IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 4, AUGUST 2000 467

Real-Time Estimation of the Parameters of
Long-Range Dependence

Matthew RoughanMember, IEEEDarryl Veitch, and Patrice Abry

Abstract—An on-line version of the Abry-Veitch wavelet-based surement is therefore of considerable importance for the provi-
estimator of the Hurst parameter is presented. It has very low sjon of quality of service as well as for the dimensioning of net-
memory and computational requirements and scales naturally to ks Unfortunately, methods for the estimation of this param-

arbitrarily high data rates, enabling its use in real-time applica- L
tions such as admission control, and avoiding the need to store eter from data have suffered from poor statistical performance

huge data sets for off-line analysis. The performance of the esti- @nd/or high computational complexity inappropriate for large
mator as a function of the length of data processed is demonstrated data sets or real-time use.

using simulated data. An implementation for 10-Mb/s Ethernet Recent work based on Wave|etS, however' has provided
based on standard hardware supporting sampling rates of 1 data a semi-parametric estimator faH which gives unbiased

point per millisecond is described, and results of its operation - . S .
presented, as is an implementation for 155-Mb/s asynchronous estimates together with significant computational advantages,

transfer mode networks. Finally we illustrate the power of on-line notably a run time complexity of only)(n). Details of this
measurements by collecting measurements over a period of five estimator are summarized in Section Il, and can be found

months, and using them to look for diurnal trends in scaling in [3], [4] (see also [5]-[7]). In [8] it was shown how these
properties of the data. computational advantages can be exploited to allvio be
Index Terms—Estimation, fractal, Hurst parameter, long-range  estimated in real-time simply, inexpensively, and with very
szf’li?ecignce' on-line, real-time, self-similar, traffic modeling, |5 memory requirements. Section Il describes the real-time
’ implementation of the estimator, which is the subject of an
Australian provisional patent (application number PP1692).
|. INTRODUCTION The aim of the present paper is to extend [8] to give a more

EAL-TIME traffic measurement is necessary to suppoﬁomplete account of the capabilities of the on-line estimator, by

network management tasks such as call admissi?ﬂﬂ”dating the claims made in [8] regarding its practicality and

control, rate adaptation, and network monitoring. As su(‘g{'”ty‘ In [8] the metho_d was iIIustrf_;lted on a 10-Mb/s Ethernet
activities must take place on the small time scales implied ee S_ectlon_V), a_nd it was explained how the method sca_lles
the high bandwidth of modern telecommunications systeﬂ arbitrary size with respect to both memory and processing

the extent of such measurements and the complexity of trr?’ uirements, so that it will remain applicable as data rates in-
algorithms which use them are limited by hard processi ease. This claim is supported by the successful application to

constraints, a situation which is unlikely to change. Evenin t ynchronous transfer mode (ATM) traffic at 155 Mb/s (see [9]).

less demanding case of off-line processing, the ever increasin nother advantage highlighted in [10] is that a real-time esti-
volume of data that can be collected over a’ given time inter tor is not only useful in traditional real-time settings but also,

poses huge storage and processing problems. Such |imitati8}4§erforming estimation at the point of measurement, radica]ly
are particularly serious if parameters crucial to meaningf(fauces the volume of data that needs to be stored for off-line

traffic characterization have high computational complexit nalysis. We illustrated some of the potential of this idea in Sec-
say ofO(n2) wheren is the length of the data ion VI by examining more than five months of Ethernet data

In the last few years the discovery of thelf-similarnature to address the issue of diurnal or daily variationi New

of many kinds of packet traffic [1], [2] has inspired a small relinks between the variations in load aifi are presented here

olution in the way that high-speed traffic is viewed. AlthougltuOr the first time. Finally, it is shown how n.ot. only the H_urst
no single model is accepted as definitive, Hierst parameter parameter but much more generally the variations in scaling be-
’ avior as observed in tHengscale Diagrantan be studied in

H, which describes the degree of self-similarity, holds a ceﬂ{ Ltime f K and i ant ti ing feat
tral place in the description of such traffic. Its accurate me 1€ reai-time framework, and important time-varying features

extracted. This paper therefore constitutes a synthesis of [8], [9],
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of incoming traffic is the data of interest, and we model it as‘@oordinate system” from which to view such phenomena. The
stationary stochastic process. Basic features of this processraggn practical outcome is that the LRD in the time domain

its meary.,, = E[z], variances? = E[(x — p,)?], and correla- representation is reduced to residshbrt range correlation in

tion function~, (k) = E[(x(t + k) — 1. )(x(t) — p2)]. In this  the wavelet coefficient plangyj, £}, thus removing entirely the
context the self-similar properties of traffic manifest themselvapecial estimation difficulties. Thus for each fixgdthe se-

in a particular form ofy,.(k), namely a decrease with ldgso riesd,(J,-) can be regarded as a stationary process with weak
slow that the sum of all correlations downstream from any givesmort-range dependence, and these series can be regarded as in-
time instant is always appreciable, even if individually the correlependent of each other.

