multifractal
analysis is now successfully used in many fields of science (turbulence, clouds
modelling, physiological signals and images, traffic data, rough interfaces...), see
[1, 4, 13, 23, 34, 48, 58] and references therein. Inside mathematics, multifractal
measures or functions were also shown to be relevant in many different areas, such
as analytic number theory, Diophantine approximation, Peano-type functions, dy-
namical systems, stochastic processes,..., see [29, 30, 34] and references therein.

2. Multifractal Analysis of Measures

2.1. Mathematical Notions

We start by introducing the mathematical tools that are needed in the multifractal
analysis of measures. The first one is the definition of Hausdorff dimension (see
e.g., [20]).
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Definition 1. Hausdorff dimension: Let A ⊂ Rd. If ε > 0 and δ ∈ [0, d], we
denote

M δε = inf
R

 4
i

|Ai|δ
'
,

where R is an �-covering of A, i.e. a covering of A by a countable collection of
bounded sets {Ai}i∈N of diameters |Ai| ≤ ε. The infimum is therefore taken on all
�-coverings. For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is

mesδ(A) = lim
�→0M

δ
� ;

note that the limit exists (it can take the value +∞) since M δ� is a decreasing
function of �. There exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ (A) = +∞; and ∀δ > δ0, mesδ (A) = 0.
This critical δ0 is called the Hausdorff dimension of A.

Multifractal analysis is relevant for measures whose regularity changes from
point to point. Therefore we need to introduce the following notion of pointwise
regularity of measures.

Definition 2. Hölder exponent: Let x0 ∈ Rd and let α ≥ 0. A nonnegative
measure µ defined on Rd belongs to Cα(x0) if there exists a constant C > 0 such
that, in a neighbourhood of x0,

µ(B(x0, r)) ≤ Crα,
where B(x0, r) denotes the open ball of center x0 and radius r. Let x0 belong to
the support of µ; then the Hölder exponent of µ at x0 is

hµ(x0) = sup{α : µ ∈ Cα(x0)}.
Definition 3. Singularity (or multifractal) spectrum: Let Eµ(H) denote the set
of points where the Hölder exponent of µ takes the value H . (Note that Eµ(H)
is included in the support of µ.) The spectrum of singularities of µ (denoted by
dµ(H)) is the Hausdorff dimension of Eµ(H).

Remarks: In the previous definition, when Eµ(H) = ∅, then its dimension
is −∞. This is actually more than a simple convention. Indeed, the multifractal
formalism that is studied below is expected to yield −∞ for the values of H for
which Eµ(H) = ∅.

The Hölder exponent of a measure is called the “local dimension” by some
authors.

We will need to be able to deduce the Hölder exponent at every point from
a “discretized version” of µ, i.e. from the values of µ on a countable collection of
sets. A possible choice for this collection of sets is supplied by the dyadic cubes
which are defined as follows.
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Definition 4. Dyadic cube: A dyadic cube of scale j is a cube of the form

λ =

�
k1
2j
,
k1 + 1

2j

)
× · · · ×

�
kd
2j
,
kd + 1

2j

)
,

where k = (k1, . . .kd) ∈ Zd.
Each point x0 ∈ Rd is contained in a unique dyadic cube of scale j, denoted

by λj(x0).
The cube 3λj(x0) is the cube of same center as λj(x0) and three times wider;

i.e. it is the cube

λ =

�
k1 − 1
2j
,
k1 + 2

2j

)
× · · · ×

�
kd − 1
2j
,
kd + 2

2j

)
.

The following lemma is a key ingredient in the derivation of the multifractal
formalism for measures.

Lemma 2.1. Let µ be a nonnegative measure defined on Rd. Then

hµ(x0) = lim inf
j→+∞

"
log (µ[3λj(x0)])

log(2−j)

)
. (2.1)

Proof. By definition of the Hölder exponent,

∀� > 0, ∃r > 0, ∀r ≤ R, µ(B(x, r)) ≤ rH−�;
but 3λj(x0) ⊂ B(x0, 3

√
d2−j), so that

µ(3λj(x0)) ≤ (3
√
d)H−�2−j(H−�),

and it follows that

hµ(x0) ≤ lim inf
j→+∞

"
log (µ(3λj(x0)))

log(2−j)

)
.

On the other hand, if hµ(x0) = H , then there exists a sequence of balls
Bn = B(x0, rn) and �n > 0 such that rn → 0, �n → 0 and rH+�nn ≤ µ(Bn) ≤
rH−�nn . Let jn be such that

1
22
−jn < rn ≤ 2−jn ; then Bn ⊂ 3λjn(x0) so that

µ(Bn) ≤ µ(3λjn(x0)), which implies the lower bound for the Hölder exponent. �

Remark: This lemma relies heavily on the fact that the measure µ is nonneg-
ative, and therefore is an increasing set function; indeed, if µ is no more assumed to
be a nonnegative measure, then one easily checks that (2.1) is no more valid. This
property will play a key-role in the following, therefore we introduce the following
terminology.

Definition 5. Hierarchical set functions: A function defined on a collection of
sets is called hierarchical if it is nonnegative and increasing, i.e. satisfies

A ⊂ B =⇒ µ(A) ≤ µ(B);
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The first example of multifractal measures studied were multiplicative cas-
cades, which were introduced by B. Mandelbrot for modelling the distribution of
energy in fully developed turbulence, see [45]; their mathematical properties were
investigated by J.-P. Kahane and J. Peyrière in [36]. The purpose of the multifrac-
tal formalism is to derive the spectrum of singularities from global quantities which
are effectively computable in practice. Such formulas were initially introduced by
G. Parisi and U. Frisch in the context of fully developed turbulence in order to
interpret the nonlinearity of the scaling function associated with the increments of
the velocity field, see [55]; in the measure setting, and more precisely for invariant
measures of dynamical systems they were introduced by T. Halsey, M. Jensen,
L. Kadanoff, I. Procaccia and B. Shraiman in [23]. There exists several variants
for the mathematical formulation of the multifractal formalism, see [12, 54] for
instance, and we present the one given by R. Riedi in [56], because it presents a
very good compromise between effective computability and numerical stability, as
will be shown below.

2.2. Derivation of the Multifractal Formalism

Since Lemma 2.1 shows that the pointwise Hölder exponents can be derived from
the quantities µ(3λ), it is natural to base a multifractal formalism on these quan-
tities. We now assume that µ is compactly supported.

Definition 6. Measure (or box-aggregated) structure functions and scaling func-
tions: Let Λj denote the collection of dyadic cubes of scale j. The structure
function of the measure µ is

Σµ(p, j) = 2
−dj4
λ∈Λj

∗
µ(3λ)p, (2.2)

where the notation Σ∗ means that the sum is only taken on the cubes λ such that
µ(λ) $= 0.

The scaling function of µ is defined for p ∈ R by
ηµ(p) = lim inf

j→+∞

"
log (Σµ(p, j))

log(2−j)

)
.

Let us now show why the spectrum of singularities is expected to be recovered
from the scaling function. The definition of the scaling function roughly means that
Σµ(p, j) ∼ 2−ηµ(p)j . Let us estimate the contribution to Σµ(p, j) of the cubes λ that
cover the points of Eµ(H). Lemma 2.1 asserts that they satisfy µ(3λ) ∼ 2−Hj; since
we need about 2−dµ(H)j such cubes to cover Eµ(H), the corresponding contribution
roughly is

2−dj2dµ(H)j2−Hpj = 2−(d−dµ(H)j+Hp)j .
When j → +∞, the dominant contribution comes from the smallest exponent, so
that

ηµ(p) = inf
H
(d− dµ(H) +Hp). (2.3)

Proposition 1. For any compactly supported Borelian measure µ, the scaling func-
tion ηµ(p) is a concave function on R.
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Remark:We state this concavity result only for the first scaling function that
we meet. However, the same proof applies to all scaling functions defined in the
paper: All of them are concave.

Proposition 1 is a consequence of the following lemma of [24].

Lemma 2.2. Let (ai)i=1,...,N be a finite collection of positive real numbers. Then
the function ω : R −→ R defined by

ω(p) = log

 
N4
i=1

api

'
is a convex function on R.

Proof of Lemma 2.2: The function ω(p) clearly is a continuous function de-
fined on the whole R. Thus, in order to prove that ω(p) is convex, it is sufficient
to check that

∀p, q ∈ R, ω

"
1

2
(p+ q)

)
≤ 1
2
(ω(p) + ω(q)). (2.4)

Consider the vectors in RN

A = (a
p/2
1 , . . . a

p/2
N ) and B = (a

q/2
1 , . . . a

q/2
N );

The Cauchy-Schwartz inequality applied to these vectors yields

N4
i=1

a
(p+q)/2
i ≤

 
N4
i=1

api

'1/2 N4
i=1

api

'1/2
.

Taking the logarithm on both sides of this inequality yields exactly (2.4).

Proof of Proposition 1: For each j, we will apply Lemma 2.2 to the collection
of (µ(3λ))λ∈Λj such that µ(λ) $= 0 (and therefore µ(3λ) $= 0); this collection is
finite, since µ is assumed to be compactly supported; it follows that, for any j, the
function

p→ log
4
λ∈Λj

∗
µ(3λ)p


is convex; therefore, when divided by log(2−j), it is concave; Proposition 1 follows
because concavity is preserved under taking infimums and pointwise limits, and
therefore under taking liminfs.

Proposition 1 is in agreement with the fact that the right-hand side of (2.3)
necessarily is a concave function (as an infimum of a family of linear functions) no
matter whether dµ(H) is concave or not. However, if the spectrum also is a concave
function, then the Legendre transform in (2.3) can be inverted (as a consequence
of general result on the duality of convex functions, see for instance Chapter 1.3
of [11]), which justifies the following definition.
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Definition 7. A measure µ follows the multifractal formalism for measures if its
spectrum of singularities satisfies

dµ(H) = inf
p∈R
(d− ηµ(p) +Hp). (2.5)

Let us now explain the reason for the convention in the definition of Σ∗ used
in (2.2); indeed structure functions are often defined using µ(λ) instead of µ(3λ),
and with the convention that the sum is taken only on the nonvanishing terms.
One easily checks that this simpler way to define the structure function actually
yields the same values of ηµ(p) for positive p; however, it is no more the case
if p is negative for the following reason: It may happen that the cube λ barely
intersects the support of the measure; then µ(λ) does not vanish, but may be
arbitrarily small and, when raised to a negative power, it will therefore lead to
totally unstable computations; the convention for the Σ∗ used above turns this
drawback: When µ(λ) $= 0, the cube 3λ “widely” intersects the support of the
measure.

The derivation exposed above is not a mathematical proof, and the deter-
mination of the range of validity of (2.5) (and of its variants) is one of the main
mathematical problems concerning the multifractal analysis of measures. Nonethe-
less, let us stress the fact that the justification of this derivation relies heavily on
(2.1), i.e. on the fact that the Hölder exponent of a measure can be estimated from
the set of values that it takes on dyadic cubes. The formulation of the multifractal
formalism given by (2.5) combines two advantages:

• It is based on quantities that are effectively computable in practice: By con-
trast with alternative formulas proposed by some mathematicians, the struc-
ture function is not based on the consideration of a non-countable collection
of coverings of the support of µ.
• The scaling function has “good” mathematical properties, see [38, 56] (for
instance it is invariant under bi-Lipschitz deformations of the measure, which
is a natural requirement since the spectrum of singularities has this invariance
property).

