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Multifractality Tests Using Bootstrapped
Wavelet Leaders

Herwig Wendt, Member, IEEE, and Patrice Abry

Abstract—Multifractal analysis, which mostly consists of mea-
suring scaling exponents, is becoming a standard technique
available in most empirical data analysis toolboxes. Making use of
the most recent theoretical results, it is based here on the estimation
of the cumulants of the log of the wavelet Leaders, an elaboration
on the wavelet coefficients. These log-cumulants theoretically
enable discrimination between mono- and multifractal processes,
as well as between simple log-normal multifractal models and
more advanced ones. The goal of the present contribution is to
design nonparametric bootstrap hypothesis tests aiming at testing
the nature of the multifractal properties of stochastic processes
and empirical data. Bootstrap issues together with six declinations
of test designs are analyzed. Their statistical performance (signifi-
cances, powers, and p-values) are assessed and compared by means
of Monte Carlo simulations performed on synthetic stochastic
processes whose multifractal properties (and log-cumulants) are
known theoretically a priori. We demonstrate that the joint use of
wavelet Leaders, log-cumulants, and bootstrap procedures enable
us to obtain a powerful tool for testing the multifractal properties
of data. This tool is practically effective and can be applied to a
single observation of data with finite length.

Index Terms—Bootstrap, hypothesis test, multifractal analysis,
wavelet leaders.

I. MOTIVATION

SCALING or multifractal (MF) analyses [1], [2] nowadays
belong to most standard empirical data analysis toolboxes.

Scaling, or scale invariance, is indeed a property that has been
extensively observed in empirical data produced from numerous
applications of very different nature such as turbulence, network
traffic and biomedical signals.

Stating that some data possess scaling properties mostly
amounts to assuming and checking that its structure functions

behave as power laws of the analysis scale , for a given
range of scales and for a given
range of statistical orders , usually including :

(1)

Here, the stand for multiresolution quantities such as
the wavelet coefficients, denotes the number of such
coefficients available at each scale , while stands for the ob-
servation duration (the depend on the details of the process

and are functions of the variable , but not of the analysis
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scale ). Empirical multifractal analysis essentially consists of
estimating the scaling exponents from a given set of data.
These scaling exponents are commonly involved in various data
analysis tasks, such as detection, identification, or classification.

The function can formally be expanded as a polynomial
in : . When reduces
to a linear function of , is said to be monofractal. Self-sim-
ilar processes such as fractional Brownian motion (FBM) con-
stitute a celebrated and widely used class of monofractal pro-
cesses. In the present contribution, is said to be multifractal
when departs from a linear behavior in .1 In the case of

, the simplest departure from linear,
is referred to as a log-normal multifractal (LN-MF) process.
This process represents the most, if not only, practically used
multifractal model. More complex multifractal models, such as
compound Poisson cascades (CPC), (cf. e.g., [3]), could theo-
retically be used and involve polynomials of order higher
than 2. Therefore, the estimation of the precise values of the ’s
is crucial for practical purposes. Mainly, deciding on whether

, or whether when , is central to select
which model (FBM, LN-MF, or higher order MF) best describes
the data.

The goal of the present contribution is to propose statistical
tests aiming at deciding whether or not and thus
at discriminating between mono- and multifractal processes. So
far, this issue, which is commonly mentioned as being essen-
tial to empirical multifractal analysis, received no systematic or
detailed study. The hypothesis tests proposed here rely on the
combination of the three key ingredients log-cumulants, wavelet
Leaders, and nonparametric bootstrap:

First, it has been shown recently [4], [5] that a relevant mul-
tifractal formalism should be based on wavelet Leaders rather
than on wavelet coefficients [1], [2]. For instance, wavelet
Leaders-based multifractal estimation procedures significantly
outperform those based on wavelet coefficients [6]. Wavelet
coefficients and Leaders are fully defined in Section II-A. A
brief review of multifractal analysis and formalisms is given in
Section II-B.