lations are small. The past therefore exerts a long-term influencéVe can now outline the estimator as consisting of the fol-

on the future, exaggerating the impact of traffic variability anbwing four stages:

rendering statistical estimation problematic. This phenomenon1) wavelet decompositionA discrete wavelet transform of

is known aslong range dependendg&RD), and is commonly the data is performed, generating the detdilj, k) over
defined byy..(k) ~ cw|k|*<1*‘l), a € (0, 1), or equivalently as the dyadic grid.
the power-law divergence at the origin of its power spectrum: 2) Detail variance estimation: At each fixed octave the
fo(1) ~ cs|v|7%, || — 0. details are squared and averaged across “tikni’ pro-
The Hurst parameter describes the (in practice asymptotic)  ducey.;, an excellent estimate of the variance of the de-
self-similarity of the cumulative traffic procegs x(ss) ds while tailst. For LRD processes the; follow a power-law inj
a describes the LRD rate process). Itis nonetheless common with exponenty.
practice to speak off in relation to LRD via the relatiotd = 3) Analysis using the Logscale DiagramFrom the plot of
(1 + «)/2, and we follow this convention here. y; = log,(u;) againstj, the Logscale Diagrant the
In [4], [11] a semi-parametric joint estimator @f, c;) is de- scaling rangdj1, j») where scaling occurs (i.e., where
scribed based on thiscrete wavelet transfor@®WT). Wavelet they; fall on a straight line) is determined.
transforms in general can be understood as a more flexible formq) |LRD parameters estimation: The LRD parameter$f
of a Fourier transform, wherg(¢) is transformed, not into a fre- andc; 4 are extracted by performing a weighted linear

quency domain, butinto a time-scale wavelet domain. The sinu-  regressioh over the scaling regiof.

soidal functions of Fourier theory are replaced by wavelet basismatlab source code for the AV estimate is available at

functionsy, ¢ (u) = ¢o((u —t)/a)//a,a € IRt € IRgen- http:/iwvww.emulab.ee.mu.oz.au/~darryl.

erated by simple translations and dilations ofrtiether wavelet  An example of the regression fit using a simulated data set is

o, aband pass function with limited spread in both time and frgiven in Fig. 1. The 95% confidence intervals for eggfshown

quency. The wavelettransform can thus be thought ofas a methed,ertical lines at each octaygeare seen to increase wighA

of simultaneously observing a time series at a full range of dijot such as this of; againstj, complete with confidence in-

ferentscales, whilstretaining the time dimension ofthe originakervals about thg;, has been termed th@gscale Diagranj4],

data. [7], and constitutes an effective starting point for the analysis
Multiresolution analysis theory shows that no information isf scaling phenomenon. The estimator, being semi-parametric,

lost if we sample the continuous wavelet coefficients at a spaigguires an analysis phase prior to estimation to determine the

set of points in the time-scale plane known asdgedic grid  scaling range where alignment is observed in the Logscale Dia-

defined by(a,t) = (27,27k),j,k € IN, leading to the DWT gram (see [7] for further details on the reading of Logscale Di-
with discrete coefficientd..(j, k) known asdetails Intuitively, agrams).
the dyadic grid samples the wavelet domain at a resolution appro-
priat_e to the scale. Henceforth we will deal exclusively_with the lIl. ON-LINE ESTIMATOR
details ofthe DWT. Thectavej is simply the base 2 logarithm of ) ] ) o
scalex = 27, andk plays the role of time (although atime whose 1he AV estimator _summarlzed a_bove is gaining acceptance
rate varies withy). For finite data of lengtt, j will vary from s the method of choice for measuring LRD in traffic [14]-[16],
j = 1, the finest scale in the data, up to sofg, & log,(n). 2andwavelets are even being used to measure multifractal prop-
The number of coefficients available at octavsdenoted by: ;, erties of traffic [17], [18]. Until now however, the AV estimator
and approximately halves with each increasg.of _ _ _ S
The estimator has excellent computational properties due téSmce the expectations of the details are all identically zerfi3], [12], the
w e . . average of the squares of the details at a givéan estimate of the variance

the fast “pyramidal” filter bank algorithm [12] for calculation of 5 that;.
the discrete wavelet transform, which has a complexity of only2in forming the Logscale Diagram small corrective terats ;) are in fact
O(n). The number of wavelet coefficients (;, k) thus gener- subtracted frortog,, (11 ;) to computey; to account for the fact thd[log](-) #
ated is also of order, and subsequent computations requir g; EL). _ ,
to form the estimate afl from them have only this complexit If the date_a is tr_uly LRD then the upper cu;_off scgleshould always be_the

; - y . p Y. largest possible given the length of the datajiex log,(n), however scaling
The overall complexity therefore remaif¥n), which clearly in a finite range is also observed in data [7].
scales satisfactorily. 4H is related to the slope of the plot, and to a power of the intercept.

The main feature of the wavelet approach which makes it sg'The weights are functions of the known variances ofigh@nd donot de-

effective for the statistical analysis of scaling phenomena suff¢ o the data.

LRD is the fact that th let basis f fi th | Confidence intervals faF are derived from the standard variance formulae
as IS the 1act that the wavelet basis tunctions themselvgs, eighted linear regression with mutually independentand so again are

possess a scaling property, and therefore constitute an optinwafunctions of the data.
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Fig. 2. Filter bank. At each level in the recursive structure, the bandpass (BP)
outputd..(j,-) and the low pass (LP) outputj, -) occur at half the rate of the
inputa,(j —1,-).

When the variance estimate at octgvis required for the third
stage it can be calculated as = S, /n;.