This last remark points the way towards the kind of criteria that we will
use in order to select multifractal formalisms: In situations where the validity
of several possible multifractal formalisms cannot be justified in all generality, a
weaker benchmark in order to compare them will be to determine which ones
satisfy invariance properties which are obvious for the spectrum of singularities.
Such properties will be reffered to as robustness properties in the following. For
instance, if the scaling function is defined through wavelet coefficients, we will
require that it is independent of the (smooth enough) wavelet basis chosen. Note
also that, in several applications, it happens that the spectrum of singularities
itself has no direct scientific interpretation and multifractal analysis is only used
as a classification tool in order to discriminate between several types of signals;
then, one is no more concerned with the validity of (2.5) but only with having its
right-hand side defined in a meaningful way; therefore, in such cases, robustness
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criteria are the only mathematical requirements which remain in order to compare
the pertinence or several possible scaling functions.

3. Multifractal Analysis of Functions: Increments vs. Oscillations

Let us now consider the multifractal analysis of functions. We will start by recall-
ing the corresponding relevant definitions in this context. Multifractal analysis is
relevant for functions whose regularity changes from point to point. Therefore we
introduce the following notion of pointwise regularity of functions, which is the
most widely used. (Note however that in some specific settings, other pointwise
regularity exponents of functions can be used: The weak scaling exponent, see
Section 6 and the T pu exponent, see [32] and references therein.)

Definition 8. Hölder exponent: Let x0 ∈ Rd and let α ≥ 0. A locally bounded
function f : Rd → R belongs to Cα(x0) if there exists a constant C > 0 and a
polynomial P satisfying deg(P ) < α and such that, in a neighbourhood of x0,

|f(x)− P (x− x0)| ≤ C|x− x0|α.
The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.
Definition 9. Singularity (or multifractal) spectrum: Let f be a locally bounded
function, and let Ef (H) denote the set of points where the Hölder exponent of f
takes the value H . The spectrum of singularities of f (denoted by df (H)) is the
Hausdorff dimension of Ef (H).

Remarks: If hf (x0) < 1 (which is often the case in signal processing), then
the polynomial P (x− x0) boils down to f(x0).

The function hf (x0) may take the value +∞.
If 0 < hf (x0) < 1, then the Hölder exponent expresses how “spiky” the graph

of f is at x0. For instance the Hölder exponent of f(x) = |x− x0|α is α at x0 and
+∞ elsewhere (if α is not an even integer).

3.1. Comparison of Multifractal Formalisms

The numerical determination of the spectrum of singularities of a signal meets
the same problem as for measures. The multifractal formalism in this context
was introduced by G. Parisi and U. Frisch; they proposed to derive it from the
estimation of the Lp norm of increments of the signal [55]: Let us assume that the
function f considered is a one-variable function. A structure function based on
increments is

Σ1f (p, j) = 2
−j4

k

∗
9999f "k + 12j

)
− f
"
k

2j

)9999p (3.1)
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where the
5∗
means that the sum is taken only on non vanishing terms. The

scaling function of f is defined for p ∈ R by

η1f (p) = lim inf
j→+∞

 log
�
Σ1f (p, j)

&
log(2−j)

 . (3.2)

The same arguments as for the derivation of the multifractal formalism for mea-
sures lead to

df (H) = inf
p∈R
(1 − η1f (p) +Hp) (3.3)

(recall that we deal with functions of one variable here, so that d is replaced by 1
in this formula). Since (3.1) involves only first order differences, one expects (3.3)
to yield the spectrum of singularities of f only if all Hölder exponents take values
less than 1.

A first problem which is met here is that there is no formula corresponding
to (2.1) and based on increments of f : For instance, if 0 < α < 1; the function

xα sin

"
2π

x

)
vanishes at the points 2−j but its Hölder exponent at 0 is not +∞ but α. A sec-
ond problem is that this structure function does not clearly extend to the several
dimensional setting. (Which increments should be preferred on a cube?)

Let us now describe an alternative point of view which solves these difficulties.
The function f is defined on Rd, and we assume for the sake of simplicity that
0 < hf (x) < 1; then the local quantity based on dyadic cubes which is considered
is the oscillation of f .

Definition 10. Oscillations: The oscillation of a function f over a set K is

Oscf (K) = sup
x∈K
f(x) − inf

x∈K
f(x).

The motivation for basing the study of pointwise Hölder regularity on the
oscillation is that it is a hierarchical notion in the sense of Definition 5: Indeed,
clearly,

µ ⊂ ν =⇒ Oscf (µ) ≤ Oscf (ν)
and therefore the Hölder exponent at each point can be derived from the knowledge
of the oscillation on the countable collection of dyadic cubes, as shown by the
following lemma.

Lemma 3.1. Let f : Rd → R be a locally bounded function satisfying hf (x0) = H,
with 0 < H < 1; then

H = lim inf
j→+∞

"
log (Oscf (3λj(x0)))

log(2−j)

)
. (3.4)
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This lemma corresponds to Lemma 2.1 in the context of functions; its proof is
very similar, so that we leave it. Let us just insist on the fact that it holds because
the oscillation is a hierarchical notion, when increments are not.

Following the same arguments as in the case of positive measures, one can
base a multifractal formalism on this lemma by introducing the structure function

Σ2f (p, j) = 2
−dj4
λ∈Λj

∗
(Oscf (3λ))

p
;

following in this function setting the idea of [56], the Σ∗ means that the sum
is restricted to the cubes λ for which Oscf (λ) $= 0. The corresponding scaling
function of f is

η2f (p) = lim inf
j→+∞

 log
�
Σ2f (p, j)

&
log(2−j)

 . (3.5)

The same arguments as above lead to the formula

df (H) = inf
p∈R
(d− η2f (p) +Hp), (3.6)

which we expect to hold only when the spectrum of singularities of f is supported
inside the interval (0, 1) (i.e. if there are no Hölder exponents larger than 1 in the
signal).

3.2. Examples: Brownian Motion and Fractional Brownian Motions

We do not intend to investigate in details the properties of the multifractal for-
malisms supplied by (3.3) and (3.6), because our main motivation is to focus
on wavelet-based formulas, which will be shown to possess better mathematical
and numerical properties. However, we will only illustrate them by simple exam-
ples supplied by Brownian motion and by fractional Brownian motions (hereafter
F.B.M.). Such examples provide us with theoretical and numerical benchmarks on
which alternative formalisms can as well be tested.

Recall that Brownian motion is the only stochastic process (or random func-
tion) (Bt)t≥0 with stationary independent increments (i.e. satisfying if t > s,
Bt −Bs is independent of Bs and has the same law as Bt−s) and with continuous
sample paths. (Uniquenes is implied by the normalization E(|Bt|2) = 1.)

Fractional Brownian motion of index γ (0 < γ < 1) is the only Gaussian
random process (Bγt )t≥0 satisfying

E(|Bγt − Bγs |2) = |t− s|γ .
One can show that Brownian motion is precisely B

1/2
t . The key role played by frac-

tional Brownian motions in signal processing comes from the fact that they supply
the most simple one parameter family of stochastic processes with stationary in-
crements, and therefore are widely used in modelling. We will use the following
important feature: F.B.M. of index γ can be deduced from Brownian motion by
a sample path by sample path fractional integration of order γ − 1/2 if γ > 1/2,
and by a sample path by sample path fractional derivation of order (1/2) − γ if
γ < 1/2.
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Recall that, with probability 1, a sample path of Brownian motion has ev-
erywhere the Hölder exponent 1/2, so that its spectrum of singularities is

d(H) = 1 if H = 1
2

= −∞ else,


(3.7)

see for instance [1, 35].
The following theorem illustrates the superiority of the multifractal formalism

based on oscillations (as opposed to increments).

Theorem 3.2. Let Bt be a generic sample path of Brownian motion; then, with
probability 1, the multifractal formalism based on increments (3.3) yields that a.s.

inf
p∈R
(d− η1B(p) +Hp) = 3

2 −H if H ∈ �12 , 32�
= −∞ else,

whereas the multifractal formalism based on oscillations (3.6) yields the correct
spectrum given by (3.7).

The proof of Theorem 3.2 is given in the Appendix where, in particular, we
will show that a.s.

η1B(p) = p/2 if p ≥ −1
= 1 + 3p/2 else,


(3.8)

and a.s. ∀p ∈ R, the lim inf in (3.2) is a true limit, which clearly implies the first
part of Theorem 3.2. The fact that this lim inf actually is a limit is important
when one wants to double check numerically this result in simulation, since, in
practice, only true limits can be estimated. Note that we will give another proof
of the second part of Theorem 3.2 in the more general setting supplied by F.B.M.;
however, we prefer to separate the case of Brownian motion which will be treated
completely by elementary means, whereas F.B.M. case requires the use of more
sophisticated tools derived from the so-called small ball estimates.

Let us consider a generic sample path of Brownian motion Bt on [0, 1] (by
scaling invariance, the particular choice of interval is irrelevant). The increments
B(k+1)/2j −Bk/2j are I.I.D. random variables of common law 2−j/2χj,k, where the
χj,k are standard Gaussians; thus, in order to estimate (3.1) for Brownian motion,
we have to estimate the order of magnitude of

A(p, j) =

2j4
k=1

|χj,k|p, (3.9)

and the structure function will be

Σ1B(p, j) = 2
−j(1+p/2)A(p, j).

(With probability one, a non-degenerate Gaussian random variable does not vanish
so that, in all computations that will be performed in this section and in the
following concerning Brownian motion or F.B.M., the

5∗
sums are just usual

sums.)
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Note at this point that the problem of estimation of the A(p, j) is not the same
as estimating moments of order p of a Gaussian variable, since the computations
here are performed sample path by sample path, and not in expectation; indeed,
if such a process models a given observed signal, then the “rule of the game” is
that one sample path is observed, and not averages over a large number of realiza-
tions. This remark is particularly relevant fo large negative values of p where the
two approaches lead to different results (moments diverge if p < −1, whereas the
order of magnitude of A(p, j)) can always be estimated for any negative value of p).

Let us now consider the fractional Brownian case. With probability 1, a
sample path of F.B.M. of order β has everywhere the Hölder exponent β so that
its spectrum of singularities is

d(H) = 1 if H = β
= −∞ else,


(3.10)

see for instance [1, 35].

Theorem 3.3. Let β ∈ (0, 1) and Bβ(t) be a generic sample path of F.B.M. of order
β; then, with probability 1,

∀p ∈ R, η2Bβ(p) = βp (3.11)

and the lim inf in (3.5) is a true limit.

The multifractal formalism based on oscillations (3.6) yields the correct spec-
trum (3.10) for the F.B.M..

Proof of Theorem 3.3: First we recall a well-known result concerning the
uniform modulus of continuity of the sample paths of F.B.M. of order β [35]: With
probability 1, there exists C > 0 such that

sup
t

"
sup
h≤1
|Bβ(t+ h)−Bβ(t)|

|h|β| logh|
)
≤ C

It follows that, with probability 1, all oscillations

OscBβ (Ij,k) = sup
s∈Ij,k

Bβ(s) − inf
s∈Ij,k

Bβ(s)

are bounded by CN−β logN (where N = 2j is the number of intervals considered).
‘Small ball estimates’ for a random process Xt are concerned with the esti-

mation of

IP

"
sup
0≤s≤t

|Xs| ≤ �
)

Lower bounds for the oscillation are a consequence of the small ball estimates for
the F.B.M.; indeed

sup
0≤s≤t

Bβ(s) − inf
0≤s≤t

Bβ(s) ≤ 2 sup
0≤s≤t

|Bβ(s)|
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and, by Theorem 2.1 of [53], if � ≤ tβ,

IP

"
sup
0≤s≤t

|Bβ(s)| ≤ �
)
≤ exp

�
−Ct�−1/β

&
.