Second, an alternative to multifractal estimation procedures
based on (1) has been proposed originally during the early 1990s
in [7] and further developed in [8]: From estimations of the
cumulants of the logarithm of the multiresolution quantities,
the coefficients of the polynomial expansion of can
be estimated directly. As explained above, these so-called log-
cumulants are of particular interest, since they naturally empha-
size the difference between mono- and multifractal processes.
Log-cumulant expansions are introduced in Section II-C.

1A rigorous mathematical definition of mono- versus multifractality remains
an involved mathematical issue and is further addressed in Section II-B.
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Third, we use nonparametric bootstrap techniques for the de-
sign of the statistical tests. Bootstrap was introduced during the
1980s [9] and has recently regained interest due to continu-
ously growing computer facilities [10]–[12]. It consists of ap-
proximating an unknown distribution of a random variable by
means of repeated resampling with replacement from the avail-
able data. The use of bootstrap techniques in the wavelet domain
was first reported in [13]. Bootstrap has also been considered for
the estimation of the Hurst parameter of self-similar processes
[14], and for the estimation of scaling exponents and log-cu-
mulants for both mono - and multifractal processes [6], [15]. In
the present work, we use nonparametric bootstrap methods on
wavelet Leaders and coefficients as robust means for obtaining
approximate null distributions of test statistics for hypothesis
tests on . Six declinations for the precise construction of the
empirical acceptance region are analyzed and compared. Ba-
sics on hypothesis tests and non parametric bootstrap tests, to-
gether with the definitions of the acceptance regions are detailed
in Section III-B. In order to assess the statistical performance
(significances, p-values, and powers) of the proposed bootstrap
tests, large sets of Monte Carlo (MC) simulations are performed.
The corresponding methodology, the simulation setup, as well
as the multifractal processes used to conduct the numerical sim-
ulations, are presented in Section IV. The results show that the
bootstrap tests exhibit satisfactory performance and are reported
and discussed in Section V. We end up with a robust and pow-
erful practical test procedure for the analysis of a single and
finite-length observation of empirical data. This is detailed in
Section VI, together with conclusions and perspectives.

II. WAVELETS AND MULTIFRACTAL ANALYSIS

A. Wavelet Coefficients and Wavelet Leaders

Wavelet Coefficients: Let denote a reference pattern
whose energy remains mostly concentrated in a narrow support
both in the time and frequency domains. This function
is commonly referred to as the mother wavelet and can be fur-
ther characterized by its number of vanishing moments, a strictly
positive integer defined as

and . Let
denote the collection of tem-

plates of , dilated to scales , and translated to time po-
sitions . Let us further assume that the

forms an orthonormal basis of . Let
denote the process under analysis and its observation duration.
The wavelet coefficients of are obtained as comparisons, by
means of inner products: . The
therefore provide a time-scale representation of that fully
characterizes it: . For a detailed
introduction to wavelet transforms, the reader is referred to, e.g.,
[16] and [17].

Wavelet Leaders: Let us now further assume that has a
compact time support and let us introduce the indexing

and the union .
The wavelet Leaders are defined as

(2)

Fig. 1. Wavelet Leaders L (black circle) are calculated from the discrete
wavelet coefficients d (�; �) (dots) by taking the supremum in the time neigh-
borhood 3� , over all finer scales 2 < 2 (area in gray).

where the supremum is taken on the discrete wavelet coefficients
in the time neighborhood over all finer scales
. Fig. 1 illustrates this definition.

B. Multifractal Analysis

Multifractal Spectrum: Multifractal analysis aims at charac-
terizing the signal under analysis through the description of
the variations along time of the regularity of its sample path.
Such a local regularity is measured by means of Hölder expo-
nents . The Hölder exponent quantifies the strength of the
singular behavior of around , by comparing the local vari-
ations of around to a local power law behavior: is
said to belong to with if there exists a constant

and a polynomial with such that

(3)

The Hölder exponent is defined as the largest such , as follows:

(4)

Instead of making use of a function of time , it is usually
preferred to describe the variability of the range of Hölder ex-
ponents actually encountered in through the multifractal (or
singularity) spectrum , which is defined as the Hausdorff
dimensions of the sets of points for which .