The final two stages of the estimation algorithm need not
be adapted to on-line versions, as there is no need to compute
the Logscale Diagram aff every time a new data point is ac-

Fig. 1. Stages 3 and 4: estimation from the Logscale Diagram. An exampl fired. They may be recalculated onIy as needed, typically at

they; againsty Logscale Diagram and regression line for a LRD process witf,
strong SRD. The vertical bars at each octave give 95% confidence intervals

they;. The series is simulatefih RIMA (0, d, 2) with d = 0.25 (o« = 0.50)
and¥ = [—2,—1] implying ¢, = 6.38. Selecting(j1,j2) = (4,10) allows
an accurate estimation despite the strong SRB: 0.53 £ 0.07, ¢, = 6.0
with 95% confidence interval.5 < ¢, < 7.8.

pman” time-scales several orders of magnitude larger than the
data collection rate. In any case the complexity of the final two
stages is onlyD(log,(n)), with memory requirements of only
O(log,(n)) also, and therefore they pose no computational dif-
ficulties. The great advantage of keeping stage 3 separate from
stage 4 is that, at no extra computational cost, the nature of the

has been used as a batch estimator, that is, where a data sg4{§ 45 a function of scale can be freely examined over all the
collected and analyzed off-line. It is ideally suited to on-lingcajes available up to the current time, rather than simply as-
use however, making it usable within network elements such §gning that the data is LRD and estimating blindly. The need
switches as well as network monitoring systems. By on-line &g; choose the scaling range by examining the Logscale Diagram
timation we mean a data processing method whereby new fragy, pe automated when required to obviate the need for manual
ments of data are processed as they arrive. In what follows W, ention in real-time applications. This could be done either
concentrate on the estimation Hf, although the second LRD by fixing values of(ji , j») based on prior “off-line” studies, or

parameter;, and indeed the entire Logscale Diagram (as illugsy jmplementing heuristics which identify the scaling range au-
trated in Section VI), is also provided by the method. tomatically.

On-line estimation has two main requirements: Some explanation is required to explain why the first stage of
1) thatan algorithm be devised such that newly acquired dak@ on-line estimator is scalable. The on-line filter bank, illus-
elements can be processed individually and merged witlated in Fig. 2, consists of a number of filters of fixed sfe

existing processed data, rather than requiring complejennected in series (typically the size of these filters is small, say
re-computation; K = 6). Because the output rate of each filter is only half of its
2) that the algorithm be efficient enough to implement thiaput rate, data of length is effectively summarized and held
above at the rate that new data arrives. in the filter banks in the form of log,(n) “half-processed”
The first requirement is critical for on-line estimationyalues. These numbers are the only ones which must be stored in
whereas the second is an issue of the necessary computitgmory, not the full set of historical input daté ). Regarding
power versus its cost. Because of the steadily increasithg run-time complexity, on average each new data pen}
bandwidth of networks however, the method must be scalablesults in2(K + 1) operations, a number independent.ofrhe
so the second requirement is in fact principally an issue of theaximum possible number of operations resulting from a single
time and memory complexity of the algorithm. new data point scales a3(log,(rn)), however this does not
The AV algorithm can be adapted to satisfy both requireccur very frequently, and if problems of processor load arise
ments. The first stage of the estimator, the wavelet decomphe filter bank can be naturally implemented in digital signal
sition, is implemented in an on-line fashion using a pyramidgtrocessing (DSP) hardware.
filter bank as shown in Fig. 2. Indeed, such filter banks were de-Regarding the scalability of the second stage, the number
vised with on-line applications in mind. The second stage caf operations ig)(n), and the memory requirements are only
be performed on-line as follows. Let the current stored su(log,(n)) as only the sums of squarés are kept, anchot
of squares at octavg calculated from the firsk; values be the full set of detail coefficients. The third and fourth stages are
S = > ii, d(j, k)*. Assume that the arrival of the new datéased on simple processing of thig and so they scale satisfac-
pointz(n) results in a new coefficient, (j,n; + 1) atoctavej  torily with respect to both computation and memory.
from the filter bank. The sum is then updated as follows: Section V shows how a quite modest computer is capable
of performing the AV estimation algorithm, on-line and in
real-time on 10-Mb/s Ethernet data sampled every millisecond.
The obvious advantage of computing estimates on-line is that
results are immediately available, rather than after a lengthy

NG < Ny +1,
Sj — Sj +du(j,n;)*.
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cycle of collection and analysis. As mentioned earlier, this is
essential for real-time network management purposes, but also
offers important advantages for traffic collection and analysis
in general. For example, apart from reducing the analysis delay,
this approach allows the decision as to whether enough data has
been collected to be made as it arrives. It is also advantageous
to be able to detect unusual events as they occur, enabling im-
mediate modifications to the collection/analysis effort.

