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Abstract—The aim of this communication is to propose
some complementary remarks and interpretation on the wavelet-
based synthesis technique for fractional Brownian motion
proposed by Sellan in 1995. These comments will lead us to
propose a fast and efficient pyramidal filter bank-based Mallat-
type algorithm, which permits an easy and efficient imple-
mentation of this synthesis technique. c©1996 Academic Press, Inc.

1. MOTIVATION

Fractional Brownian motion. Fractional Brownian mo-
tion (hereafter fBm) is a continuous-time random process
proposed by Mandelbrot and Van Ness [11]. Basically, it
consists in a fractional integration of a white Gaussian pro-
cess and is therefore a generalization of Brownian motion
(as defined by P. Lévy), which consists simply in a standard
integration of a white Gaussian process. Because it presents
deep connections with the concepts of self-similarity, frac-
tal, long-range dependence or 1/f-processes, fBm quickly
became a major tool for the various fields where such con-
cepts are relevant. Many efforts have therefore been devoted
to the possibility of performing numerical simulation for
such a process (for a review, see [14]). None of these meth-
ods, however, was able to produce a process that possesses
all the properties of fBm.
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Very recently, Sellan proposed [14, 15] a powerful
wavelet-based analysis of fBm which also provides us with
a general scheme to synthesize it.

Scope of the communication. Our aim here is to pro-
pose a fast and efficient implementation of this synthesis
technique that relies on the use of a fast filter bank-based
Mallat-type pyramidal algorithm as well as to propose fur-
ther remarks that give complementary viewpoints on this
technique. While the next section restates the main ideas
of the construction and theorems presented in [14], Section
3 clearly details how to derive the coefficients of the filter
bank involved in the fast pyramidal algorithm. Section 4
addresses both practical issues and interpretation questions.
Matlab routines can be obtained at the ACHA software ftp
site, and are available upon request.

2. WAVELET-BASED SYNTHESIS FOR fBm

Definition. Let us first recall the commonly used defi-
nition for fBm [11],

BH(t) =
∫ +∞

−∞
[KH(t− s) −KH(−s)]dB(s), (1)

where

0 à H à 1, KH(t) = tH−1/2

Γ(H+1/2) , t á 0
KH(t) = 0, t < 0

and B(s) is ordinary Brownian motion (i.e., the integration
of a white Gaussian process W(s)). Such a definition should
be understood as the mathematically correct formulation
(converging difference of two diverging integrals) for the
intuitive definition of a fractional integration of a white
Gaussian process [13]∫ t

−∞
|t− s|H−1/2dB(s).

Moreover, from this definition, one can obtained the auto-
covariance structure for fBm

E(BH(t)BH(s)) =
σ2

2
(|t|2H + |s|2H − |t− s|2H), (2)

where

σ2 = Γ(1 − 2H)
cosπH
πH

.
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Wavelet representation. The basic idea underlying the
construction in [14] consists in the fact that the coefficients
of the expansion of a white process over an orthonormal ba-
sis will constitute a collection of uncorrelated coefficients.
Starting with an orthonormal set of wavelets and scaling
functions

{{φo(t− k), k ∈ Z},
{ψj,k(t) = 2−j/2ψ0(2−j(t− k)), (j, k) ∈ (Z+,Z)}}

constructed from a multiresolution analysis (MRA) [12, 6],
this can be written

W(t) =
∑
k

λ(k)φ0(t− k) +
∑
jà0,k

γj(k)ψj,k(t),

where λ(k) and γj(k) are samples of i.i.d. white Gaussian
processes. To obtain a fBm, the key idea in [14] is to frac-
tionally integrate each vector of the expansion basis:

BH(t) =
∑
k

λ(k)(D(−s)φ0)(t− k) +
∑
jà0,k

γj(k)(D(−s)ψj,k)(t),

where D(s) stands for the fractional differentiation opera-
tor of order s. However, such an idea raises a difficulty of
major importance: whereas the fractional integration of a
wavelet still provides us with a wavelet, it completely de-
localizes the scaling function and therefore kills the mul-
tiresolution nature of the synthesis. To overcome such a
difficulty, Meyer and Sellan proposed to perform a general-
ized Abel transform for the summation

∑
k λ(k)D−sφ0(t−k)

(see [15] for full details). They ended up with the wavelet
representation for fBm

BH(t) − b0

=
∑
k

bh(k)φ(s)
0,k(t) +

∑
jà0,k

γj(k)4−s2−jsψ(s)
j,k(t), (3)

here s = H + 1/2, bo is an arbitrary constant, γj are
independent identically distributed Gaussian random vari-
ables, bH(k) is a fractional ARIMA(0, s, 0) process, and φ(s)

and ψ(s) are suitably defined fractional scaling function and
wavelet.