Multifractal Formalisms: Therefore, empirical or practical
multifractal analysis mostly consists of inferring from a
single finite duration observation of data: this is commonly re-
ferred to as a multifractal formalism. In a nutshell, multifractal
formalisms essentially amount first to performing estimations
of the scaling exponents (by direct use of (1)) and second
to relating those estimates to via a Legendre transform.

For a long period of time, wavelet coefficients have been
considered as the key quantities empirical multifractal analysis
should be based on [1], [4], [18]–[21]. However, recent results
[4], [5] show that this wavelet-based multifractal formalism suf-
fers from two major drawbacks: It does not enable us to reach
the entire multifractal spectrum of the process under analysis,
and it is not valid for all types of multifractal processes. Notably,
processes containing oscillating singularities are incorrectly an-
alyzed.

Leader-Based Multifractal Formalism: A more relevant mul-
tifractal formalism holds if wavelet coefficients are replaced
with the wavelet Leaders, defined above. By construction,
Leaders are monotonously increasing with scale , a property
that has been recently shown to be key in designing a multi-
fractal formalism [4]. Indeed, under mild regularity conditions
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on the sample path, wavelet Leaders exactly reproduce the
Hölder exponent of at , i.e., is the supremum of
all values such that, in the limit of fine scales ,

(5)

Following intuitions originally developed in [22] making use of
an increment-based multifractal formalism, (5) above suggests
that the wavelet Leader structure functions possess
power law behavior with respect to scales in the limit :

(6)

Here, is the number of Leaders available at each
scale and the length of the sample. Under mild uniform Hölder
regularity condition on , it has been shown [4], [23] that
(6) is an exact result and that the Legendre transform of the

provides a tight upper bound for the multifractal spectrum
:

(7)

It turns out that for most, if not all, commonly used multiplica-
tive processes (whose multifractal spectra are concave), the in-
equality (7) is an equality and thus relates the scaling exponents
to the multifractal spectrum.

For more thorough introductions to multifractal analysis, the
reader is referred to, e.g., [4], [20], [23], and [24].

Multi- Versus Monofractal: Rigorous mathematical defini-
tions of monofractality and multifractality refer to whether the
characterization of requires a single Hölder exponent or
a collection of different such exponents. In the present contri-
bution, we refer to monofractal (respectively, multifractal) pro-
cesses when their scaling exponents follow a linear be-
havior in (respectively, depart from a linear behavior in ).
This definition is not rigorously true and results in a little loss
of generality: It excludes specific processes such as Lévy stable
self-similar processes or random wavelet series which are of the-
oretical interest but remain difficult to use in applications. This
restrictive definition of monofractality is formulated by analogy
with finite variance self-similar processes with stationary incre-
ments, which are widely used in applications and is sufficient
for most practical purposes.

C. Log-Cumulants

For some classes of multifractal processes [7], [25], (6) takes
a more general form

(8)

Using the second characteristic functions of the distributions of
the random variables , (8) can be rewritten as

(9)

where the stand for the cumulants of order of
. Equation (9) implies that the ’s must satisfy

(10)

and therefore that

where and do not depend on the scale . This yields

(11)

Thus, the measurements of the scaling exponents can be
interestingly replaced by those of the log-cumulants .

The main benefit of this change of multifractal attributes lies
in the fact that the ’s emphasize the difference between scaling
exponents that are linear in (equivalently,

) and that depart from linear (equivalently, there exists
) [7], [25]. In other words, according to our pre-

vious definitions, knowing whether or not is practically
equivalent to choosing between mono- versus multifractality.
Also, the ’s enable to discriminate between simple LN-MF
processes ( ) and more complex multifractal
models, such as CPCs ( ). Therefore, in the sequel of this
contribution, we concentrate on estimating the and on testing
whether or not.

D. Estimation Procedures

Estimations of the Cumulants : From the samples of ,
one computes wavelet Leaders at each
scale . The asymptotically unbiased and consistent standard
estimators (e.g., [26]) are used to obtain the estimations of
the cumulants of .