The other central advantage of on-line estimation is the re-
duction in memory requirements, both in terms of the algorithm
itself and of the storage of data sets. Batch analysis requires -
the collection and analysis e&rylarge data sets, and samples ol - }g;ggg} gctave in the data
larger than any standard computer's memory space are easy to : ; -
collect. For example, a traditional Ethernet sampled every mil-
lisecond over one week represents 604 million sample points,
which stored as 4-byte integers requires approximately 2.4 GR. 3. Number of available scales as a functiomof
of space. Thus capture of this data may be a problem, as the data
cannot all be stored in memory and then saved to disk. Similarly
for analysis, the data cannot be held in memory all at the same  068f
time resulting in large delays due to disk paging. In contrast, as 0.66
explained above, on-line measurement does not have substan- ;4,0

octave

4 5 6

0 1 2 3
length of data x10*

0.7

tial memory requirements. Thus a traffic stream can be moni- %oez»
tored and measured continuously for weeks at a time, without  §~
any delay in the estimation at the end of the process, and without 2 0.6

a large memory. ﬁo.ss»
The number of scales available for estimation increases with 056t
the lengthn of the data. Ideally the number of available oc-

taves is simplyj,ax = log,(n), however edge effects limit the Z':

number in practice. Fig. 3 shows the number of octaves in the |

data and the number of octaves actually available as functions 0.5, 3 2 3 4 5 5

of n, for the Daubechies3 wavelets (implying a filter length of length of data x10°

six taps) that are used here. _ _
Fig. 4. Three example sample paths. The dashed line shows the true Hurst

parameter while the solid lines show examples of the on-line Hurst parameter

estimates.
IV. PERFORMANCE

In a system designed to measure traffic on-line in real-tindard spectral synthesis technique. In each case values from the
there are three key components: the packet capture processs#rées were piped to the on-line estimator one at a time, in order
prefiltering process where the raw data is converted to a tirtesimulate the arrival of raw measurements in real-time. Thus
series, and finally the on-line estimation itself. In this section wee estimator used here is identical to that used with the working
discuss and measure the performance of the on-line estimainsline system described in the next section. The interval chosen
only. The comments here are therefore valid regardless of thetween the actual estimations Hf (stage 4 of the estimator)
computational details of the lower two levels, which will varywas every2® data points. There is a warm up period at the be-
according to the kind of network measured. The performancegifining of the measurement run to wait for the octaves required
the first two processes, and of all three together, is addressegbinthe analysis to become available (see Fig. 3).
the next section in the context of Ethernet measurement. For each of the valueH = 0.6,0.7,0.8 and0.9, 100 inde-

The statistical performance of the batch joint AV estimatopendent realizations of length = 216 were generated. Fig. 4
and comparisons with other methods of estimating LRD parashows three examples chosen randomly from the setiiith
eters, have been described in detail elsewhere [4], [11]Hfor 0.6. The graph illustrates typical behavior of the estimator in
only see also [5], [3], [6]). Briefly, the estimator offers excellentime. Here we use prior knowledge of the fGn process to choose
statistical performance: negligible bias, close to optimal vatihe lower end of scaling range to g = 3, and the upper end
ance, and robustness of various kinds including with respecto= j...x to be the largest octave available. A point of interest
superimposed deterministic nonstationarities. It is not the aimisfthat there is no immediate jump in accuracy when a new oc-
this paper to repeat these studies, but rather to illustrate the tdere (scale) becomes available for use in the estimation. This
pendence of certain properties on data length, as the new featsreecause when this occurs there are still relatively few data
of the on-line version is that the length of the data is constantbpints at the new octave, and so the weighted regression gives
increasing. little weight to it.

The series used in this section were all realizations of the frac-n Fig. 5, for eachHd, averages over the set of 100 realizations
tional Gaussian noise (fGn) process, precalculated using a stare plotted. The fact that the averaged estimates tend to the cor-
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Fig. 5. Aver_agg (solid lines) of the estimates of_the Hurst parameter, and thg 7. Dependence of the MSE of the estimates:on
standard deviation around the average (dotted lines) for each set of 100 dafa
sequences.
random variables), and it is therefore particularly noteworthy:
the AV estimator obtains short range dependent statistics from
long-range dependent data. The hypotheses used to obtain the
theoretical results are never exactly satisfied in practice how-
ever, not even for a “model” LRD process such as the fGn. We
therefore repeated the test fAr = 0.6, shown in Fig. 7, this
time over 500 realizations each of lendtt?, in order to ex-
amine more closely the decay rate of the MSE. In the plot the
MSE is compared to the asymptotic theoretical prediction given
above, and the full theoretical variance prediction of [4]. Per-
forming a linear regression on the MSEs in the plot leads to a
slope of—1.04, which agrees with the predicted ratenof!, the
minor discrepancy being easily accounted for by the asymptotic
o : P A e nature of thel /n dependence together with statistical fluctua-
length of data tions in the MSE.

The computational performance of the estimator is also ex-
1@8llent. For instance we profiled the algorithm running on a
133-MHz Pentium PC (runningreeBSD and compiled with
CCf ), on test data 100 000 elements long (piped directly to the

107

)

)
ITITIT
0000 |
O©oOoO~N®D

mean squared error

Fig. 6. MSE of the estimated Hurst parameter for each of the four sets of
sample paths.