Fractional wavelets. It is shown in [14] that for the
above decomposition to hold, the scaling function φ(s) and
the wavelet ψ(s) are to be designed starting from an MRA
whose regularity r [12] has to satisfy r > s > 0. More
precisely, it is proven that starting from an MRA V0(φ0)
(in which the orthonormal scaling function φ0 and the as-
sociated orthonormal wavelet ψ0 have been selected), one
can design two new MRAs, V(s)

0 (φ(s)
0 ) and V(−s)

0 (φ(−s)
0 ), whose

scaling functions are defined by

V
(s)
0 (φ(s)

0 ) with φ(s)
0 = Us(φ0)

V
(−s)
0 (φ(−s)

0 ) with φ(−s)
0 = Ū−s(φ0), (4)

where g = Us(f) has for Fourier transform ĝ(ν) =
(i2πν)−s(1 − exp(i2πν))2f̂(ν). It is then possible to
construct, for each MRA respectively, a wavelet ψ(s) and
ψ(−s),

ψ
(s)
0 = 4sD−s(ψ0)

ψ
(−s)
0 = 4−sD̄s(ψ0) (5)

such that they constitute a pair of biorthogonal wavelets in
the sense of Cohen et al. [5].

Fractional ARIMA process. A fractional ARIMA(0, s,
0) process [8, 9] is the generalization to fractional integra-
tion of the ARIMA(0, n, 0) process defined in [4], which
consisted in the standard integration of a discrete-time
white Gaussian noise. Its z-transform therefore reads

X(z) = (1 − z−1)−sW(z),

where W(z) stands for the z-transform of a discrete-time
white Gaussian noise W(t).

Interpretation. Equation (3) proposes to describe fBm
as a trend (

∑
k bH(k)φ(s)

0,k(t)) over which are superim-
posed a succession of details or refinements (

∑
jà0,k γj(k)

4−s2−jsψ(s)
j,k(t)). Note, moreover, to complete the scheme

proposed in Section 3 of [14], that if the coefficients of
the expansion on an orthonormal basis of the orthogonal
projection of a continuous white noise are again a discrete
white noise, the ARIMA(0, s, 0) (i.e., the trend of the fBm)
results from the expansion on a Riesz (nonorthonormal) ba-
sis for the first MRA V(s) of the oblique projection of the
continuous fBm along a direction orthogonal to the second
MRA V(−s).

Let us now try to figure out which features of the fBm
are carried by the trend and the details. When expanding a
signal over a basis, one attributes, in some sense, some of
its properties to the coefficients of the representation while
its remaining features are carried by the elements of the
bases themselves. In Eq. (3), if one considers first the parts
of the fBm conveyed by the wavelet (or detail) coefficients,
the uncorrelated Gaussian variables γj carry only the Gaus-
sian nature of the fBm while the wavelet basis has been
given by construction of the exact amount of correlation to
catch the short-term (or high-pass) correlation structure of
the fBm. The fractional wavelet basis therefore acts as a
Karhunen–Loève basis for the high-pass part of the spec-
trum of the fBm and conveys its scale-invariant nature. For
the lower-frequency part of the fBm—the trend—the sit-
uation is different. Although both the coefficients and the
elements of the basis carry some correlation, the long-term
correlation (or long-range dependence, i.e., the power-law
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FIG. 1. Two-band analysis/synthesis filter bank. Scheme of the classi-
cal two-band decomposition/reconstruction filter band underlying the fast
implementation of the dyadic wavelet analysis/synthesis.

decrease of the autocovariance function) is contained in the
ARIMA process bH, that is, in the coefficients of the ex-
pansion rather than in the basis itself. The presence of this
important feature of the fBm (which very often was miss-
ing in other standard synthesis techniques for the fBm) can
be observed in the plots of Fig. 4.