Linear Regressions—log-Cumulants : Based on (10), the
’s are estimated by linear regressions of versus :

(12)

where defines the range of scales, , over
which the linear regressions are performed.

Weights: The weights in (12) have to satisfy the usual
constraints and . A standard
form reads , with

. The freely selectable positive
numbers reflect the confidence granted to each . In the
present work, we select (cf. [1]), without loss of
generality.

Coefficients Versus Leaders: The estimation procedures pre-
sented above involve wavelet Leaders . Note that corre-
sponding procedures can be based on wavelet coefficients, mu-
tatis mutandis. The same is true for all test procedures described
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in the next section. The respective performance of Leader and
coefficient-based test procedures are compared in Section V.

III. TESTING STATISTICAL HYPOTHESIS ON LOG-CUMULANTS

A. Statement of the Problem

We want to test against the two-sided alternative
. Eventually, the specific case is seen as the

test of mono- versus multifractality.
Given a single sample of of size , the ’s,

’s, , and are computed and estimated ac-
cording to the procedures described in Section II-D. We
denote the unknown distributions of and by

with parameters , respectively.
The distributions are unknown members of families of
distributions .

We consider the basic test statistic

and the studentized test statistic

where and stand for the theoretical standard deviation of
and for its bootstrap estimation (cf. (22) below), respectively.

The studentized test statistic attempts to make the random vari-
able pivotal, i.e., to remove the unknown parameter from
the distribution of .

B. Statistical Tests

1) Definition: Tests for such problems can be constructed in
the following way (see, e.g., [27]): A null hypothesis

equivalently (13)

postulates that is a member of a specified subset
of the set of all possible parameter vectors. is simple if it
completely specifies all the parameters describing the family of
distributions , i.e., the subset contains only
one single element. Otherwise, is composite.

For simple, the null distribution of is given by

(14)

and a acceptance region can be defined as a set
on the real axis for which

For instance, this could be the equitailed interval
, where denotes the quantile of the null dis-

tribution (14). The complement of is called the rejection
region. The test is then

if
otherwise

(15)

Thus, rejects if, for a given preset value , the observed
value of the test statistic is in the rejection region.

2) Significance and p-Value: The quantity is called the
level or significance of the test and equals the error rate in re-
jecting .

The critical value of for which the observed test statistic
would be regarded as just decisive against is called the

p-value or significance of

(16)

Under , the p-value ideally has a uniform distribution on
, yielding its interpretation as an error rate: If were re-

garded as just decisive against , then this is equivalent to a
procedure that rejects with error rate [12].

3) Power: When performing a test, we may commit two
types of errors: First, we may reject when it is true (error
of the first kind), which ideally happens with probability equal
to the significance . Second, we may accept when it is
false (error of the second kind), i.e., accept when { },
where is the subset of alternatives, .
The probability of rejection, evaluated for a given alternative

is called the power of the test against this alterna-
tive

(17)

A good test should have small and large , which are antag-
onistic goals. It is common practice to preset the significance
and then select a test with power as large as possible.

4) Composite Null Hypotheses: In most parametric and
all nonparametric problems, is composite. This is also the
case for the tests considered here. Then, the null distributions

and are not completely specified, since has
more than one element (and possibly infinitely many elements).
Therefore, the acceptance and rejection regions and the p-value
are not well defined.

An approximate solution that is appropriate for the problem
considered here is to estimate a distribution that
satisfies and to use this null model to define an acceptance
region

(18)

The test is then given by (15), with replacing .

C. Nonparametric Bootstrap Tests

1) Nonparametric Bootstrap: In order to define an accep-
tance region, cf. (18), for our problem, we need to estimate

. The distributions are, however, unknown,
since the distributions are not known. Nonparametric
bootstrap solutions to this problem consist of replacing the un-
known distributions by the empirical distributions ,
given by the samples . The bootstrap estima-
tions of are

(19)
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with :

The s and are, respectively, bootstrap estimations for
(cf. (20) below) and for the standard deviations of [cf. (23),
below]. Since the empirical distributions do not necessarily
satisfy must be replaced by in the bootstrap versions

and of the original test statistics and . This ensures
that approximately satisfies [28].