rect values illustrates the lack of bias of the estimator. The spe% imator), where estimates of the LRD parameters were made

every 1000 data elements (100 estimations in total). The wavelet
. . - . Y¥ansformation and sum of squares computation consumed 1.8 s
to either side. These sample standard deviations constitute 8MEPU time. and the estimation 4.8 s. Thus the transform took
pirical estimates of the standard deviation of the estimator. on average 6.018 ms per data point, and the estimation 48 ms per
To further illustrate this convergence, Fig. 6 s_hows alog-lg timate. Taking the most conservative view, it is unnecessary
plot of the mean squared error (MSE) of the esnmatg; as afu'?&]oerform the estimation more than once per second, implying
tion of n. The MSE correspon_ds closely to an emp'”c"?" me L negligible impact from the estimation phase and therefore al-
sure of the variance of the estimator, as we know the bias toI ing sampling rates of 50 000 samples/s or better. Of course

negligible. The fact that an apprOX|mater straight line is S€%his will be reduced if competition from other processes is sig-
suggests that the variance of the estimator decreases as a p [

i25nt, notably from the packet capture process if it is runnin
law. It is also noteworthy that the MSE seems to have very litt ' y P P P g

. . h the same machine.
dependence of . Both of these facts are in agreement with the
theoretical results of [4] which state that there isfdnor ¢y,

nor 1., nor o2) dependence in the variance of the estimate of V. REAL-TIME ESTIMATION FOR ETHERNET
H, and that asymptotically the variance goes as We have explained in Section Ill how the on-line estimator
. 9i1—3 is scalable, and in Section IV demonstrated the estimator using
var(H(n)) ~ 23 nt (1) simulated on-line data. In this section we use the estimator to
n

analyze 10-Mb/s Ethernet data on the local area network at the
wherej; is the smallest scale used in the estimation. T/ve Software Engineering Research Centre (SERC) without the use
rate of decrease is a result typical of the variance of estimatofhigh performance hardware, proving thatitis efficient enough
in a short range dependent context (for example independdntbe used on real, low-cost systems.
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An Ethernet was chosen for two reasons. First, it was the first 10

type of data network where self-similar traffic was shown to
exist [1]. Second, it is relatively easy to extract traffic from an
Ethernet because of the broadcast nature of the medium. The
Berkeley Packet Filter (BPF) [19], which is part of the kernel
of FreeBSD (a variant of theJnix operating system suitable
for Intel PC’s), was used to capture and time stamp packets.
The packet capture and the estimation algorithm were all run
on a 133-MHz Pentium computer. Though the timestamping
of the BPF on this system is not as accutads that obtained
in the original Bellcore study [1], that same study showed that
timestamping accuracy of the order of 1 ms (significantly worse 1
than the accuracy obtained here) is quite sufficient to measure o— . 1 ..
self-similarity, 18 24 6 12 18 24 6 12 18 24 6 12

The output from the BPF passes through a simple prefiltering [ShQet 18Ot TThOet
program which generates a sequence of data values corre-  gst
sponding to the number of bytes transferred over the Ethernet
during each sampling interval. This sequence is the raw data
seriesz(t) to be analyzed by the on-line estimator. In [16] the
authors demonstrated that a sampling interval as large as 100 ms
was adequate for measurements of self-similarity in real traffic.
A sampling interval as fine as 1 ms posed no computational
problems for the 133-MHz processor. At rates much faster than
this the packet capture and prefiltering processes can fail to
keep up with the data, whereas the load due to the estimation
algorithm, as detailed in the previous section, is small at such 0.55f
rates. The bottleneck in this Ethernet measurement system is 05
therefore in the lower layers, not the on-line estimation.

Fig. 8(a) shows Ethernet data originally sampled at 1 ms in-
tervals and averaged ov2* ms~ 1 minute intervals. Fig. 8(b) Fig. 8. SERC local Ethernet data, October, 1997. (a) Ethernet byte data
shows the on-line es't|mat.|on for t'he same data, u@j[\gb) _ :\S/;ei?gtee(i.over approximately one-minute intervals. (b) Corresponding on-line
(8, jmax ), based onvisual inspection of Logscale Diagrams. The
latter figure shows real-time output, where at eattte estimate
is based on all the data {6, ¢]. The graph therefore becomes VI. LONG-TERM MEASUREMENTS

smoother with increasingas new data has proportionally less One of the major advantages of on-line measurement is that
impact on the growing weight of past data. It is important ttheasurements can be made over long periods. This is possible
note that such long-term estimates are not usually meaningiyécause the data is not collected, but analyzed as it arrives, en-
due to nonstationarity in the data. The intent of these figuresgpling it to be stored in a far more compact and useful form.
not to give useful estimates, and Certainly not to demonstratphus the most onerous parts of “off-line” ana|y5i5, the data col-
Self—similarity in Ethernet traffic as this has been demOﬂStrat@:tion and initial processing’ can be performed in real-time,
many times before. Rather the results are intended to show gaf/ing only the higher level aspects, for example the examina-
the algorithm is efficient and robust enough to apply to real datgn of Logscale Diagrams, as truly off-line. This “fast off-line”

in real time. (FOL) analysis method is illustrated in this section.