Since all oscillations have the same law it follows that, for a given N , all os-
cillations OscBβ (Ij,k) are larger than 2N

−β(logN)−2β with probability at least
1−N exp(−C(logN)2). As above, a direct application of the Borel-Cantelli Lemma
shows that both the multifractal formalism based on oscillations yields the correct
spectrum (3.6) for a.e. sample path of the F.B.M.

As mentioned above, our purpose in this section was only to illustrate the
two multifractal formalisms based on increments and oscillations on the partic-
ular examples provided by Brownian motion and F.B.M.. However, the proof of
Theorem 3.3 clearly shows that results on the multifractal formalism based on os-
cillations immediately follow from small ball estimates for the process considered
(such estimates for Gaussian processes can be found in [41, 42, 53] for instance),
so that general results of validity of the multifractal formalism supplied by (3.6)
could clearly be easily proved for general Gaussian processes.

4. Multifractal Analysis of Functions: Wavelet Based Formulas

Lemma 3.1 can be generalized to higher Hölder exponents by using higher or-
der differences in the definition of the oscillation, see [29], however, it leads to
rather complicated quantities for the computation of structure functions, and it
presents strong instabilities under the presence of noise. Therefore, once wavelet
techniques were available, alternative formulas were proposed; they were based
either on the continuous wavelet transform of the signal (by Arneodo et al., see
[4, 6] and references therein) or on its coefficients on an orthonormal wavelet ba-
sis, see [27, 29] and references therein. The starting point of all these methods
is a wavelet characterization of the Hölder exponent. Let us start by recalling
basic definitions concerning wavelet expansions. Though formulas based on the
discrete wavelet coefficients were introduced later than those based on the contin-
uous wavelet transform, we start by describing the discrete ones, since they are in
spirit very close to the dyadic partitionings we introduced in the measure setting,
and they pave the way to the wavelet leaders technique of Section 5.

4.1. Wavelet Bases

We now recall the definition of wavelet bases. Let r ∈ N; an r-smooth wavelet
basis of Rd is composed of 2d− 1 wavelets ψ(i) which belong to Cr and satisfy the
following properties:

• ∀i, ∀α such that |α| ≤ r, ∂αψ(i) has fast decay,
• The set of functions 2dj/2ψ(i)(2jx− k), j ∈ Z, k ∈ Zd, i ∈ {1, ..., 2d− 1} is an
orthonormal basis of L2(R)d.
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The wavelet basis is ∞-smooth if it is r-smooth for any r ∈ R, in which case all
wavelets ψ(i) belong to the Schwartz class.

Thus any function f in L2(Rd) can be written

f(x) =
4
c
(i)
j,kψ

(i)(2jx− k) (4.1)

where

c
(i)
j,k = 2

dj

�
f(x)ψ(i)(2jx− k)dx.

(Note that, in (4.1), wavelets are not normalized for the L2 norm but for the L∞

norm, which avoids an extra factor 2dj/2 in all mathematical results concerning
Hölder regularity.) Let us note at this point that it is often relevant to use a
slight generalization based on biorthogonal wavelets, the definition of which we
now recall.

A Riesz basis of an Hilbert space H is a collection of vectors (en) such that

the finite linear expansions
5N
n=1 anen are dense in H and

∃C,C � > 0 : ∀N, ∀an, C

N4
n=1

|an|2 ≤
99999
99999
N4
n=1

anen

99999
99999
2

H

≤ C �
N4
n=1

|an|2.

Two collections of functions (en) and (fn) form biorthogonal bases if each collection
is a Riesz basis, and if �en|fm = δn,m. When such is the case, any element f ∈ H
can be written

f =

∞4
n=1

�f |fnen.

Biorthogonal wavelet bases are couples of bases of the form 2dj/2ψ̃(i)(2jx− k) and
2dj/2ψ(i)(2jx − k), j ∈ Z, k ∈ Zd, i ∈ {1, ..., 2d − 1} which are biorthogonal (for
the L2 norm).

The relevance of biorthogonal wavelet bases is due to two reasons: On one
hand their construction is more flexible and, for instance, allows for wavelets which
have some symmetry properties, which is an important requirement in image pro-
cessing, see [15]; on the other hand, for theoretical purposes, this setting is often
more adapted to derive the properties of some random processes; we will see the
example of Brownian motion and of F.B.M. in Sections 4.3 and 5.4 where a de-
composition on well chosen biorthogonal wavelet bases allows to decorrelate the
wavelet coefficients of these processes (the wavelet coefficients become independent
random variables), and therefore greatly simplifies their analysis.

Wavelets will be indexed by dyadic cubes as follows: Since i takes 2d − 1
values, we can consider that i takes values among all dyadic subcubes λi of [0, 1)

d

of width 1/2 except for [0, 1/2)d; thus, the set of indices (i, j, k) can be relabelled
using dyadic cubes as follows: λ denotes the cube {x : 2jx − k ∈ λi}; we note
ψλ(x) = ψ

(i)(2jx−k) (an L∞ normalization is used), and cλ = 2dj
�
ψλ(x)f(x)dx.

We will use the notations c
(i)
j,k or cλ indifferently for wavelet coefficients. Note

that the index λ gives an information on the localization and the scale of the
corresponding wavelet; for instance, if the wavelets ψ(i) are compactly supported
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then ∃C : supp(ψλ) ⊂ Cλ where Cλ denotes the cube of same center as λ and
C times larger; thus the indexation by the dyadic cubes is more than a simple
notation: The wavelet ψλ is “essentially” localized around the cube λ. Finally, Λj
will denote the set of dyadic intervals λ of width 2−j.

4.2. Hölder Regularity and Derivation of the Multifractal Formalism

The wavelet characterization of the Hölder exponent requires the following regu-
larity hypothesis, which is slightly stronger than continuity.

Definition 11. Uniform Hölder function: A function f is a uniform Hölder func-
tion if there exists � > 0 such that f ∈ C�(Rd), i.e.

∃C > 0 such that ∀x, y ∈ R, |f(x) − f(y)| ≤ C|x− y|�.
The following proposition was proved in [25].

Proposition 2. Let α > 0. If f is Cα(x0), then there exists C > 0 such that the
wavelet coefficients of f satisfy

∀j ≥ 0, |cj,k| ≤ C2−αj(1 + |2jx0 − k|)α. (4.2)

Conversely, if (4.2) holds and if f is uniform Hölder, then ∃C > 0 and a polynomial
P satisfying deg(P ) < α and such that, in a neighbourhood of x0,

|f(x)− P (x− x0)| ≤ C|x− x0|α| log(1/|x− x0|).
The influence cone above x0 is the set of dyadic cubes which are of the form

λj(x0) and their 3
d − 1 immediate neighbours at the same scale, i.e. the dyadic

cubes λ of scale j such that dist(λ, λj(x0)) = 0. Note that it is composed of the
cubes of scale j included in 3λj(x0). The regularity criterium supplied by Lemma
2 has often been loosely interpreted as stating that the wavelet coefficients decay
like 2−αj in the influence cone; indeed, it is the case for cusp-like singularities
which behave like

A+ B|x− x0|α
in the neighbourhood of x0; such functions are characterized by the fact that
there are no strong oscillations in the neighbourhood of x0. Let us assume for the
moment that, indeed, the function considered exhibits only this type of pointwise
singularities, and therefore, the Hölder exponent at x0 is given by

hf (x0) = lim
j→+∞

"
log (|cλn |)
log(2−jn)

)
, (4.3)

where the λn are dyadic cubes of scale jn in the influence cone above x0. Following
the same arguments as above, we introduce the structure function

W 1f (p, j) = 2
−dj4
λ∈Λj

∗|cλ|p, (4.4)
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where the
5∗

means here that the sum is taken on the nonvanishing wavelet
coefficients. The corresponding scaling function of f is

ζ1f (p) = lim inf
j→+∞

 log
�
W 1f (p, j)

&
log(2−j)

 .
One is therefore led to the following multifractal formalism

df (H) = inf
p∈R
(d− ζ1f (p) +Hp). (4.5)

Several criticisms can be addressed to this multifractal formalism:

1. It implicitely assumes that the only singularities met are cusp-like singulari-
ties. This is of course an assumption which is impossible to check on a signal.
Let us briefly mention other types of singularities which can be met. On the
opposite from cusp singularities are the chirp-like singularities which display
very strong oscillations in the neighbourhood of x0, such as

Cα,β(x) = |x− x0|α sin
"

1

|x− x0|β
)
, (4.6)

where α > 0 and β > 0. Such functions are counterexamples to (4.3); indeed
their wavelet coefficients display a much stronger decay in the influence cone:
They decay faster than 2−Nj for any N > 0. They have indeed large wavelet
coefficients which make (4.2) optimal for them too, but these large coefficients
are situated far away from the influence cone: They correspond to indices
(j, k) such that |2jx0 − k| ∼ 2−j/(1+β), see [33] for precise statements. This
is illustrated numerically in Fig. 1, top row.

2. The quantity

lim inf
j→+∞

 
log
!|cλj(x0)|)(
log(2−j)

'
(4.7)

on which the corresponding exponent is based does not define a quantity
which is independent of the wavelet basis chosen.

3. Wavelet coefficients can be extremely small by chance, so that we expect the
structure function defined in (4.4) to be completely unstable for p < 0.

4. One can show that the scaling function ζ1f (p) is independent of the (smooth)
wavelet basis chosen when p > 0 but it is not the case any longer if p < 0.

We will address these problems in a detailed way in the following: In Section
5 we will introduce a multifractal formalism based on alternative quantities that
will have the required robustness properties; and in Section 6 we will show that
the wavelet-based formula (4.5) actually is a multifractal formalism adapted (for
p > 0) to another exponent, the weak-scaling exponent, and we will extend this
multifractal formalism in a robust way for p < 0.
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4.3. Examples: Brownian Motion and Fractional Brownian Motions

We now show that, even when the signal only displays cusp-like singularities, then
(4.5) does not necessarily yield the right spectrum of singularities. This pathology
already appears on the particularly striking examples supplied by the sample paths
of Brownian motion, and of F.B.M. (we treat only the F.B.M. case since Brownian
motion is the subcase corresponding to the Hurst exponent β = 1/2).

An important result of Paul Lévy states that, if (en) is an orthogonal ba-
sis of L2(R), and if fn denotes a primitive of en, then Brownian motion can be
decomposed on the fn in the following particularly simple way

Bt =
4
χn(fn(t) − fn(0))

where the χn are independent identically distributed (i.i.d.) standard Gaussians.
Let us apply this result using an orthonormal wavelet basis for the en. A primitive

of ψ is supplied by the function ψ1 whose Fourier transform is given by ψ̂1(ξ) =

ψ̂(ξ)/ξ. The primitive of 2j/2ψ(2jx− k) is 2−j/2ψ1(2jx− k), therefore

Bt =
4
j,k

χj,k(ψj,k(t)− ψj,k(−k)).