Fast implementation. Equation (3) leads to the straight-
forward pyramidal filter bank-based recursive implementa-
tion sketched in Fig. 3, provided that (i) one can produce
the ARIMA process bH and (ii) one can compute the coeffi-
cients of the synthesis lowpass (h2) and highpass (g2) related
to the fractional scaling function φ

(s)
0 and wavelet ψ(s)

0 , in-
volved in the synthesis. This will be explained in detail in
the next section.

3. FAST IMPLEMENTATION

3.1. Fractional Wavelets

MRA, scaling function, and wavelet. Let us briefly re-
call that an MRA is fully defined by its scaling function φ0

[6, 12] or equivalently by the generating sequence u [3] of
φ0:

φ1(t) = φ0(t/2)/
√

2 =
∑
k

u(k)φ0(t− k). (6)

Equivalently, the wavelet itself can be defined through its
generating sequence v:

ψ1(t) = ψ0(t/2)/
√

2 =
∑
k

v(k)φ0(t− k). (7)

Orthonormal basis. For the {φ0(t − k)}k∈Z to con-
stitute an orthonormal basis for V0, the generating sequence
has to satisfy

↓2 [u ∗ u∨] = δ0,

where ↓2 [x](k) = x(2k) stands for the decimation operator
that drops one sample of x out of 2, x∨(k) = x(−k) stands
for the time-reversal operator, and δn(k) is 1 for k = n and 0
elsewhere. Moreover, the collection {ψj,k = 2−j/2ψ0(2−jt−

k)}(j,k)∈(Z,Z), derived from the mother wavelet ψ0, defines
an orthonormal basis if

↓2 [u ∗ u∨] = δ0

v = δ1 ∗ ũ∨, (8)

where x̃(k) = (−1)kx(k). Such series are called quadrature
miror filters (QMF) series. Let us add, moreover, that it is
possible to derive a wavelet orthonormal basis from any
arbitrarily chosen multiresolution using the orthonormal-
ization technique described in [3, 1].

Fractional MRAs. To fully characterize the fractional
scaling functions and wavelets defined in [14], whose con-
struction has been recalled above, we need to derive their
generating sequences:

φ
(s)
0 (t/2) =

√
2

∑
k

u(s)(k)φ(s)
0 (t− k)

ψ
(s)
0 (t/2) =

√
2

∑
k

v(s)(k)φ(s)
0 (t− k)

φ
(−s)
0 (t/2) =

√
2

∑
k

u(−s)(k)φ(−s)
0 (t− k)

ψ
(−s)
0 (t/2) =

√
2

∑
k

v(−s)(k)φ(−s)
0 (t− k). (9)

Some cumbersome but not difficult calculations enabled us
to show that

u(s) = f(s) ∗ u, F(s)(z) = 2−s(1 + z−1)s

v(s) = g(s) ∗ v, G(s)(z) = 2s(1 − z−1)−s

u(−s) = f(−s) ∗ u, F(−s)(z) = 2s(1 + z)−s

v(−s) = g(−s) ∗ v, G(−s)(z) = 2−s(1 − z)s, (10)

where u and v are the generating sequences for the orthog-
onal scaling function and wavelet (uppercase letters obvi-
ously stand for the z-transforms of the corresponding low-
ercase ones).

Biorthogonality and exact reconstruction. It is not dif-
ficult to check that these sequences satisfy the perfect re-
construction filter bank equations related to the standard
structure, underlying the dyadic wavelet analysis/synthesis
algorithm, sketched in Fig. 1, with

h1 = u(−s)∨, g1 = v(−s)∨

h2 = u(s), g2 = v(s).
(11)

It is also easy to check that these sequences satisfy the
cross QMF conditions,

↓2 [u(−s) ∗ (u(s))∨] = δ0

v(s) = δ1 ∗ (ũ(−s))∨

v(−s) = δ1 ∗ (ũ(s))∨, (12)
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FIG. 2. Fractional wavelets. Approximation scheme for the computa-
tion of the generating sequences of the fractional wavelets.

which simply restate that the designed scaling function and
wavelet constitute dual biorthogonal pairs as defined by the
inventors of the biorthogonal wavelet transform [5, 6].