2) Resampling Procedure: Equation (19) is solved through
simulation. We fix the empirical distribution to be the

samples of Leaders, . This has been shown to perform
well in the context of wavelet-based multifractal analysis
(see [6] and [13]–[15]). Despite the decorrelating property of
the wavelet transform, the width of the time support of the
wavelet introduces some very short term correlation among
the samples . Thus, we use a moving blocks bootstrap with
block length equal to the (finite) size of the time support of
the wavelet (cf. [6]). For Daubechies wavelets used here, it
amounts to . At each scale bootstrap
resamples are generated from the original
samples . Each resample

is an unsorted collection
of sample points, drawn blockwise and with replacement
from the original sample .

3) Bootstrap Estimations: The collections are used to

compute bootstrap cumulant estimations . From
these, we obtain the log-cumulant bootstrap estimations, as
follows:

(20)

and the bootstrap test statistics and . Fi-
nally, the empirical bootstrap distributions

(21)

approximate (19), where when and 0 else-
where. These distributions are used to determine approximate
limits of the acceptance regions (see Section III-C-5),
necessary for performing the test (15) and for estimating the
p-value (16). A typical bootstrap distribution, obtained for
(for a LN-MF process, cf. Section IV-B) and the basic bootstrap
test procedure are illustrated in Fig. 2.

4) Standard Deviation Estimations for Studentized Statistic
: The bootstrap estimations are readily obtained from the

samples (Std denotes the sample standard deviation):

Std Std (22)

For obtaining estimations of the standard deviation of
each , a second layer of bootstrap resampling is necessary
on top of the first one: From each bootstrap resample

Fig. 2. Estimated null distribution and (1 � �) basic bootstrap test for the
second log-cumulant of MRW (single realization): The hypothesis H is re-
jected if the observed value t̂ of the test statistic is within the rejection regions,
i.e., outside the interval T = [t̂ ; t̂ ].

double bootstrap resamples are obtained as an unsorted
collection of sample points, drawn blockwise and with re-
placement from , similar to the procedure described above.
These collections are used to compute the double bootstrap
estimations , and

Std Std (23)

5) Bootstrap Test Acceptance Regions: As we consider
tests against double-sided alternatives, double-sided accep-
tance regions are used in the present work, that is,
acceptance regions with finite lower and upper limits. There
exists a large number of nonparametric bootstrap tests in the
literature, producing different acceptance regions (cf. [12] for
an overview). We analyze six different significance bootstrap
tests, including simple, computationally cheap, and more so-
phisticated, computationally expensive bootstrap methods: The
asymptotic bootstrap test uses simple symmetric acceptance
regions, employing only the bootstrap standard deviation esti-
mations. The basic and percentile tests employ quantiles of the
empirical bootstrap distributions (21) of . The studentized
test uses quantiles of the empirical distributions of the pivoted
test statistic . The adjusted basic and adjusted percentile tests
use the double bootstrap estimations to correct for a bias in
the limits of the acceptance regions of the basic and percentile
tests. The three latter methods are potentially more performant,
however at the price of a costly double bootstrap layer.

Asymptotic (Normal) Bootstrap Test: Assuming to be ap-
proximately normal, the bootstrap standard deviation estimation

is used to construct the equitailed and symmetric acceptance
region

(24)

where is the quantile of the standard normal distribution.
Basic Bootstrap Test: The bootstrap distribution (21) of

is used directly to define the equitailed acceptance region

(25)

where is the empirical -quantile of (21) for .
Percentile Bootstrap Test: There is a duality between signifi-

cance tests for parameters and confidence sets for those param-
eters, in the sense that—for a prescribed level—a confidence re-
gion includes parameters that are not rejected by an appropriate
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TABLE I
OVERVIEW OF SIGNIFICANCE � BOOTSTRAP TESTS AND THEIR