The contributions of the terms corresponding to j < 0 and the constant terms
belongs to C∞ (if the wavelet used is C∞), therefore one can write

Bt =
4
j≥0,k

χj,kψj,k(t) + R(t),

where R(t) is a C∞ process. We can apply the same argument in order to obtain
a wavelet decomposition of F.B.M. since, as mentioned already, F.B.M. of index γ
can be deduced from Brownian motion by a sample path by sample path fractional
integration of order γ−1/2 if γ > 1/2, or a fractional derivation of order (1/2)−γ
if γ < 1/2. (We refer the reader to [2, 51] where the wavelet decomposition of
F.B.M. is investigated in details and, in particular, the remainders R(t) and Rα(t)
are given an explicit form which allows for accurate simulations of the long range
dependence.) Let

ψ̂α(ξ) =
1

|ξ|α ψ̂(ξ) (4.8)

(ψα is the fractional integral of ψ of order α). If the wavelet ψ has enough vanishing

moments, then ψα is a wavelet and the 2
j/2ψα(2

jx− k) and the 2j/2ψ−α(2jx− k)
form biorthogonal bases, see [29, 49]; the point of using these bases in order to
analyze F.B.M. is that, as a consequence of the previous remarks, the coefficients
of F.B.M. are decorrelated on it. More precisely, if t ∈ [0, 1] then

Bβ(t) =

∞4
j=0

4
k∈Z
2−βjξj,k ψβ+1/2(2jt− k) +R(t) (4.9)
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where R(t) is a C∞ random process, and the ξj,k are I.I.D. standard centered
Gaussians, see [2, 51]. Therefore

W 1Bβ (p, j) = 2
−βpj

2j4
k=1

|χj,k|p,

which, up to the factor 2−(1+βp)j has exactly the same expression as A(p, j) defined
by (3.9). Therefore the computation performed in Section 3.2 yields the following
result.

Proposition 3. Let Bβ(t) be a generic sample path of F.B.M. of order β ∈ (0, 1),
and assume that the wavelet used is C2. Then, with probability 1, the wavelet
multifractal formalism (4.5) applied to Bβ(t) yields

inf
p∈R
(d− ζ1Bβ (p) +Hp) = β + 1−H if H ∈ [β, β + 1]

= −∞ else,

�
(4.10)

and the lim inf in the definition of the scaling function ζ1Bβ (p) is a limit.

5. Wavelet Leaders

In this section, we exhibit quantities dλ called the wavelet leaders which are based
on the wavelet coefficients, and such that the formula corresponding to (4.7) yields
an exponent which is independent of the wavelet basis chosen, and which, under
a very mild uniform regularity assumption, actually is the Hölder exponent. We
investigate the properties of the multifractal formalism based on these quantities
and, in particular, the stability of the structure function for p < 0.

5.1. Pointwise Hölder Regularity Conditions

We saw that the Hölder exponent of a function f is not necessarily given by (4.7).
Another indication that (4.7) is not the right quantity to consider in the derivation
of the multifractal formalism is that the necessity to base a multifractal formalism
on a quantity which is “hierarchical” (in the sense of Definition 5) was put into
light several times in previous sections. A simple quantity which is larger than |cλ|
and is hierarchical is supplied by the wavelet leaders, which are defined as follows.

Definition 12. Wavelet Leaders: Let f be a bounded function; the wavelet lead-
ers of f are

dλ = sup
λ
⊂3λ

|cλ
|. (5.1)

If x0 is a given point, then

dj(x0) = dλj(x0).

Note that since f ∈ L∞,
|cλ| ≤ 2dj

�
|f(x)||ψλ(x)|dx ≤ C sup |f(x)|,
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so that ∀λ, dλ ≤ C � f �∞, and therefore the wavelet leaders are finite. We will
usually assume in the following that the function studied is bounded, so that the
wavelet leaders are finite. Note however that wavelet leaders are well defined under
the weaker assumption that f belongs to the Bloch space which coincides with
the Besov space B0,∞∞ and is characterized by the condition

∃C > 0, ∀λ, |cλ| ≤ C
(see Chap. 6.8 of [49] and references therein for properties of this function space).

The following proposition allows to characterize the pointwise regularity by
a decay condition of the dj(x0) when j → +∞.
Proposition 4. Let f ∈ L∞(Rd) and α > 0. The condition

∀j ≥ 0, dj(x0) ≤ C2−αj (5.2)

is equivalent to (4.2). (This is illustrated numerically in Fig. 1, bottom row.)

Figure 1. Cusp vs Chirp singularity. Left column, cusp singu-
larity |x − x0|h (top row) versus chirp singularity (bottom row)
|x − x0|h sin( 1

|x−x0|β ) with β = 1. Central column, wavelet co-
efficients, cλ for λ such that 2

−jk = t0, right column, wavelet
leaders, dλ for λ such that 2

−jk = t0. One sees that while the
decrease along scales j of the wavelet coefficients correctly char-
acterizes the Hölder exponent cusp singularities, while it does not
for chirp-type ones. The decrease along scales j of the wavelet
leaders do accurately characterize all type of singularities, as in
Eq. 5.2.
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Proof of Proposition 4: We first prove that (4.2) implies (5.2). Let j ≥ 0 and
assume that λ� ⊂ 3λj(x0). Since
|cλ
| ≤ C2−αj
(1 + |2j
x0 − k�|)α, j� ≥ j − 1 and |k�2−j
 − x0| ≤ 4d2−j,

it follows that |cλ
| ≤ C2−αj, so that dj(x0) ≤ C2−αj.
Let us now prove the converse result. If λ� is a cube of side 2−j



, denote by

λ (= λ(λ�)) the dyadic cube defined by
• If λ� ⊂ 3λj
(x0), then λ = λj
(x0),
• else, if j = sup{l : λ� ⊂ 3λl(x0)}, then λ = λj(x0), and it follows that

2−j−1 ≤ |k�2−j
 − x0| ≤ 4d2−j.
In the first case, by hypothesis, |cλ
 | ≤ dj
(x0) ≤ C.2−αj
. In the second case,

|cλ
 | ≤ dj(x0) ≤ C2−αj ≤ C|x0 − k�2−j
 |α,
so that (4.2) holds in both cases.

Note that, as a consequence of Proposition 4 and Theorem 3 of [26], it follows
that Condition (5.2) is independent of the wavelet basis which is chosen, if the
wavelets are r-smooth with r > α.

5.2. Multifractal Formalisms

The reader will have noticed the striking similarity between Lemma 2.1 and Propo-
sition 4: Both provide a characterization of pointwise Hölder regularity by a condi-
tion on hierarchical quantities considered in the influence cone. Therefore one can
derive the multifractal formalism for functions exactly in the same manner as was
done previously for measures. It is therefore natural to use a structure function
based on wavelet leaders, i.e. which is of the form

2−dj
4
λ∈Λj

∗
(dλ)

p;

however, obtaining the correct definition for the
5∗
in this setting is much more

delicate than in the measure setting of Section 2; the problem for measures was to
find a way to keep the contribution of a cube in the structure function only if it
did include an important amount of the support of the measure. When one tries
to reproduce this feature in the wavelet setting one meets three problems:

• The size of the support of the wavelet changes with the wavelet used, so
that formulas based on the consideration that the support of the function
analyzed intersects “widely” the support of the wavelet cannot be universal,
but have to be taylored to the particular wavelet basis used.
• Such considerations become irrelevant if the support of the wavelet is the
whole Rd, which is the case if the wavelet used belongs to the Schwartz class.
• If the wavelets used have a finite smoothness and a finite number of vanishing
moments, then they cannot analyze smoother parts of the function. If such
smoother parts occur on a set of dimension d, the multifractal formalism
can yield incorrect results for the largest Hs (which may be infinite); since
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the multifractal formalism yields a concave function, this error can make the
whole decreasing part of the spectrum wrong (which is the part obtained for
p < 0 in the Legendre transform formula).

We are confronted with a deadlock:
5∗
formulas make sense only if the wavelet

is compactly supported, hence has a finite smoothness, in which case, the p < 0
part of the scaling function may be completely unstable, since it can be changed
by adding an arbitrarily small and smooth perturbation on the function.

Therefore, there is no universal formula without any drawback; However, this
discussion shows that one may use the following “rule of thumb”: On one hand, it
is reasonable to use a

5∗ formula based on compactly supported wavelets when
analyzing compactly supported functions which are not arbitrarily smooth inside
their support; on the other hand, one should rather use wavelets in the Schwartz
class when analyzing functions with full support, in which case wavelet leaders are
not expected to vanish (this could only happen for “toy examples”, i.e. for artifi-
cial functions which are defined through their wavelet coefficients on the precise
wavelet basis which is used for the analysis); and, in that case, we do not need
to eliminate vanishing wavelet leaders in the definition of the structure function.
Therefore, we separate two cases depending on whether the wavelets are compactly
supported or belong to the Schwartz class.

First case: Compactly supported wavelets

Definition 13. Leader based Multifractal Formalism 1: Let f be a uniform
Hölder function and assume that the wavelets used are compactly supported. The
extended wavelet leaders are

eλ = sup
supp(ψλ
 )⊂3supp(ψλ)

|cλ
|,

where supp(ψλ) stands for the support of the wavelet ψλ, i.e., the closure of the
set of points x such that ψλ(x) $= 0.
The wavelet structure function W 2f (p, j) is defined for p ∈ R by

W 2f (p, j) = 2
−dj4
λ∈Λj

∗
(eλ)

p,

where the
5∗
means that the sum is taken on all λ� such that

sup
supp(ψλ
 )⊂supp(ψλ)

|cλ
 | $= 0.

The scaling function of f is defined by

ζ2f (p) = lim inf
j→+∞

 log
�
W 2f (p, j)

&
log(2−j)

 .
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Second case: Wavelets in the Schwartz class

Definition 14. Leader based Multifractal Formalism 2: Let f be a uniform
Hölder function. The wavelet structure function W 3f (p, j) is defined for p ∈ R
by

W 3f (p, j) = 2
−dj4
λ∈Λj
(dλ)

p.

The scaling function of f is defined by

ζ3f (p) = lim inf
j→+∞

 log
�
W 3f (p, j)

&
log(2−j)

 .
Note that we can consider ζ3f (p) even if the wavelets do not belong to the

Schwartz class.
In both cases, the same argument as above yields the following multifractal

formalism based on the wavelet leaders

df (H) = inf
p∈R
(d− ζf (p) +Hp), (5.3)

where ζf (p) stands either for ζ
2
f (p) or ζ

3
f (p) depending on the type of wavelet basis

which is used.

Numerically, the determination of the scaling functions ζ2f (p) or ζ
3
f (p) requires

the knowledge of the wavelet coefficients on more scales than the function ζ1f (p);
indeed, in order to be trustable, the computation of a wavelet leader at a given
scale requires the computation of the wavelet coefficients on several scales below.
In the second case, the heuristic argument used in the derivation of the multifractal
formalism is backed by mathematical results: It is proved in [29] that the scaling
function ζ3f (p) is independent of the wavelet basis (in the Schwartz class) which is
chosen and, if f is a uniform Hölder function, then

df (H) ≤ inf
p∈R
(d− ζ3f (p) +Hp). (5.4)

One pitfall of using (5.3) in applications is that, as mentioned already, the
right-hand side of (5.3) is, by construction, a concave function. Since, in prac-
tice, using a Legendre transform of a scaling function is the only way to estimate
numerically spectrums of singularities of signals, this may give the (perhaps erro-
neous) feeling that all spectrums of singularities of signals are concave functions,
and therefore that mathematical models that yield concave spectrums are the
only relevant ones (this remark also applies to all the variants of the multifractal
formalisms that were mentioned above). Let us just mention at this point very sim-
ple models of random wavelet series with wavelet coefficients correlated through
a Markov chain on the dyadic tree; such models have been proposed to model
signals and images; however, they have recently been shown to yield non concave
spectrums, see [19] and references therein.
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5.3. Robustness for Wavelet-Based Quantities

Let us be more specific concerning the requirement of independence of the wavelet
basis, since it is related to our previous discussion on robustness criteria. The scal-
ing functions ζ2f and ζ

3
f are defined by conditions on the wavelet coefficients. Since

the left-hand side of (5.3) is defined independently of any wavelet basis, the mul-
tifractal formalism will have no chance to hold if the scaling function depends on
the wavelet basis chosen. Näıvely, in order to check this independence, one should
first dispose of a description of all possible wavelet bases, which is not realistic.
In practice, one checks a stronger (but simpler) requirement which implies that
the scaling function considered has some additional stability; indeed, the matrix
of the operator which maps an orthonormal wavelet basis onto another orthonor-
mal wavelet basis is invariant under the action of infinite matrices which belong
to algebrasMγ that are defined below; therefore, one can check that the scaling
function is also invariant under this action, which is the purpose of Corollary 1
and Proposition 6.