Implementation. The sequences f(s), g(s), f(−s), and g(−s)
in general have infinite support. Moreover, for fBm, the
defining parameter H ranges from 0 to 1, which means
that for s = H + 1/2, the sequences are diverging [8]. Let
d = H−1/2, we propose to get numerically the generating
sequences through the convergent sequences f(d) and g(d),

u(s) = u ∗ f(1) ∗ tf(d)

v(s) = v ∗ g(1) ∗ tg(d)

u(−s) = −δ−1 ∗ (ṽ(s))∨

v(−s) = δ1 ∗ (ũ(s))∨, (13)

here tf(d) and tg(d) consist in versions of f(d) and g(d) trun-
cated up to an order chosen a priori. Such a procedure is
depicted in Fig. 2.

3.2. ARIMA Process

Formally an ARIMA(0, s, 0) process can be obtained
from a zero-mean white Gaussian noise by discrete-time
convolution with an I.I.R. filter α(s) whose z-transform
reads A(z) = (1 − z−1)−s. Up to the scaling factor 2s,
this sequence is g(s). We propose therefore to obtain the
ARIMA process bH from the same approximation,

bH = γ∗ α(1) ∗ tα(d),

where tα(d) is a version of α(d) truncated to an order chosen
a priori which is still I.I.R. yet convergent.

3.3. Fast Algorithm
A la Mallat Algorithm. We end up with the im-

plementation of Eq. (3) thanks to a recursive filter band-
based Mallat-type algorithm, as sketched in Fig. 3. It is well
known that the coefficients of the low-pass and high-pass
filters simply consist in the coefficients of the generating
sequences of the synthesis scaling function and wavelet:

h2 = u(s)

g2 = v(s). (14)

The inputs of this filter bank consist in a collection of
samples of independent zero-mean white Gaussian pro-

cesses whose variances are σ2
w for the approximation and

{σ2
w2js, j = 0, 1, 2, . . .} for the details.

Border effects. The border effects are treated in a very
simple way. The number of computed samples of the fBm is
larger than the desired number. The extra number of com-
puted coefficients is such that the number of coefficients
unpolluted by border effects is larger than or equal to the
desired number.

4. FURTHER COMMENTS

Number of samples and number of octaves. The prac-
tical use of Eq. (3) implies the selection of a finite number
J of octaves for the synthesis. Because of this limitation of
the summation over a finite number of octaves, the output
of the algorithm does not consist in a collection of actual
samples of the fBm, but rather in coordinates of the ex-
pansion of BH over the basis of scaling functions {φ(s)

−J,k(t),
k ∈ Z},

B−J
H (t) =

∑
k

bH(k)φ(s)
−J,k(t) +

J∑
j=0

∑
k

γj(k)4−s2−jsψ(s)
−j,k(t)

=
∑
k

aH(−J, k)φ(s)
−J,k(t). (15)

B−J
H (t) only is an approximation for BH(t), obtained as the

oblique projection (along a direction orthogonal to the sec-

FIG. 3. Fast pyramidal Mallet-type filter bank algorithm for the syn-
thesis of the fBm. The synthesis filters are given by the generating se-
quences of the fractional scaling function and wavelet (h2 = u(s) and
g2 = v(s)). The input consists in a collection of samples of i.i.d. zero-
mean Gaussian processes whose variances follow a power law of param-
eter H+ 1/2.
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FIG. 4. Synthesized fBm. Examples of fBm synthesized with the pro-
cedure given; from top to bottom, H = 2/3, 1/2, 1/3.

ond MRA V(−s)) in the subspace V
(s)
−J of the first MRA.

Therefore, the aH(−J, k) constitute an ARIMA process as
well as the bH(k). Such an ARIMA is, however, used in the
usual way since its samples are approximations of those of
BH(t) at noninteger times t = 2−Jk, whereas bH(k) were
approximations at the much coarser resolution labeled 0.
Therefore, the higher the J, the better the approximation.
In practice, J = 5, 6 already provides us with relevant ap-
proximations.

Moreover, practical syntheses are performed over a finite
number N of samples. To remain coherent with the defini-
tion and properties of the fBm (mainly its variance σ2),
obtaining N samples through J octaves amounts to synthe-
sizing a fBm over a time duration T = 2−JN. Let us insist
again on the fact that border effects are handled in such a
way that one gets N samples unaffected by this problem.