We mention briefly here that we have extended our on-line Note that not collecting data is also a disadvantage in that
monitoring efforts to 155 Mb/s ATM traffic, also on inexpensivehew questions involving analysis outside of the standard suite
hardware. In this system the on-line estimation is identical t&nnot be answered. Eor example, we are unable to return to the
that described here, only the lower layers have changed. Tdifyinal data to repeat our analysis on a per-application basis. It
details of the ATM traffic monitor are fully described in [9]. Thejs necessary in real-time analysis to know in advance all of the
lower layers of the system are based around the OC3MON [Zflestions of interest, and to have on-line algorithms for each.
which has been used SUCCGSSfU”y to monitor the vBa§part As part of an Ongoing data collection effort at SERC,
of the CORAL project [21]-{23}. Ethernet data from the local network was collected from

March 4th to August 24th, 1998. A major reconfiguration
of the local network at the end of this period was a natural

The exact accuracy of timestamps on a time-sharing system depends on Wgr@akpoint motivating a study, reported in [10], whose aims
else is running on the system. _ _ ~were twofold: first, to illustrate the benefits of FOL analysis
ht;\ﬁm%\r‘bnpsegg&mame Backbone Network Service. Online. AV"J"I"“bleby_perforrning an analysis which would not have been possible

9Coral Network Traffic Analysis. Online. Available: http://moat.nIanr.net}JS|ng ordinary off-line methods without great effort; and second,
Coral/ to begin to investigate the important practical question of
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1

the diurnal or daily variation of the Hurst parameter. Here
we summarize the results of [10] and present additional data 0.957
on the link between load and/. The data was collected
by running a set of monitors almost continuously over the g ‘
period (small gaps occurred as the monitors were also used.fé’o'85 )
for other purposes). Note also that the network size and 8 o.8-
configuration was significantly different from the previous %g75.
October 1997 data (Fig. 8) during the long-term study.
In current models of traffic, the parametiris a constant de-
scribing the scaling nature of arriving traffic which is deemed 35065;
to bestationary that is, constant in time in the statistical sense. gl
Naturally in real data this assumption will hold only approx-
imately, and in some cases not at all (for instance see [24]).
For example diurnal variation in load is a recognized feature 0575~ 5t 5 o o T B T e S
of traffic in most contexts (for examples see [25], [26], [23]), is sgn o Mon Twe  Wed  Thu Pd o Sal
this also true ofZ ? In the seminal paper [1] the authors specu-

late that this is so, and further that there is a correlation betwe@a 9. Example sample paths for Hurst parameter estimates. The three
curves are based on(%), 4 (o), and 24-hour blocks of datdd). Start time
the load andH. L = 05-Apr-1998 00:00:00.
We performed monitoring separately over blocks of data 1,

4, and 24 hours long, with the intention of studying the diurnal
and weekly variations of the load and Hurst parameter, and th@iaussian based confidence interval too strictly. Nonetheless, al-
correlations. It is important to bear in mind that with each me#iough some of the large variation in one-hour estimates can
surement, the implicit assumption made is tiais well de- certainly be attributed to statistical fluctuation, the broad corre-
fined and constant over the block. If this is not the case titen spondence between the estimates over the three time-scales sug-
estimator can return a meaningful single value. For examplegigésts that the variation reflects real changes below the 24-hour
measurements over 24 contiguous one-hour blocks reveal ttiae scale. Furthermore the four-hour measurements seem to
H changes, then we know that although a measurement obermore consistent with the one-hour measurements than the
the entire 24-hour period may still be a valuable summary 88-hour are with the four-hour (though still with high variation),
scaling information, it cannot be taken as a meaningful estimdtigting thatf may be taken as reasonably constant over inter-
of a constantH. vals close to, but below four hours. It is also noteworthy that

On the other hand, iff is well defined (and constant) overthere is no obvious correlation between the load estimates over
a block, then we wish to measure it robustly, that is, despitee same time-scales (not shown) and the Hurst parameter esti-
the possible presence of nonstationarities in other aspectsmsftes.
the data, such as the mean. Although such nonstationarities caHow could such variations if occur? One way is suggested
cause problems for standard estimators of the Hurst paraméigr[29], [30], in which the authors demonstrated that LRD
[27], the AV estimator is remarkably robust to changes in tHe aggregated traffic may arise from the high variability
mean or variance of a process [5], [28], and therefore we believe the individual ON/OFF sources of which it is composed.
that, provided the scaling exponent is itself well defined (sé¢owever when one measures the source of this variability
[28], [24] for further discussions on this issue), reasonable edti- individual applications such as WWW traffic [31], SS7
mates can be made even in the presence of common nonstatitaific [32], or Unix file sizes [33], one finds that they have
arities, for example, slow periodic changes in the mean. Thalifferent degrees of variability. In theory, for aggregate traffic
are circumstances where the estimator can fail. These inclddened by the mix of a set of applications, the most variable
when there areery large and sharp jumps in mean, the presource will eventually dominate, and determine the asymptotic
ence of overwhelming additive noise masking the LRD compgp+operties of the aggregate (includiff). However, in practice,
nent, or of power-law trends whose exponent corresponds tofan finite data series, some applications may not make an
H larger than that of the data. There is no evidence for nonstaypact on the measurements. For instance, a source running
tionarities of these types here. at very low rate might remain in therr state for the entire