Definition 15. AlgebrasMγ : Let γ > 0; an infinite matrix A(λ, λ�) indexed by
the dyadic cubes belongs toMγ if

|A(λ, λ�)| ≤ C 2−(
d
2+γ)(j−j
)

(1 + (j − j�)2)(1 + 2inf(j,j
)dist(λ, λ�))d+γ .

Matrices of operators which map a smooth wavelet basis onto another one
belong to these algebras. It is proved in [49] that the matrix which maps an r-
smooth wavelet basis onto another r-smooth wavelet basis belongs toMγ for any
γ < r, and that the spacesMγ are algebras. More generally, matrices (on wavelet
bases) of pseudodifferential operators of order 0, such as the Hilbert transform
in dimension 1, or the Riesz transforms in higher dimensions, belong to these
algebras (for any γ > 0 if the wavelets are C∞). We denote by Op(Mγ) the space
of operators whose matrix on a wavelet basis belongs toMγ . The following result
is proved in [29].

Proposition 5. Let p > 0 and A ∈ Op(Mγ) for a γ > 0. If ζ3f (p) < pγ, then

ζ3A(f)(p) ≥ ζ3f (p).
Applying this proposition to the operator that maps an r-smooth wavelet

basis onto another r-smooth wavelet basis, and also to the inverse of this operator,
shows that, under the hypotheses of Proposition 5, the scaling function ζ3f (p) is
independent of the wavelet basis.

Another important remark is that ζ2f (p) and ζ
3
f (p) clearly coincide as long as

p > 0 and ζ3f (p) < pr. This follows from the fact, by definition of dλ and eλ, one
has,

W 3f (p, j) ≤W 2f (p, j) ≤ 3dW 3f (p, j).
Thus the following result holds.
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Corollary 1. Assume that the wavelet basis used is r-smooth; if p > 0 and ζ3f (p) <

pr, then the scaling function ζ3f (p) is independent of the wavelet basis used and

ζ2f (p) = ζ
3
f (p).

Note that, if the wavelets belong to the Schwartz class, then the previous
result holds on the whole range p > 0.

Unfortunately, the case p < 0 leads to strongly different conclusions (and
therefore justifies the introduction of two different scaling functions). In order to
state the results in that case, we will need here a different requirement than the
one used in Proposition 5.

Definition 16. Quasidiagonal infinite matrix: An infinite matrix A(λ, λ�) is qua-
sidiagonal if A is invertible, and if A and A−1 belong toMγ for any γ > 0.

Let C = {cλ}λ∈Λ be a collection of coefficients indexed by the dyadic cubes.
A property P is robust if the following condition holds: If P(C) holds then, for
any quasidiagonal operator M, P(MC) holds.

The matrix of an operator which maps a wavelet basis in the Schwartz class
onto another one is quasidiagonal, see [49]. Therefore, in order to check that a
condition defined on the wavelet coefficients is independent of the wavelet basis
(in the Schwartz class) used, one can check the stronger property that it is invariant
under the action of quasidiagonal matrices. The following result is proved in [29].

Proposition 6. If p < 0, then ζ3f (p) is independent of the wavelet basis in the
Schwartz class which is used.

5.4. Illustrations and Examples

5.4.1. Fractional Brownian Motion. The following result shows that both multi-
fractal formalisms based on wavelet leaders yield the correct spectrum of singular-
ities for F.B.M.

Theorem 5.1. Let β ∈ (0, 1) and Bβ(t) be a generic sample path of F.B.M. of
order β. Assume that the wavelet used belongs to the Schwartz class, then, with
probability 1,

∀p ∈ R, ζ3Bβ (p) = βp (5.5)

and the liminfs in the definitions of the scaling functions are true limits; the wavelet
leaders based multifractal formalism (5.3) yields the correct spectrum (3.10).

Proof of Theorem 5.1: First, we note that the previous robustness results of
Section 5.3 for ζ3f (p) imply that the results do not depend of the wavelet basis in
the Schwartz class which is used, and, in particular, we can use the biorthogonal
basis generated by the wavelets (4.8) which leads to the decomposition (4.9). Then
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Figure 2. Fractional Brownian Motion. From a single sample
path of fractional Brownian motion synthetized numerically (us-
ing the Circulant embedding Matrix technique[8]) with β = 0.35
(number of sampling points: 218), one obtains: Left, solid (black)
line: theoretical ζf (p), dashed (black) line corresponds to Eq. 3.8,
solid (blue) line with ‘o’: ζ3f (p), dashed (red) line with ‘+’: ζ

1
f (p).

Right, large full (black) dot, theoretical d(H), solid (blue) line
with ‘o’: d3(H), dashed (red) line with ‘+’: d1(H). While the
wavelet based and leader based formalisms both yield the correct
ζf (p)s for positive ps, the leader based one only is able to correctly
measure the ζf (p)s for negative ps. The corresponding Legendre
transform (solid (blue) line with ‘o’:) concentrates around the the-
oretical d(H). Its extension around the correct value gives us an
idea of the accuracy of the numerical procedure.

IP(dλ ≤ j−4β2−βj) =
-
λ
⊂3λ

IP
!|cλ
 | ≤ j−4β2−βj(

=
-
λ
⊂3λ

IP
�
2−βj


 |χλ
| ≤ j−4β2−βj
&

≤
-
λ
⊂3λ

j−4β2β(j

−j).

We pick the scale j� = j+
�
2 log j
log 2

�
+1, and we note that the number of subintervals

of scale j� which are subintervals of λ is larger than j2, so that

IP(dλ ≤ j−4β2−βj) ≤
�
j−4β2β(j


−j)
&j2
,
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and one easily checks that this quantity is bounded by e−j
2

for j large enough.

Since
5
j

52j
k=0 e

−j2 is finite, the Borel-Cantelli lemma implies that for j large
enough, all the dλ are larger than j

−4β2−βj. On the other hand, we already saw
that, with probability one, for j large enough, all the |χλ| indexed by a dyadic
subinterval of [0, 1] are bounded by j, and (5.5) follows from these two estimates.

Fig. 2 compares the wavelet and leader based multifractal formalisms practi-
cally applied to a sample path of fractional Brownian motion produced numerically
using the so called Circulant embedding Matrix synthesis procedure [8]. One clearly
sees that the wavelet formalism cannot reach the negative p part of ζ(p) and hence
fails to measure correctly d(H), while the the leader based formalism accurately
analyzes both ζ(p) and d(H). Moreover, it is interesting to note that the wavelet
based formalism follows for negative ps the prediction derived from Eq. 4.10 in
Proposition 3 (dashed black line).
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Figure 3. Multiplicative Random Wavelet Cascades. From (an
average of 500 realizations of) a log-normal RWC produced nu-
merically (number of samples: 217), one obtains: Left, solid (black)
line: theoretical ζf (p), solid (blue) line with ‘o’: ζ

3
f (p), dashed

(red) line with ‘+’: ζ1f (p). Right, solid (black) line, theoretical

d(H), solid (blue) line with ‘o’: d3(H), dashed (red) line with
‘+’: d1(H). While the wavelet based and leader based formalisms
both yield the correct ζf (p)s for positive ps, the leader based one
only is able to correctly measure the ζf (p)s for negative ps. The
corresponding Legendre transforms yield correct measure of d(H)
for the lowest hs while only the leader based approach accurately
measures the largest hs.

5.4.2. Multiplicative Cascades. The second example is based on random multi-
plicative cascades (or martingales). Instead of the celebrated cascades construction
developed by Mandelbrot [45] and studied theoretically by Kahane and Peyrière
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[36] that produce multifractal measures, we chose to illustrate the multifractal
formalisms on multiplicative random wavelet cascades (RWC), introduced by Ar-
neodo et al., as they provide us with well defined synthetic multifractal functions
or processes (cf. [7]).
RWC are defined through their wavelet coefficient expansion on an orthonormal
wavelet basis as:

f(x) =
4
j∈Z

4
k∈Z
df (j, k)ψ(2

jx− k).

Following original constructions, the wavelet coefficients df (j, k) entering the def-
inition of RWCs are obtained as a product of (positive) multipliers Wj,k, which
consist of mean one independent and identically distributed random variables:

drwc(j, k) = zj,k
-

j
=1..j, k
/λ(j,k)⊂λ(j
,k
)
Wj
,k
.

The zj,k are random variables taking value +1 or −1 with equal probability and
ensuring that the wavelet coefficients are randomly chosen positive or negative.

It is known that such constructions yield multifractal processes whose ζ(p)
and hence df (H) are entirely determined from the function − log2 IEW p (see
[7] for details). For instance, one commonly chose log-normal multipliers, i.e.,
− log2 IEW p = mp− σ2 ln 2p2/2, m and σ being two parameters to be chosen.

In Fig. 3, the wavelet based and leader based multifractal formalisms are
compared using 500 synthetic realizations of sample paths (number of samples:
217) of a log-normal RWC. One clearly sees that the wavelet based multifractal
formalism clearly fails to measure ζ(p) for negative ps and d(H) for the largest
Hs, while the leader based multifractal formalism produces a correct analysis over
the entire spectrum.

5.4.3. Two-Dimensional Multiplicative Mandelbrot’s Cascades. The third exam-
ple aims at showing the leader based mutifractal formalism at work in higher
dimension. We chose to use here 2-dimensional (log normal) multiplicative Man-
delbrot’s cascades, whose standard definition not recalled here can be found in [45]
or e.g., [4, 7, 39]. The corresponding measure is then (fractionally) integrated to
produce a 2D function [4]. Fig. 4 compares the wavelet based and leader multi-
fractal formalisms applied to this 2D function. Fig. 4 is obtained from a log nor-
mal cascade, with fractional integration of order 1/2, number of sampling points
= 210 × 210, see [40] for details on the synthesis procedure. Again, the wavelet
based multifractal formalism yields an incorrect determination of the scaling ex-
ponents for negative ps and of D(h) for its upper (or right) part while the leader
based one produces a relevant measure over the entire spectrum. This validates the
theoretical and practical straightforward extension of the leader based multifractal
formalism to higher dimensions.
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Figure 4. Two-Dimensional Multiplicative Random Mandel-
brot Cascades. From (500 realizations of) a two-dimensional
log-normal (fractionally integrated) Mandelbrot’s binomial mul-
tiplicative cascade produced numerically (number of samples:
210 × 210), one obtains: Left, solid (black) line: theoretical ζf (p),
solid (blue) line with ‘o’: ζ3f (p), dashed (red) line with ‘+’: ζ

1
f (p).