Choosing the starting orthonormal MRA. For Eq. (3) to
be valid, one has to start with an orthonormal MRA whose
regularity is larger than s = H + 1/2. We propose in the
present implementation of the algorithm to work either with
the standard Daubechies 10 MRA [6], whose generating se-
quence has 20 nonzero coefficients and whose regularity is
close to 2, or with the spline of order 5 MRA. This lat-
est MRA is one of those leading to the celebrated Battle–
Lemarié orthonormal spline wavelets [10]. Although they
have a closed-form formulation in the frequency domain,
such wavelets can be very efficiently and easily approxi-
mated by the following construction in the time domain.
A generating sequence for this spline MRA can be ob-
tained by convolving with itself the generating sequence

u0 = [1 1]/
√

2 of the Haar (or spline of order 0) wave-
let [3]:

u5 = 2−5/2u0 ∗ u0 ∗ u0 ∗ u0 ∗ u0.

To obtain orthonormal scaling functions and wavelets, one
has to use the orthonormalization method proposed in [3].
Compute

u
(o)
5 =↑2 [a−1/2] ∗ u5 ∗ a1/2,

where xα denotes the sequence whose z-transform Xα(z) is
equal to (X(z))α. Moreover, a is the autocorrelation sequence
of u5 which can be obtained [3] from

a =↓2 [u5 ∗ a ∗ u∨
5 ].

This last equation can be solved very easily through the
determination of the eigenvectors of a matrix designed from
u5 [1, 2]. This MRA is very regular but the support of the
generating sequence u(o)

5 is not compact, so that a truncation,
easy to handle in practice, is needed.

These two MRAs (Daubechies 10 or spline 5) present
enough regularity to cover the range of variation of param-
eter H for fBm, 0 < H < 1. However, if one wants to
experiment with the synthesis of processes with higher H
(which will no longer be fBm), one can produce orthonor-
mal scaling functions and wavelets of arbitrary high regular-
ity, by convolving MRAs with themselves and performing
the orthonormalization trick described above [3, 1, 2].

Controlling the variance. When synthesizing fBms, one
can be interested in controlling not only the long-range pa-
rameter H, which is proven to be perfectly achieved with
this algorithm, but also the variance σ2. Since the theoret-
ical variance for the fBm reads (with the commonly used
convention BH(0) = 0)

EBH(t)2 = σ2|t|2H,

it is not difficult to check that the variance of the coefficients
dH(j, k) of a wavelet decomposition of the fBm reads (see,
for instance, [7])

EdH(j, k)2 = −σ2

2
22js

∫
|u|2Hγ0(u)du,

where γ0 is the autocorrelation function of the mother
wavelet φ0,

γ0(u) =
∫
φ0(t)φ0(t+ u)dt.

Using Parseval identity, this can be rewritten as

EdH(j, k)2 = σ22j(2H+1)Γ(2H+ 1) sin(πH)(2π)−(2H+1)

×
∫

|ν|−(2H+1)|Ψ0(ν)|2dν.
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In the very special case where dH(j, k) is the coefficient
of the expansion of the fBm on the fractionally integrated
wavelet ψ(s) defined above, it results from the inner product
between BH and the dual ψ(−s) of ψ(s):

dH(j, k) = 〈BH, ψ(−s)〉.
Since ψ̂(−s)(ν) = 4−s(i2πν)sψ̂0(ν), we obtain that

EdH(j, k)2

= σ22j(2H+1)Γ(2H+ 1) sin(πH)4−(2H+1)

×
∫

|ν|−(2H+1)|ν|(2H+1)|Ψ0(ν)|2dν.

Since ψ0 is an orthonormal wavelet, it yields

EdH(j, k)2 = 4−(2H+1)2j(2H+1)σ2Γ(2H+ 1) sin(πH).

Moreover, we know by construction that dH(j, k) =
4−s2jsγj(k) (with γj(k) samples of a white Gaussian pro-
cess), and hence

EdH(j, k)2 = 4−(2H+1)2j(2H+1)σ2
w.

We therefore see that the variance of the fBm can be con-
trolled by the variance of the Gaussian processes with which
the inputs of the algorithm are designed:

σ2
w = σ2Γ(2H+ 1) sin(πH)

= Γ(1 − 2H)Γ(1 + 2H)
sin(πH) cos(πH)

πH
. (16)

One can easily check that this last relation shows that

0 < H < 1, σ2
w ≡ 1.