Fig. 9 gives an example of Hurst parameter estimates oymgriod of measurement. Thus the effective Hurst parameter
the three different time-scales of 1, 4, and 24 hours duringndnich we measure may be dominated by a specific group of
week in April. The graph shows considerable variation in th&pplications. This group may change significantly over time
estimates over this time period. In fact, we can immediatetiue to nonstationarities in the mix of applications, leading to a
conclude thaff is not constant, as the theoretical confidence ivariable Hurst parameter estimate. Despite these difficulties,
terval [assuming constaff and Gaussian data, see (1)] for eacthe Hurst parameter may still be a viable and important
of the 24-hour estimates (not shown on the figure) is orders pdrameter for modeling the aggregate traffic.
magnitude smaller than the variation observed. The confidencesiven thatd may vary, the next question we ask is whether
intervals corresponding to the four and one-hour measuremeihtgaries with time of day. Before considering this question
are also very small, however the data is highly non-Gaussianna examine the diurnal behavior of the load in our network.
1 ms resolution, and we must be careful about interpreting theg. 10(a) and (b) displays estimates of the average load
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Fig. 10. Diurnal cycle in load and Hurst parameter estimates. The results plotted for each hour are averages over many days. (a) Weekday loadl (b) Weeke
load. (c) Weekday Hurst parameter. (d) Weekend Hurst parameter.

from March 4th to August 24th, 1998, during each one-howhich results from the nightly backups. These backups start at

period of the day. Fig. 10(a) shows the weekday load, white3 am each morning from Tuesday to Saturday.

Fig. 10(b) shows the weekend ldad-the two are substantially We refer to the user busy cycle as weak because its magni-

different, and it does not seem appropriate to combine thetade is not large compared with the natural variation during the

The figure also shows the empirical standard deviation dfy, and between days. Regarding the connection between the

the load about the mean, which reflects the range of truwerage diurnal variation of Fig. 10(a) and (b) and the size of

different values of load observed in a given hour of the dajaily fluctuations, note in Fig. 10(a) that the standard deviation

over different days, not the variation of the load within @&f the results does not appear to correlate well with the user busy
particular hour. The implicit assumption behind these graphbgcle, but that it does appear to be correlated with the backup
is that there is stationarity on weekly time-scales, so thpeak.

meaningful averages can be taken to reduce the variability ofThe traffic on the weekends is significantly lower than during

the measurement at each hour, allowing the diurnal variatitme week—not surprisingly. There is also a user busy cycle

to emerge from the background variation. during the weekends which has a later peak, around 7 or 8 pm.

The first notable feature of the mean load during the weéllhe weekend cycle is also more variable (with respect to the
is a weak busy cycle—the load increases during the day dondd). However we shall see presently, when considering the
decreases during the night—which we will refer to asuker Logscale Diagrams of Fig. 11, that this low load coincides with
busy cycle The peak of this cycle appears to occur at 4 pna breakdown of scaling behavior at high scales.

The second notable feature is a large peak early in the morningkig. 10(c) and (d) show the equivalent picture for Hurst pa-
rameter estimates. The standard deviation itself has not been
plotted in the results, as it remains roughly constant with a value

10Backups on our system begin at approximately 3 am and may exteﬁﬁghtly larger than 0.1, but we do show the averagghe stan-

past 6 am after weekdays and therefore occur on Saturday morning di@rd deviation.

not Sunday or Monday morning. We consider the backups to be partFig_ 10(d) seems to indicate that the weekend traffic has a

of the weekday workload, and hence we have adjusted the measured. .

begining and end of the weekend to 7 am on Saturday morning aM@riable Hurst parameter, but that it does not have a strong sys-

7 am on Monday morning respectively. tematic dependence on the time of day (except for a possible
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8-10am, 10pm-3am 11am-6om 4-5am of the Hurst parameter seems to begin earlier, and persist
S S o for longer than that of the load. It is plausible that this
behavior relates to the type of traffic present, for instance the
applications being used (as discussed above). To investigate
this further new studies must be conducted partitioning the
data by application—unfortunately on-line analysis does not
allow one to reprocess the data to extract new information if
this was not obtained in the initial analysis. It is the central
feature of FOL analysis that it discards all the original data,
and though this is an advantage from most points of view,
it prevents re-examination of the original data.

In the above estimates &f the full range of scales were used
to estimateH, thatisj; = 1, andy, as large as possible, rather
than selecting the scales after examination of the Logscale Dia-
gram. As a result the estimates should be thought of as a rough
. . i . . . measure of the behavior of the data as a function of scale, rather

Octave] Octave] Octave] = than unbiased estimates of the scaling parameter of LRD. This

choice was motivated by the fact that the significant nonstation-
@ arities observed in the data precluded the choice of universally
&-10am tpm-Sam  itam-gpm _4-sam valid fixed values of, j2], and automated selection is beyond
the scope of this paper.

In fact it is necessary to examine the scaling behavior in
detail, and not only to take measurements of the Hurst param-
eter over some fixed scale range. We therefore investigated
the time variation of the Logscale Diagram itself. Again
differences between weekdays and weekends were found, and
diurnal variations within these two. In Fig. 11 hourly Logscale
Diagrams, again averaged over different days, are grouped
into three classes corresponding to different time periods—low
load times (8 am—-10 am and 10 pm-3 am), high load times
(112 am—6 pm) and times when backup load dominates the
network (4 am-5 am). During the weekdays each class is
characterized by a qualitatively different shape whereas during
the weekend there is little qualitative variation. Although during
high load periods the curves are approximately straight lines

8

25}

" . 15 s . " X
5 10 15 5 10 15 5 10 15

15

Octave j Octave j Octave which means that the Hurst parameter estimates give useful
information both at large and small scales, at low load periods
(®) the curves are far from straight and the meaning and usefulness