CORRESPONDING ACCEPTANCE REGIONS

significance test [12]. The percentile test is constructed by in-
version of a percentile confidence interval
for and has acceptance region

(26)

Studentized Bootstrap Test: The studentized test is a basic
bootstrap test for the pivoted test statistic . The method thus
demands a double bootstrap for calculating the standard devia-
tion estimations and has acceptance region

(27)

Adjusted p-Value for Basic Bootstrap Test: If the usual error
rate interpretation of is to be valid, the p-value must be uni-
formly distributed on under . This is, however, not
guaranteed for composite null hypotheses and approximate null
models (21). The adjusted p-value method aims at estimating an
improved p-value that is more nearly uniformly distributed than
the unadjusted one. It treats as the observed test statistic and
estimates its distribution by resampling under the null model
[12]. The double-sided adjusted p-value is

(28)

Here, is the p-value of the basic bootstrap test, and the
are its bootstrap resamples, obtained through a double bootstrap.
The acceptance region is

(29)

Adjusted p-value for Percentile Bootstrap Test: The adjusted
p-value for the percentile bootstrap test is given by (28) by re-
placing and with the p-value of the percentile boot-
strap test and its corresponding bootstrap resamples ,
respectively. It has acceptance region

(30)

The bootstrap tests, p-values and acceptance regions consid-
ered in this work are summarized in Table I.

IV. STATISTICAL PERFORMANCE ASSESSMENT

A. Methodology: Monte Carlo Simulations

We evaluate the statistical performance of the proposed boot-
strap test procedures by applying them to a large number
of realizations of two different synthetic stochastic processes
with a priori known and controlled multifractal properties and
log-cumulant values . For each realization, each test proce-
dure defined above provides us with two outputs: The decision

, and the p-value of the observed test statistic. From averages
over realizations, we evaluate the actual significances, p-values
and powers of the tests and compare them both against theo-
retical targets and against each other. The aim of this numer-
ical study is to address the following issues: Do the bootstrap
test procedures described above exhibit satisfactory statistical
performance? Should one prefer wavelet coefficients or wavelet
Leaders for testing mono- versus multifractality? What precise
design of the acceptance region ((24)–(27)) yields the best sta-
tistical performance?

B. Scaling Processes

We make use of two stochastic processes, fractional
Brownian motion (FBM) and multifractal random walk
(MRW), chosen because they provide us with simple yet rep-
resentative examples of Gaussian monofractal processes and
non-Gaussian multifractal processes, respectively.

FBM is the only Gaussian exactly self-similar process with
stationary increments. Its full definition as well as that of self-
similarity can be found in, e.g., [29]. The statistical properties
of FBM are entirely determined by the parameter . FBM pos-
sesses scaling properties as in ((6)–(8)), with , for

. Thus, and for all .
MRW is a specific example of a LN-MF process.

MRW has been introduced in [8] as a simple multifractal
(hence, non-Gaussian) process with stationary increments:

, where consists of the
increments of FBM with parameter . The process is
independent of , Gaussian, with the following specific
covariance:
when , and 0 otherwise. MRW has interesting
scaling properties as in ((6)–(8)) for , with

. Hence, and
for all , and the departure from a linear behavior

in is fully controlled by .

C. Simulation Setup

The results presented here are obtained using Daubechies
wavelets with vanishing moments. The sample sizes
read with , and the linear regressions
(12) are performed over the scales defined by to

. The bootstrap parameters are fixed to
for and

for . Nominal significances were chosen to be
. The process parameters are set to

for FBM, and , i.e.,
and for MRW. For the simulations of
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TABLE II
ACTUAL SIGNIFICANCES �̂ OF BOOTSTRAP TESTS ON c , USING

COEFFICIENTS AND LEADERS, FOR FBM (c = c = 0) AND

MRW (c = c = �0:08). NOMINAL SIGNIFICANCES AND

RESULTS CLOSEST TO NOMINAL VALUES ARE MARKED IN BOLD

the power against multiple alternatives with MRW (cf. Fig. 4),
a range of ten parameter settings, and

, is used.