Comparison with an earlier wavelet-based synthesis for
fBm. An earlier attempt to synthesize the fBm using
wavelets was made in [16]. The basic idea was to write
the fBm as a weighted summation of orthonormal wavelets,
weights being samples of independent zero-mean Gaussian
processes, whose power (or variance) was power-law scale
dependent: σ2

j = σ2
02j(2H+1),

BH(t) �
∑
j,k

γj(k)ψ(o)
j,k(t).

When one compares our method with the method proposed
by Meyer and Sellan (i.e. with Eq. (3)), one sees that their
technique contains two major drawbacks as far as fBm syn-
thesis is concerned. First, because the coarsest level approx-
imation is arbitrarily set to zero, this method cannot pro-
duce the trend of the fBm, which is one of its important
features, since it is related to its fractal or self-similar or
long-range dependent nature. Second, because it makes use
of a set of orthonormal wavelets, this method gives only a

nearly 1/f spectral behavior instead of an exact one (i.e.,
the spectrum S(ν) is squeezed between two power laws,
k1/|ν|α < S(ν) < k2/|ν|α). The coefficients of the expan-
sion of fBm over an orthonormal wavelet basis would in-
deed remain slightly correlated [7]; therefore, an orthonor-
mal wavelet set does not act as a Karhunen–Loève basis
for the high-frequency part of the fBm. Hence one cannot
obtain the exact correlation structure of the fBm from the
combination of independent coefficients with orthonormal
wavelets. On the contrary, the fractional wavelet, designed
from parameter H, achieves perfect decorrelation between
the wavelet coefficients of the fBm, and therefore exactly
carries the correlation structure of the fBm. Although it is
not strictly exact, this orthonormal wavelet-based technique
has remained one of the most frequently used fBm synthe-
sis techniques up to now.

5. CONCLUSION

In [14], a wavelet-based technique for the synthesis of the
fBm is proposed which by far outperforms any previously
proposed techniques since it ensures that all of its proper-
ties (Gaussianity, self-similarity, correlation structure, etc.)
are satisfied by construction. The multiresolution frame-
work underlying this technique naturally leads us to the
fast and efficient implementation algorithm we described
above. Some examples are shown in Fig. 4.

We also believe that both the theoretical results ob-
tained in [14, 15] and the possibility of making experiments
with an easy-to-handle algorithm will enable us to enquire
into processes whose properties depart from those of fBm
(H exceeding one or varying along time, non-Gaussian-
ity, etc.).

REFERENCES

1. P. Abry and A. Aldroubi, Designing multiresolution analysis-type
wavelets and their fast algorithms, J. Fourier. Anal. Appl. 2, No. 2
(1995), 135–161.

2. P. Abry and A. Aldroubi, Semi- and bi-orthogonal MRA-type wavelet
design and their fast algorithms, “Wavelet Applications in Signal and
Image Processing III—SPIE 95,” SPIE, Vol. 2569, pp. 452–463, San
Diego, 1995.

3. A. Aldroubi and M. Unser, Families of multiresolution and wavelet
spaces with optimal properties, Numer. Funct. Anal. Optim. 14, (1993),
417–446.

4. G. Box and G. Jenkins, “Time Series Analysis: Forecasting and Con-
trol,” Holden–Day, Oakland, CA, 1976.

5. A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of
compactly supported wavelets, Comm. Pure Appl. Math. 45, (1992),
485–560.

6. I. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia,
1992.

7. P. Flandrin, Wavelet analysis and synthesis of fractional Brownian
motion, IEEE Trans. Inform. Theory 38, (1992), 910–917.

8. J. R. M. Hosking, Fractional differencing, Biometrika 68, No. 1
(1981), 165–176.



LETTER TO THE EDITOR 383

9. S. Granger and R. Joyeux, An introduction to long-memory time se-
ries models and fractional differencing, J. Time Series Anal. 1, No. 1
(1980), 15–29.

10. S. Mallat, A theory for multiresolution signal decomposition: The
wavelet representation, IEEE Trans. Pattern Anal. Machine Intelli-
gence 2, No. 7 (1989), 674–693.

11. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions:
Fractional noises and applications, SIAM Rev. 10, No. 4 (1968), 422–
437.

12. Y. Meyer, “Ondelettes et Opérateurs,” Hermann, Paris, 1990.
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