Fig. 11. Diurnal cycle in Logscale Diagrams. (a) Three classes of LD's can 8§ the estimates can be called into question.
found during weekdays, corresponding to (from left to right) low load, highload Sjnce during the busy hours of the day the workload is domi-
and backup periods. (b) On weekends the shape of the LD is roughly constzwéted by applications controlled by human interaction, whereas
_ _ o _ at night, and times of low load such as the weekend, applica-
blip at 6 am). Fig. 10(c) seems to indicate that during the wegkns controlled by automatic computer interaction dominate,
the Hurst parameter does have some dependence on timg@fspeculate (as did the authors of [1]) that human interaction
day—though it is not very strong. In comparison, two standafflays an important role in the nature of the scaling behavior,
deviations around the estimate covers almost the entire rangesher than load as such. This would also explain how the user
values from 0.5 to 1.0 indicating that at any time of day, any @jusy cycle is not identical to the Hurst busy cycle. Finally, we
the range of possible values &F can occukt Thus averaging note that when backup load dominates the network the Logscale
over several months was needed to render this daily cycle Miiagrams shows a peak at octave 4—implying that the domi-
ible. _ nant phenonomena in the backup load occurs at time sedlés
There is a peak at about 4 am which appears to be strongl¢__not a surprising conclusion given the machine-generated
correlated with the backup peak, and also a “Hurst usghture of this traffic.
busy cycle” which follows the user busy cycle fairly closely: The gquthors of [1] also noted an apparent correlation between
the Hurst parameter seems to be connected to the netwgyky andH, and so the next question we ask is “Given a much
load. Interestingly, the peak due to the backups coincid@gger series of data can we deduce a simple relationship
with the backup load peak, while the busy cycle behavigatween the two?” Fig. 12 illustrates the correlations between

1lvalues near 1 may be artifacts of nonstationarity, but not necessarily.Tﬂée load and the Hurst parameter by plotting them against
estimator can take any real value, even wigis well defined and i{0.5,1). each other. The plots are based on the hourly load and
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Fig. 12. Correlation between the Hurst parameter and load. (a) Weekday correlations. (b) Zoom of (a). (c) Weekend correlations. (d) Zoom of (c).

Hurst parameter measurements. Again the data is dividiée, enabling their use in real-time applications such as mea-
into weekday and weekend data. Plots (b) and (d) sha@urement-based admission control (for instance see [34]). Fur-
closeups of regions of plots (a) and (c) respectively. It is clearllgermore, the immediate analysis of data at the point of measure-
seen that there are correlations between load and the Humgnt avoids the storage of huge data sets for off-line analysis.
parameter, but that they are not at all simple. For instanée scalability of the method was demonstrated both with re-
plot (d) shows clear clustering, though at very low loads. Thigect to memory requirements, which are very modest, and pro-
could be due to a particular type of traffic dominating duringessing complexity. The algorithm’s performance was demon-
such time periods. Plot (b) appears also to have clusterimfated by applying it to simulated on-line data, and found to
though it is not as obvious—this could simply be becaud® excellent and in agreement with theoretical results. The al-
during the week, the type of traffic which generates sudjorithm was also demonstrated in a working system using a
clusters cannot so easily dominate the other forms of traffimodest PC to make real-time measurements of both Ethernet
More work is required to determine appropriate classes wéffic and ATM traffic. Thus the method is efficient enough to
models to account for such observations. deal with high data rates on inexpensive hardware. If, as network
There are a great many things remaining to study in this dagpeed increases, a point is reached where processing require-
however this is not the intention of this report, and the study ments exceed the capacity of the processor chips available at
ongoing. Rather it is intended to provide a taste of the possiltie time, the algorithm could be implemented using DSP hard-
ities created by the cheap, ubiquitous monitoring allowed by arare, to which it is ideally suited. Such a solution would be
on-line estimator. able to cope with any data rates currently envisaged with room
to spare.
Finally we illustrated some of the possibilities opened up by
VII. CONCLUSION the on-line estimator in its role as a fast off-line analysis method.
It was used to simply and easily analyze the local area network
We have shown that the Abry-Veitch estimator for the meat SERC over a five-month period to assess diurnal variability
surement of the parameters of long-range dependence, includmghe Hurst parameter, as well the behavior of the data as a
the Hurst parameter, can be successfully applied on-line, in refalnction of scale via diurnal changes in the Logscale Diagram.
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An interesting novel observation was that the scaling propertieg4]
could be ordered into a small number of groups which appear
to be correlated with the traffic load, and we speculate by th?ﬁ]
origin—human or machine—of the traffic. Another key obser-
vation was that the Hurst parameter does vary with time, anél
time of day, but the variations in individual days greatly out-
weigh the diurnal variation measured by averaging over many
days.

There is much scope for future work, notably:

1) use of smoothing, perhaps using a Kalman filter, in order
to discard old data, which might be more appropriate thar'2!
windowing as used here;

2) use of an adaptive choice of the scaling ragge;»); [19]

3) further study of the data presented in Section VI, notably,
with respect to the connection between load and the form
of the Logscale Diagram;

4) collection and study of a substantial set of ATM data;

5) collection of data by application type in order to study

the origins of the correlations between load and Hurst?2]

parameter;

application of the statistical test for the constancy ofj23]

scaling parameters to better judge when the exponent

changes [26];

application to call admission control and congestion conf24]

trol.

(17]

[21]

6

~

7

~

(25]

[26]
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