Right, solid (black) line, theoretical d(H), solid (blue) line with
‘o’: d3(H), dashed (red) line with ‘+’: d1(H). While the wavelet
based and leader based formalisms both yield the correct ζf (p)s
for positive ps, the leader based one only is able to correctly mea-
sure the ζf (p)s for negative ps. The corresponding Legendre trans-
forms yield correct measure of d(H) for the lowest hs while only
the leader based approach accurately measures the largest hs.
This illustrates that the leader based formalism works efficiently
and easily in higher dimensions.

5.5. Further Comments, Analysis and Synthesis Routines

At this stage, a number of comments are in order:
In the numerical examples presented here, we have implemented the formal-

ism corresponding to Definition 14, with Daubechies wavelets (i.e., with wavelets
that do not belong to the Schwartz class). The numerical results above show that
this theoretical requirement can probably be weakened. Moreover in the present
numerical implementation, digitalization has two major practical impacts. It im-
plies a finite number of vanishing moments for the mother wavelet so that its
belonging to the Schwartz class remains at a theoretical level. The same holds
for the theoretical possible choice of a C∞ mother wavelet. This is under further
current investigations.

In numerous papers more focused on practical multifractal analysis (see for
instance [3, 39, 40]), the convention a = 2j is preferred to a = 2−j chosen in the
present text. This implies that the limit in the equations defining the ζf are taken
for j → −∞.
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All the procedures used in the present work to synthesize processes and sig-
nals and to implement multifractal formalism analysis were developed by our-
selves1 in Matlab or C.

5.6. Practical and Numerical Multifractal Analysis: Comparisons Against
Other Multifractal Formalisms and Against the Wavelet Transform Modulus
Maxima Approach

5.6.1. Practical and Historical Implementations of Multifractal Formalisms. Be-
cause multifractal analysis was first applied to characterize strange attractors in
the field of chaos (see e.g., [23]) and dissipation field in hydrodynamic turbulence
(see e.g., [58, 48]), the earliest formalism actually used in applications was based
on the computation of structure functions based on measures:

p ∈ R, Σµ(p, j) = 2−dj
4
λ∈Λj
µ(λ)p,

a formula that closely resembles that of Definition 6 proposed here.

In hydrodynamic turbulence, one is not only interested in dissipation fields,
but also in velocity ones, i.e., in functions. This is why Parisi and Frisch [55]
proposed to define a formalism based on the increments f((k + 1)/2j) − f(k/2j)
of the function f under analysis:

p > 0, Σ1f (p, j) = 2
−j4

k

9999f "k + 12j
)
− f
"
k

2j

)9999p
Immediately after they appear, wavelet were read as generalizations both for box-
aggregation and increments. For instance, the increments are commonly referred
to as the poor man’s wavelet and the historical Haar wavelet can be seen as a
difference of averaged (or aggregated) quantities (see e.g., [34, 50]). Therefore,
wavelets act as increments of higher orders and hence generalize the usual incre-
ments. Moreover, multiplicative cascades have been used as a standard for the
synthesis of multifractal measure [45]. Box aggregation yield a correct multifractal
spectrum only for the special class of conservative cascades (see e.g., [37]). This is
why both continuous and discrete wavelet transforms have been involved in mul-
tifractal analysis since their earlier times, mainly to study turbulence velocity and
dissipation fields (see e.g., [47, 13, 4]).

However, it has immediately been observed that most of the early-proposed
multifractal formalisms failed to work for negative values of p, a major drawback
as the analysis of the full multifractal spectrum theoretically involves the use of
both positive an negative ps. To overcome this difficulty, Arneodo and co-authors
introduced the use of the wavelet transform modulus maxima method (WTMM).
To date, it remains one of the most widely used tool for empirical multifractal anal-
ysis performed in actual applications. The wavelet leader multifractal formalism

1The authors wish to thank Stéphane Roux, Physics Lab., ENS de Lyon, for having made avail-

able to them his codes implementing the wavelet transform modulus maxima technique
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proposed here provides us with a new, relevant and efficient multifractal analysis
framework.

In the section below, we briefly describe the WTMM tool and propose ele-
ments of comparisons between the two approaches with no aim to cover a full and
detailed analysis of the difference between them.
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Figure 5. leaders vs WTMM multifractal formalisms. On the
same set of synthetic data as the one used to obtain Fig. 3 (Mul-
tiplicative Random Wavelet Cascades), ones obtains: Left, solid
(black) line: theoretical ζf (p), solid (blue) line with ‘o’: ζ

3
f (p),

mixed (magenta) line with ‘*’: ζf (p), produced by the WTMM
approach. Right, solid (black) line, theoretical d(H), solid (blue)
line with ‘o’: d3(H), mixed (magenta) line with ‘*’: d1(H), pro-
duced by the WTMM approach. Both formalisms are yielding
very close and equivalent results at the price, however, of a very
different computational cost though.

5.6.2. Wavelet Transform Modulus Maxima. The use of dλ is reminiscent of the
WTMM initially introduced by S. Mallat in [44] and developed by A. Arneodo
E. Bacry and J.-F. Muzy in the context of multifractal analysis, see [4, 6] and
references therein: Assume that ψ is a wavelet, i.e. a well localized function with
enough vanishing moments (in practice a derivative, or a second derivative of a
Gaussian is often used). One computes the continuous wavelet tranform of f

Cf (a, b) = a

�
f(x)ψ

"
x− b
a

)
dx

which is a function defined in the upper half plane {(a, b) : a > 0, b ∈ R}. For
each scale a, one spots the local maxima of the functions b→ Cf (a, b). These local
maxima are connected through scales, thus yielding the wavelet skeleton. At each
local maximum located at position (a, b) in the time scale plane, one associates
the supremum of the wavelet transform on the sub-skeleton issued from (a, b) (i.e.
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the maximum on the part of the skeleton which is linked to (a, b) and corresponds
to values of the scale parameter smaller than a). The ζ(p) are then obtained
using formulas such as those in Definitions 13 and 14, the partition function being
computed only with the supremum skeleton values (see, e.g., [4, 5, 6] for details).

Practical results obtained with theWTMM approach are illustrated in Fig. 5
(on the same set of synthetic data as the one used to produce 3) and compared to
those produced with the leader based multifractal formalism. One sees that both
approaches yield equivalent results. Their merits are further compared below.
Historically, the WTMM has been the first and remained for a long time the only
multifractal formalism yielding correct results for negative ps. Also, it enabled
the first attempts to analyze chirp type singularities [5]. However, a number of
important differences between the wavelet leaders andWTMM approaches can be
pointed out.

From a mathematical point of view, the main differences are the following:
The wavelet leader based multifractal formalism now benefits of well established
theoretical mathematical results as described in previous sections. The situation
is much different for the case of the WTMM. In the wavelet maxima method, the
spacing between the local maxima need not be of the order of magnitude of the
scale a or even be regularly spaced; therefore, the scaling function thus obtained
can be different from ζ3f (p) (see [27] where counterexamples are constructed). It
follows that, up to now, no mathematical results have been proved to hold for the
wavelet maximamethod. For instance, theoretical results such as the independence
of the scaling function with the analyzing wavelet, or the fact that the Legendre
transform of the scaling function yields an upper bound for the spectrum of singu-
larities, are not available so far. This is because, as seen before, operators that map
a wavelet basis on another one belong to classes of infinite matrices which are easy
to describe. On the opposite, a wavelet transform belongs to a specific subspace of
L2(dadb/a2): The so-called “Reproducing Kernel Hilbert Spaces”, which depend
on the wavelet, see [22]. Therefore describing specific classes of operators that act
on these spaces is much more difficult to handle.

On the computational side, an important drawback of theWTMM lies in its
computational cost. It is based on the computation of a full continuous wavelet
transform followed by the skeletization and maxima tracking procedures. The lead-
ers approach is based on the coefficients on an orthogonal wavelet decomposition
and hence benefits from fast decomposition algorithms (cf. [43]). It implies that
the wavelet leaders approach can be used for signals of arbitrary length while the
WTMM is often restricted to much shorter ones.

Along the same line, while the wavelet leaders approach is straightforwardly
and without extra difficulties extended to arbitrary higher dimensions (cf. Fig.
4), th e definition of the WTMM needs to be significantly modified to a more
complex procedure before extension to higher dimensions. Those further compli-
cations strongly impairs the mathematical analysis of the method and substantially
increase the corresponding computational cost (see e.g., [37] for discussions).
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The statistical performance of the estimators for the ζ(p) exponents based
on these two different approaches are being investigated and compared (see for
instance [57]).

Numerical results regarding the leader based analysis of processes containing
chirp-type singularities are been proposed in [3, 40] and show that the wavelet
leader based formalism correctly measures the corresponding multifractal spectra.
This will be further developed in forthcoming works.

6. The Weak-Scaling Exponent

In this section, we investigate whether we can expect (4.5) to yield the spectrum as-
sociated with some alternative pointwise exponent. We will show that, though the
scaling function ζ1f (p) may depend on the wavelet basis chosen if p < 0, nonethe-
less it is independent of the wavelet basis for p > 0 and, when the infimum in
(4.5) is reached for p > 0, then (4.5) is expected to yield the spectrum of singu-
larities based on the weak scaling exponent, which was introduced by Y. Meyer in
[50]. This weak scaling exponent coincides with the Hölder exponent in the case of
cusp-like singularities, and this will explain why the multifractal formalism based
on (4.5) yields the correct increasing part of the spectrum for signals such as Brow-
nian motion. This interpretation will thus allow us to give a new interpretation to
the computations done in previous papers which were based on (4.5).

6.1. Characterizations of the Weak Scaling Exponent

Before giving a precise definition, let us first give a feeling on the nature of the
information supplied by the weak-scaling exponent. The weak-scaling exponent
was introduced as a substitute for the Hölder exponent, which displays a better
behaviour under integration: Let f : R −→ R be a function, and denote by f(−1) a
primitive of f . It may happen that hf(−1) (x0) $= hf (x0) + 1 as might be expected.
A typical example where hf(−1)(x0) is strictly larger than hf (x0) + 1 is supplied
by the chirp Cα,β defined in (4.6), when β > 0; indeed its Hölder exponent at x0 is
α and its Hölder exponent is increased by 1 + β after one primitivation, as shown
immediately by writing

C
(−1)
α,β (x) =

� x
x0

" |t− x0|α+β+1
β

)
β|t− x0|−β−1 sin

"
1

|t− x0|β
)
dt

and integrating by parts.
This phenomenon is the source of many difficulties and, in particular, it is one

of the causes of failure of the multifractal formalism based on wavelet coefficients,
see [5]. Indeed, as already mentioned, counterexamples to the heuristic which led
to (4.5) are supplied by functions such as Cα,β. Therefore it is natural to wonder
if there is an alternative exponent endowed with the additional property that the
exponent of a primitive is just the exponent of the function shifted by 1, and
that would be “close” to the Hölder exponent (for instance, they would coincide
for cusps such as |x− x0|α). This is precisely the weak-scaling exponent hwsf (x0)
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which has been discovered by Y. Meyer, see [50], and can be characterized by the
following properties:

• hwsf (x0) ≥ hf (x0).
• hws

f(−1) (x0) = h
ws
f (x0) + 1

• hwsf (x0) is the smallest exponent satisfying the two previous conditions.
These three requirements are not easy to use directly in order to compute the
weak-scaling exponent of a function; in practice, one uses a characterization on
the wavelet coefficients supplied by Theorem 1.2 of [50].

First, we have to introduce the Γs(x0) smoothness criterium.