V. RESULTS

A. Significance and p-Value, Under

A first set of experiments is run to evaluate the actual sig-
nificances and p-values of the procedures. For that, we test the
hypothesis when this hypothesis is true.

We obtain estimates and for each of the proposed
tests and nominal ’s.

Significance: The actual significances of the tests are
estimated as ( denotes the average performed over Monte
Carlo realizations):

(31)

and should ideally equal the nominal significance .
Table II summarizes the results for tests on . We see that

is in general satisfactorily close to nominal for the pro-
posed methods. For FBM, the tests employing coefficients re-
produce the nominal slightly better than those using Leaders,
in particular for large sample size. For MRW, coefficients and
Leaders-based tests perform equivalently well, both having ac-
tual significance very close to the nominal one. When using co-

TABLE III
MEAN P-VALUE fp̂jc = c g OF BOOTSTRAP TESTS ON c , USING

COEFFICIENTS AND LEADERS, FOR FBM (c = c = 0) AND MRW
(c = c = �0:08). RESULTS CLOSEST TO THE THEORETICAL

VALUE p = 1=2 ARE MARKED IN BOLD

Fig. 3. Empirical distributions of the p-value of the bootstrap tests, obtained
for MRW (c = c = �0:08; n = 2 ) using Leaders.

efficients, no clear preference can be given to any of the par-
ticular acceptance regions. We note that the adjusted percentile
and the percentile (FBM), and the percentile and the studentized
(MRW) method perform slightly better than the others for tests
based on Leaders.

P-Value: Ideally, the p-value under should be uniformly
distributed, with mean . The average actual p-values
of the tests are estimated as and are
summarized in Table III for . Examples of their empirical dis-
tributions are shown in Fig. 3. We observe that the expected
uniform (mean ) distributions are satisfactorily reproduced
for both FBM and MRW and for all acceptance regions. There-
fore, the error rate interpretation of the estimation of is valid
for the proposed procedures. We note that whereas the adjusted
methods generally improve results for small sample size , it
appears to be much less decisive for larger sample size. This
may be due to the smaller number of double bootstrap resam-
ples ( ) used in the latter case.

B. Power Under

A second set of experiments is run to evaluate the power of
the procedures. For that, we test the hypothesis
when an alternative is true.

Power: The actual powers of the tests are estimated as

(32)

Table IV summarizes the results for the particular alternative
. The larger the power, the better the

test. As expected, we observe that the power increases with .
Also, we see that the percentile and adjusted percentile method
have consistently the largest power. Whereas the tests em-
ploying coefficients achieve only low powers, the Leader-based
procedures perform significantly better, with power up to
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Fig. 4. Actual power �̂ (c ; �) of basic bootstrap test of H : c � 0 for MRW against various alternatives c = c , obtained for nominal significances
� = 0:05 (left) and � = 0:1 (right). Dashed and solid lines represent results obtained with coefficients and Leaders, respectively. The symbols (�;�) stand for
n =(2 ; 2 ), respectively.

TABLE IV
ACTUAL POWER �̂ (c ; �) VERSUS SIGNIFICANCE OF BOOTSTRAP TESTS

OF H : c � 0 FOR MRW (c = c = �0:08), USING COEFFICIENTS

(TOP) AND LEADERS (BOTTOM). BEST RESULTS ARE MARKED IN BOLD

for small sample size and , and approximately 1 for large
sample size. The superiority of the Leaders-based procedures
is also clearly illustrated in Fig. 4, which shows the power of
the basic bootstrap test (with ) for a set of alterna-
tives ; whereas the
coefficient-based test achieves only low powers over the whole
range of alternatives, the Leader-based procedure maintains
large powers over a wide range of alternatives. The powers of
the Leader-based test remain significantly above those of the
coefficient-based test for alternatives close to the null value

, in particular for large sample size.