Definition 17. Let f be a tempered distribution; f belongs to Γs(x0) if and only

if there exists s� > 0 such that f belongs to the two-microlocal space Cs,−s


(x0),

which means that the wavelet coefficients of f (taken on a wavelet basis in the
Schwartz class) satisfy

|cj,k| ≤ C2−sj(1 + |2jx0 − k|)s
 . (6.1)

Note that (4.2) already consisted of a two-microlocal condition.

Definition 18. Let f be a tempered distribution; the weak-scaling exponent of f
is

hwsf (x0) = sup{s : f ∈ Γs(x0)}. (6.2)

This definition is independent of the wavelet basis chosen and that it coincides
with the informal definition given above, see [50].

Definition 19. Weak scaling exponent spectrum: We denote by Ewsf (H) the set
of points where the weak-scaling exponent of a distribution f takes the value H .
The weak-scaling spectrum of f (denoted by dwsf (H)) is the Hausdorff dimension

of Ewsf (H).

In order to derive the multifractal formalism for the weak scaling exponent,
the following alternative characterization will be useful (Note that it slightly differs
from the wavelet characterization obtained in [32]).

Definition 20. �-leader: Let � > 0. The �-cone of scale j above x0 is

C�j (x0) = {λ� ⊂ 3λj(x0) such that j� ≤ (1 + �)j}.
The �-leader of scale j above x0 is

d�j(x0) = sup
λ
∈C�j (x0)

|cλ
|.

It is worth noting that the limit �→ +∞ corresponds to the definition of the
wavelet leaders (cf. Definition 12) while in the limit �→ 0 one recovers the usual
wavelet coefficients.

Proposition 7. Let f be a tempered distribution. The weak scaling exponent of f
at x0 is the supremum of the values of H satisfying

∀� > 0, ∃J ∀j ≥ J d�j(x0) ≤ C2−(H−�)j. (6.3)
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Proof of Proposition 7: Suppose that there exists s� > 0 such that (6.1) holds.
Let � > 0; then

d�j(x0) ≤ sup
λ
∈C�j (x0)

2−sj


(1 + |2j
x0 − k�|)s
 ≤ 2−sj2(j
−j)s
 ≤ 2−sj2s
�j.

Since � can be chosen arbitrarily small, (6.3) holds for H = s.
Conversely, suppose that (6.3) holds. Since f is a finite order distribution, it

follows that

∃u ∈ R, ∃C > 0, ∀j, k |cj,k| ≤ C.2−uj. (6.4)

We can of course assume that u satisfies H − 1− u > 0.
First, if λ� belongs to an �-cone of scale j above x0, then

j ≥ j�/(1 + �)
so that

|cλ
| ≤ C.2−j
(H−�)/(1+�)
and (6.3) holds for an s arbitrarily close to H and s� = 0.

Else, if λ� does not belong to an �-cone of scale j above x0 then, in particular,
it is outside the �-cone of scale = j�/(1 + �) above x0, so that

|2j
x0 − k�| ≥ 2j
2−j ≥ 2j
�/(1+�).
It follows that

|cλ
 | ≤ C.2−uj
 ≤ C.2−Hj
2−(u−H)j
 ≤ C.2−Hj
|2j
x0 − k�|(H−u)(1+�)/�,
and (6.3) holds for s = H and s� = (H − u)(1 + �)/�.
6.2. Multifractal Formalism for the Weak Scaling Exponent

Proposition 7 states that the weak scaling exponent at x0 is given by the order
of magnitude of the the �-leaders above x0. Therefore, the following structure and
scaling functions are naturally associated with the weak scaling exponent.

Definition 21. Weak scaling exponent Multifractal formalism: Let f be a tem-
perate distribution and assume that the wavelets used belong to the Schwartz
class. If p ∈ R, let

d�λ = sup
λ
⊂3λ, j
≤(1+�)j

|cλ
 |,

W 4f (p, �, j) = 2
−dj4
λ∈Λj
(d�λ)

p,

and

ζ4f (p, �) = lim inf
j→+∞

 log
�
W 4f (p, �, j)

&
log(2−j)

 . (6.5)

The weak scaling function of f is defined by

ζ4f (p) = lim
�→0
ζ4f (p, �). (6.6)
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Note that, when � → 0, the �-leaders are defined by a supremum over a de-
creasing set, and therefore, they decrease; it follows that, if p > 0, then W 4f (p, �, j)

decreases when �→ 0, and, if p < 0, then W 4f (p, �, j) increases when �→ 0, which
implies that the limit exists in (6.6) in all cases.

The same arguments as for the derivation of the previous multifractal for-
malisms lead to the followingmultifractal formalism for the weak scaling exponent:

dwsf (H) = inf
p∈R
(d− ζ4f (p) +Hp) (6.7)

The following result shows that the Legendre transform of the scaling func-
tion yields an upper bound for the weak-scaling spectrum without any uniform
regularity assumption, see [32].

Theorem 6.1. Let f be a tempered distribution. Then its weak scaling spectrum
satisfies

dwsf (H) ≤ inf
p∈R
!
Hp− ζ4f (p) + d

(
. (6.8)

Let us now study more precisely the scaling function ζ4f (p).

Proposition 8. Let p > 0. If the wavelets are r-smooth with r > pζ1f (p), then

ζ4f (p) = ζ
1
f (p).

This result implies that the increasing part of the Legendre transforms in
(4.5) and (6.8) coincide. This is important in practice since ζ1f (p) is much easier

to obtain numerically (because it is not defined as a double limit). Furthermore
Proposition 8 shows that the multifractal formalism given by (4.5) is expected to
yield the increasing part of the weak scaling spectrum, as announced.

Proof of Proposition 8: Let p > 0; since (d�λ)
p ≥ |cλ
|p, it follows that ζ4f (p) ≤

ζ1f (p). Conversely,

(d�λ)
p ≤

4
λ
⊂3λ, j
≤(1+�)j

|cλ
 |p

so that

w4f (p, �, j) ≤ w1f (p, �, j) + 2dw1f (p, �, j + 1) + · · ·+ 2d�jw1f (p, �, (1 + �)j);
therefore

ζ4f (p, �) ≥ (d+ 1)�+ ζ1f (p, �).
Since this is true ∀� > 0, it follows that ζ4f (p) ≥ ζ1f (p).

Let us now give a function space interpretation to ζ1f (p) (hence to ζ
4
f (p))

when p > 0. Recall that f belongs to the homogeneous Besov space Ḃs,∞p (Rd) if

∃C, ∀j 2(sp−d)j
4
λ∈Λj

|cλ|p ≤ C. (6.9)
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It follows that

ζ1f (p) = sup{s : f ∈ Ḃs/p,∞p (Rd)}.
Since (6.9) holds as soon as the wavelets are r-smooth with s > r, it follows that
ζ4f (p) is independent of the r-smooth wavelet basis as soon as r > pζ

4
f (p).

If p < 0, then ζ4f (p) cannot be given any more a function space interpretation;

however, one can prove that it is still independent of the wavelet basis (in the
Schwartz class), by using the same arguments as those developed in [29] in order
to prove that ζ3f (p) is robust.

One may wonder if ζ1f (p) and ζ
4
f (p) still coincide for p < 0. The example of

F.B.M., which we now consider, shows that it is not the case.

6.3. Examples: The weak Scaling Spectrum of Fractional Brownian Motions

First, let us determine the weak scaling exponent of F.B.M. at every point. We use
the characterization supplied by Proposition 7, which is independent of the wavelet
basis chosen (because it is equivalent to the two-microlocal characterization (6.1),
which defines a robust condition, as shown in [26]). Furthermore, using again this
robustness property, we can use the decomposition (4.9) on biorthogonal wavelets
adapted to F.B.M.. Therefore the wavelet coefficients are 2−βjχj,k where the χj,k
are I.I.D. standard centered Gaussians. Then, the proof of Theorem 5.1 shows
that, for j large enough, the �-leaders are larger than j−4β2−βj (because, in the
proof, the supremum in the definition of the wavelet leaders is extracted only in

the range of scales between j and j +
�
2 log j
log 2

�
+ 1, which is smaller than j + �j

for j large enough). Therefore, the Borel-Cantelli lemma implies that a.s. for j
large enough, all the d�λ stand between j

−4β2−βj and j2−βj . Thus, the following
theorem holds.

Theorem 6.2. Let β ∈ (0, 1) and Bβ(t) be a generic sample path of F.B.M. of order
β. Assume that the wavelet used is C2; then, with probability 1, the weak scaling
exponent of Bβ is everywhere β,

∀p ∈ R, ζ4Bβ (p) = βp (6.10)

and the liminfs in the definitions of the scaling functions are true limits.

The multifractal formalism (5.3) yields the correct weak scaling spectrum of
singularities of F.B.M..

One can note that by inverting the two limits �→ 0 and j → +∞ in Definition
21 and (6.5) and (6.6), one recovers the wavelet coefficient based multifractal
formalism, which was shown in Section 4 to yield an incorrect measure of the
multifractal spectrum of F.B.M. Hence, F.B.M. provides us with a pedagogical
example to emphasize how much the order of the limits matters in multifractal
analysis.



Wavelet Leaders in Multifractal Analysis 255

7. Conclusion

We conclude this paper by some comments concerning the comparison of the three
wavelet-based multifractal formalisms given by (4.5), (5.3) and (6.7), why they
may coincide or differ, and how this is related to the presence of “oscillating
singularities”, as opposed to “cusp-singularities”.

Let us first discuss what is usually understood by these two types of singu-
larities. As mentioned already, a typical example of a cusp at x0 is supplied by
the function |x− x0|α (where α is positive and is not an even integer so that the
function is not C∞ at x0). This is usually opposed to chirps such a the functions
Cα,β defined in (4.6). These particular examples do not supply us with a general
mathematical definition; they can only give some clues in this direction. Unfortu-
nately, there is no general agreement as to what should be the right definition of a
chirp. Actually, several definitions have been proposed (see [5, 14, 28, 33, 52]) and
simple models of random wavelet series have been shown to display such behav-
iors, see [9]. Furthermore, C. Melot and A. Fraysse showed that such oscillatory
behaviors are not exceptional but “generic” among the functions which have a
given scaling function ζ1f (p), see [21, 46]. We won’t compare the merits of these
definitions here, but rather discuss the opposite point of view: When can one say
that a function displays cusps, since this is the case where we expect the different
multifractal formalisms to coincide. The clue for a possible answer lies again in
the comparison between the properties of the cusps |x− x0|α and the chirps Cα,β:
Recall that the Hölder exponent of both functions at x0 is α, but the weak scaling
exponent of the cusp is α whereas it is +∞ for the chirps; following this remark,
Y. Meyer proposed in [50] the following general definition for a cusp.

Definition 22. Cusp singularity: Let f be a function which is bounded in a
neighbourhod of x0, and such that hf (x0) <∞; f has a cusp singularity at x0 if

hf (x0) = h
ws
f (x0).

Note that this definition does not involve the wavelet coefficients of f : how-
ever, in order to understand its implications in multifractal analysis, it is necessary
to check what it implies for the wavelet leaders. The characterizations supplied by
Propositions 4 and 7 show that, if f has a cusp singularity at x0, then we can
expect that, for any � > 0, the supremum in the quantity sup

λ
⊂3λj(x0)
|cλ
 | is actually

reached for a λ� whose scale j� satisfies j ≤ j� ≤ (1 + �)j (if j is large enough).
A typical example of this behavior is supplied by F.B.M.: Indeed, in Section 5.4,
we estimated these suprema and actually showed that a.s. every point is a cusp
singularity (since everywhere the Hölder exponent and the weak scaling exponent
both take the value β). We can wonder why the first multifractal formalism yields a
different spectrum, see Proposition 3. A close inspection of the proof of this propo-
sition compared with the proof of Theorem 5.1 shows that, though the suprema
of wavelet coefficients on very small subtrees of the form

{λ� ⊂ λ : j� ≤ (1 + �)j}
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are of the order of magnitude of 2−βj with a probability extremely close to 1,
nonetheless, single wavelet coefficients have a Gaussian distribution and therefore
can take very small values with a much larger probability, which becomes non
negligeable when one considers simultaneously a large number of coefficients (2j

in the present case).
Is it nonetheless possible that (4.5), (5.3) and (6.7) yield the same result?

Since the scaling function ζ1f (p) is not robust, this can only be the consequence
of a very particular choice of the wavelet basis. In practice, this only happens if
an algorithm is used to define the coefficients of the function (or of the stochas-
tic process) on a given wavelet basis, and the same wavelet basis is used also in
the analysis procedure. Such models have been currently proposed, all of them
verifying the following hierarchical property:

λ� ⊂ λ =⇒ |cλ
 | ≤ |cλ|. (7.1)

Typical examples of wavelet series satisfying this property can be constructed
starting with a probability measure µ defined on Rd and picking, for an α ≥ 0 and
q > 0,

cλ = 2
−αj[µ(λ)]q,

see [10, 7] and references therein. Because of (7.1), all wavelet multifractal for-
malisms trivially yield the same result but again, under the very artificial assump-
tion that one picks the same synthesizing and analyzing wavelets, since (7.1) will
not remain valid if the wavelets are changed. Note that, if the synthesizing and an-
alyzing wavelets differ, then the last two multifractal formalisms will still coincide
(because there exists a wavelet basis for which it is the case, and the correspond-
ing scaling functions are robust); by contrast, numerical results show that the first
multifractal formalism yields a different spectrum: The decreasing part of the Le-
gendre transform is artificially raised, as in the F.B.M. case (see Proposition 3),
because of very small wavelet coefficients whose influence in the structure function
is not eliminated by taking suprema of coefficients, as in the wavelet leaders case.
(Note that experimentalists are aware of this pitfall: Even if they study “artifi-
cial signals” defined through their wavelet coefficients, they take only for granted
results which have been validated by using several different wavelet bases.)

8. Appendix: Proof of Theorem 3.2

Let us first prove (3.8). We start by two elementary remarks. If χ is a standard
Gaussian, then

IP(|χ| ≥ j) ≤ e−j2/2;
it follows from the Borel-Cantelli Lemma that, with probability 1,

∃J, ∀j ≥ J, ∀k = 1, ..., 2j, |χj,k| ≤ j,
hence,

if p > 0, then A(p, j) ≤ 2−pj/2jp. (8.1)
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On the other hand,

IP
!|ξ| ≤ j−22−j( ≤0 2

π
j−22−j;

it follows that, for a given j, one of the 2j Gaussians ξj,k will be smaller than
j−22−j with probability at most j−2. Thus, by the Borel-Cantelli lemma, with
probability 1,

∃J, ∀j ≥ J, ∀k |ξj,k| ≥ j−22−j. (8.2)

In order to obtain precise estimates on A(j, p), we can use estimates for
the distribution of the |ξj,k| in the neighbourhood of 0; up to a smooth change
of variable, it is the same as the distribution of 2j I.I.D. random variables xk
distributed with the Lebesgue measure on [0, 1] and therefore the estimate of
A(p, j) will be the same in both cases. Recall that the empirical process is defined
as follows: Points (xn)n∈N are drawn independently with the Lebesgue measure
on [0, 1]; therefore the estimates on A(j, p) will be the same in both cases, up to a
constant term. The empirical process is the collection of random processes

PNt =

N4
n=1

1[0,xn)(t).

Estimates on the joint distribution of the xn are usually expressed in terms of

αNt =
√
N

"
PNt
N
− t
)

which is the “correct” renormalization of the empirical process since it converges
to a non-trivial limit (a Brownian bridge), see [18, 59] and references therein. The
increments of the empirical process can be estimated using the following result
which is a particular case of Lemma 2.4 of [59].

Lemma 8.1. There exist two positive constants C �1 and C �2 such that, if 0 < l < 1/8,
Nl ≥ 1 and 8 ≤ A ≤ C �1

√
Nl,

IP

 
sup
|t−s|≤l

|αNt − αNs | > A
√
l

'
≤ C

�
2

l
e−A

2/64. (8.3)

Note that the condition

sup
|t−s|≤l

|αNt − αNs | ≤ A
√
l

implies that the number of points (xn)n≤N that fall in the interval [s, t] differs
from N |t− s| by at most A√NL.

In the following, we will use Lemma 8.1 repeatedly with intervals of different
lengths and positions; however, each time, we will pick N = 2j and A = j; this last
choice will allow use to obtain such small probabilities of the opposite events that
we can apply the Borel-Cantelli lemma to their complement at the end. First we
estimate the number of points that fall in the interval [9/10, 1], so that l = 1/10;

it follows that, with probability larger than 1−Ce−j2/64, this number differs from
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(1/10)2j by at most j2j/2
√
10. On one hand, if p > 0, then A(p, j) ≥ C(p)2j and

(3.8) for p > 0 follows from this estimate together with (8.1). On the other hand
it follows that

if p < 0, then A(p, j) ≥ C2j. (8.4)

Let us now apply Lemma 8.1 on the interval [0, j32−j], so that l = j32−j.
With probability larger than 1 − Ce−j2/642j/j3, the number of points in this
interval is larger than j3 − j

/
j32−j2j ≥ j3/2, so that

if p < 0, then A(p, j) ≥ 1
2
j3+3p2−pj. (8.5)

Let us now obtain upper bounds for A(p, j) when p < 0. Let m be a fixed,
large integer, and let

a0 = 0, and ak = 2
−(1−k/m)j for k = 1, . . . , m− 1, and lk = ak − ak−1.

We first apply Lemma 8.1 in the first interval [0, a1]. With probability larger than

1−C2je−j2/64, the number of points in this interval is bounded by a12j+j2j/2√a1,
taking into account the value of a1 and (8.2), it follows that the contribution to
A(p, j) of the points that fall in this interval is bounded by

2 · 2j/mj−2p2−pj. (8.6)

We now apply Lemma 8.1 on the remaining intervals. We obtain that ∀k =
1, . . . , m− 1, with probability larger than C �22je−j

2/64 the number of points that
fall in the interval [ak−1, ak) differs from lk2j by at most j2j/2

√
lk. It follows that,

if p > 0 then, with probability at most C �2m2
je−j

2/64 the contribution of each
interval [ak−1, ak) to A(p, j) is bounded by

2−jlk2ja
p
k + j2

j/2
/
lka
p
k−1

which is bounded by

2−pj
�
2(p+1)jk/m+ 2(p+1/2)jk/m2−pj/m

&
.

If p < −1 then each of these terms is bounded by (8.6), and if −1 ≤ p < 0 then
each is bounded by C2j; therefore (3.8) follows in all cases for p < 0.

We now prove the second part of Theorem 3.2, i.e. that, in the case of a
sample path of Brownian motion, a.s.

∀p ∈ R, η2B = p/2, (8.7)

and that the lim inf in (3.5) is a true limit, which will imply the second assertion
of Theorem 3.2.

Let Ij,k denote the interval [k2
−j, (k+ 1)2−j). The oscillations

OscB(Ij,k) = sup
s∈Ij,k

Bs − inf
x∈Ij,k

Bs (k = 0, . . . , 2
j − 1)
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are 2j i.i.d. random variables, and we have to estimate4
k

(OscB(Ij,k))
p

Proposition 9. Let Ot = sup
s∈[0,t]

Bs − inf
x∈[0,t]

Bs. The law of Ot satisfies

if a ≤ √t, IP{Ot ≤ a} ≤ 1
2π
exp

"
−π

2t

a2

)
and

if a ≥ √t, IP{Ot ≥ a} ≤ 4a√
2πt
exp

"
−a

2

8t

)
.

Proof of Proposition 9: Let B∗t = sup[0,t] |Bs|. We can reduce the problems
of estimations of the oscillation to estimations on B∗t , since

B∗t ≤ sup
[0,t]

Bs − inf
[0,t]
Bs ≤ 2B∗t .

We will need two estimations for the law of the random variable B∗t . We start by
recalling (see [16] Proposition 8.4.27) that

IP (B∗t ≤ a) =
1√
2πt

4
k∈Z
(−1)k

� (2k+1)a
(2k−1)a

exp

"
−u

2

2t

)
du (8.8)

so that the density of B∗t is

gt(a) =
2√
2πt

4
k∈Z
(−1)k(2k + 1) exp

"
−(2k + 1)

2a2

2t

)
.

Let u = a/
√
t and f(x) = x exp(−x2/2), then

gt(a) =
2

a
√
2π

4
k∈Z
(−1)kf ((2k + 1)u) .

Since f is in the Schwartz class, the Poisson summation formula yields4
n∈Z
f(x+ an) =

4
k∈Z

1

a
f̂

"
2πk

a

)
e−2iπkx/a.

Applying this formula with 2a and substracting, we obtain4
n∈Z
(−1)nf(x + an) = 1

a

4
k odd

f̂

"
πk

a

)
eiπkx/a.
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We use this formula with x = u, a = 2u and f(x) = x exp(−x2/2), whose Fourier
transform is −iξ√2π exp(−ξ2/2); it follows that

gt(a) =
−π
2u2a

4
k odd

ik+1k exp

"
−π

2k2

8u2

)

=
π

4u2a

∞4
l=0

(−1)l(2l+ 1) exp
"
−π

2(2l + 1)2

8u2

)
.

Therefore

IP (B∗t ≤ a) =
� a
0

gt(x)dx =
∞4
l=0

(−1)l
2π(2l+ 1)

exp

"
−π

2(2l + 1)2t

a2

)
≤ 1

2π
exp

"
−π

2t

a2

)
,

so that

IP {Ot ≤ a} ≤ IP {B∗t ≤ a} ≤
1

2π
exp

"
−π

2t

a2

)
.

Separating the term k = 1 from the others in (8.8) it follows that

IP (B∗t ≥ a) =
2√
2πt

� ∞
a

exp

"
−u

2

2t

)
du

− 2√
2πt

∞4
k=1

(−1)k
� (2k+1)a
(2k−1)a

exp

"
−u

2

2t

)
du

which is bounded by
8a√
2πt
exp

"
−a

2

2t

)
. Therefore

IP {Ot ≥ a} ≤ IP {B∗t ≥ a/2} ≤
4a√
2πt
exp

"
−a

2

8t

)
,

hence the second point of Proposition 9 holds.

Let j be fixed and N = 2j. It follows that the event

{One of the oscillations OscB(Ij,k) is smaller than 1/(
√
N logN)}

has probability less than Ne−π(logN)
2

; and similarly the event

{One of the oscillations OscB(Ij,k) is larger than logN/
√
N}

has probability less than 2N(logN)e−π(logN)
2

. The structure function can be es-
timated just as in the increments case, but the computations are much easier
because the distribution of the suprema decays very strongly near 0, and a direct
application of the Borel-Cantelli Lemma shows that (8.7) holds, so that the multi-
fractal formalism yields now the correct spectrum for a.e. sample path of Brownian
motion.
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Laboratoire de Physique / École Normale Supérieure de Lyon and CNRS UMR 5672,

46, allée d́Italie,
69364 Lyon cedex, France
e-mail: Patrice.Abry@ens-lyon.fr