C. Conclusion

The results discussed above show that the proposed non
parametric bootstrap procedures for testing
present satisfactory performance in reproducing the targeted
significances and p-values equivalently for wavelet coefficients
and wavelet Leaders. However, the test procedures involving
Leaders are significantly more powerful than their coeffi-
cient-based counterparts and are thus clearly preferable. The

choice of acceptance region has little impact on the actual
significances and on the empirical distributions of the
p-values, with a slight preference, however, for the percentile
and adjusted percentile methods. These methods obtain as well
the largest powers; hence, they will be preferred. Furthermore,
the adjusted method requires the calculation of double bootstrap
resamples, increasing the computational cost for the bootstrap
by a factor , without bringing significant improvements.
For instance, on a standard PC, the bootstrap estimation and
test procedures for for a single observation of length

requires around s for simple boot-
strap methods and s for double bootstrap methods
( in all cases). It is possible that the results
obtained with double bootstrap methods could be slightly im-
proved by using a larger number of double bootstrap resamples

, however at the cost of further increasing computational load
considerably.

Therefore, we conclude that tests for should
be based on Leaders and percentile acceptance regions.

D. Further Developments

The bootstrap tests were illustrated here with MRW, a Log-
Normal multifractal process (i.e., ). However, as
mentioned above, the tests can be applied to any multifractal
process and any . For instance, applying the tests with the
choice provides us with indications to
decide whether a Log-Normal multifractal process or a more
sophisticated MF model is to be used to describe the data under
study. Let us recall that, in itself, does not prove that
data follow a Log-Normal process; however, this is a very valu-
able and practically useful information. We have studied the rel-
evance and statistical performance of such tests through numer-
ical simulations for another class of synthetic multifractal pro-
cesses: compound Poisson cascades [3], whose can be
set a priori. For space reasons, such results are not presented
here and will be reported elsewhere.
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Fig. 5. P-value function estimate from Monte Carlo simulation (dashed) and
bootstrap estimates from single realization (solid) versus a potentially observ-
able value ~c , obtained for MRW (c = �0:08; c = 0) using Leaders. The
symbols ( ; .;�; �) stand for (Normal, Basic, Percentile, Studentized) accep-
tance regions, respectively.

Along another line, alternative test statistics such as
have also been studied. Results on this, yielding sim-

ilar conclusions, are not reported here.

VI. CONCLUSION AND PERSPECTIVES

Practical Test Procedure: We have constructed a practical
procedure that enables us to test a given a priori chosen mul-
tifractal property: . Obviously, the choice

can be seen as a test of mono- versus multifrac-
tality (indeed, it is conjectured, that

). We showed from numerical simulations on synthetic multi-
fractal processes that such tests possess satisfactory statistical
performance. A Matlab procedure, designed by the authors, im-
plements this proposed multifractality test procedures. To the
best of our knowledge, this is the first and only practical multi-
fractal test that can actually be applied to a single observation of
data with finite length. We see this result as an important con-
tribution to empirical multifractal analysis.

In addition to obtaining and , our practical test procedure
also outputs, from a single realization, an approximate p-value
as a function of a potentially observable value . This is done
by (numerically) inverting the estimated null distribution

(33)

with for test statistic , and
for . Examples of such p-value functions are depicted in
Fig. 5, together with an estimate from MC simulation. For
all acceptance region methods, we observe that the functions

match satisfactorily well the one obtained from MC
simulations. Such p-value functions can be seen as a powerful
help for the practitioner. Indeed, the narrower the functions, the
more powerful the tests.

When analyzing real data, power functions such as those pro-
posed in Fig. 4 can usefully complete the test procedure. They
can be estimated by numerical simulations on synthetic multi-
fractal processes whose parameters and size fit those of the data
under analysis.

Perspectives: Parametric bootstrap tests can also be used.
They must be based on the assumption that the distributions of
wavelet Leaders can be modeled via a general class of functions.
This is under current investigations. Methods for estimating the

power of a test against specific alternatives from a single real-
ization can further improve the practical test procedures and are
currently tested.

There are major potential interests in applying these multi-
fractal tests to empirical data from hydrodynamic turbulence,
computer network traffic and biomedical applications. We are
currently analyzing such data.
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