Warped infinitely divisible cascades: beyond power laws

Pierre Chainais1, Rudolf Riedi2, Patrice Abry3

1ISIMA-LIMOS UMR 6158 - Université Blaise Pascal, Aubière, France
2Depts. of Statistics and of ECE, Rice University, Houston Texas, USA
3CNRS UMR 5672, Laboratoire de Physique. ENS Lyon, France

Pierre.Chainais@isima.fr, riedi@rice.edu, Patrice.Abry@ens-lyon.fr

1 Introduction

Scaling has been observed for many years in a large number of fields including natural phenomena: turbulence in hydrodynamics, rhythm of human heart in biology, spatial repartition of faults in geology and others such as computer networks and financial markets. The multifractal formalism[1, 12, 20] has become one of the most popular frameworks to analyse signals that exhibit power law scaling. In current verbage, this latter term refers to the power law behavior of the absolute moments of increments $\delta_{\tau}X(t) = X(t + \tau) - X(t)$ of a process X. Then, power law scaling is to be described by a set of multifractal exponents $\zeta(q)$ such that1

$$E|\delta_{\tau}X(t)|^q = C_q \tau^{\zeta(q)} \quad \text{as} \quad \tau \to 0. \quad (1)$$

For instance, statistically self-similar processes such as fractional Brownian motions [15] with Hurst exponent H fit into this framework with $\zeta(q) = qH$. The so-called multifractal formalism establishes conditions under which property (1) and multifractals are equivalent. The multifractal decomposition gives precious information on the presence of local singularities in the trajectories of processes. However, this framework is restrictive in at least two ways.

First, in real world applications one is usually confined to observing power laws in a given range of scales $\tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}$ which we then prefer to call multiscaling to distinguish it from multifractals. Multiscaling is usually considered as a best approximation to (1) and as a first step towards the use of the multifractal formalism. However, while property (1) is sensitive only to the limiting behavior it might not capture some richness in the progression at all observable scales. Second, powerlaws may not provide an accurate description of the scaling behavior of data or models.

The need for an appropriate mathematical framework substituting (1) with the infinitely divisible scaling (for an overview see [7]). This setting allows for more flexible scaling and thus better fitting of data and honors the contribution of all scales in a range of interesting values $\tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}$ as follows:

$$E|\delta_{\tau}X(t)|^q = C_q \exp[-\zeta(q)n(\tau)], \quad \tau_{\text{min}} \leq \tau \leq \tau_{\text{max}}, \quad (2)$$

where $n(\tau)$ is some monotonous function. Such a behavior is analysed in terms of a cascading mechanism through the scales from τ_{max} to τ_{min}. In terms of scale dependence, the infinitely divisible scaling framework generalizes (1) which is recovered by choosing $n(\tau) = -\ln \tau$. The difference in spirit lies in the fact that multifractal analysis applies to any process (compare footnote 1) and is concerned with local properties in the limit of fine scales, but not finite scales. Note that both, multifractal analysis and infinitely divisible scaling can be formulated using wavelet coefficients [19, 23].

While analysis tools for multiscale and infinitely divisible scaling processes have been widely developed, only few recent works proposed tools for synthesis of processes with prescribed and controllable infinitely divisible scaling [3, 5, 11, 21, 22]. Multiplicative cascades have always

1A definition which works for any process is:

$$\zeta(q) = \lim_{\tau \to 0} \frac{\log \, E|\delta_{\tau}X(t)|^q}{\log \tau}.$$
played a central role to this purpose in intimate connection with multifractals. The synthesis of *Infinitely Divisible Cascades* (IDC) presented below can be seen as a generalized continuous multiplicative cascade. Following a work by Barral & Mandelbrot [5] and inspired by the density of multiplicative cascades by Schmitt & Marsan [22] and the Multifractal Random Walk by Bacry *et al.* [3], we recently discussed and studied the *Infinitely Divisible Cascading processes* [10]. Similar results were obtained independently and simultaneously by Bacry & Muzy [4, 18].

From a time-scale point of view, the construction of a binned density relies on two basic ingredients: a dyadic grid. Note that this density is time-shift invariant. Thus, an easily accessible overview of their known properties as well as a thorough illustration via numerical simulations. The reader is referred to [9] for a more formal presentation and complete mathematical proofs.

2 IDC Noise

Intuitions towards continuous cascades. The original ancestor of multiplicative cascades is the binomial cascade introduced by Mandelbrot [14]. Under some convergence hypotheses, binomial cascades lead to positive densities that can display controlled multifractal properties. From a time-scale point of view, the construction of a binomial density relies on two basic ingredients: a dyadic grid \((\{(t,j,k)\} = \{(k+1/2)2^{-j}, 2^{-j}\}, j \in \mathbb{N}, k \in \mathbb{N}\)} in the time-scale plane and positive i.i.d. random multipliers \(W_{j,k}\) associated to dyadic grid points \((t,j,k)\). Without loss of generality, let us fix the range of scales to \((0, 1)\). Roughly speaking, the binomial cascade is defined as the limit of densities \(Q_r(t)\) corresponding to resolution \(1 > r = 2^{-n} \to 0\). While literature introduces \(Q_r\) often as an iterative redistribution of mass, an equivalent formulation is more useful here which writes \(Q_r\) as the product of precisely those multipliers which belong to a cone \(C_r(t) = \{(t',r') : r \leq r' \leq 1, t - r'/2 \leq t' \leq t + r'/2\}\) pointing to the time instant \(t\), see Fig. 1(left):

\[
Q_r(t) = \prod_{\{(j,k) : 1 \leq j \leq n, k2^{-j} \leq t < (k+1)2^{-j}\}} W_{j,k}. \quad (3)
\]

Because of the dyadic structure, binomial cascades display *discrete scale invariance* only. Moreover, such a construction is not *time-shift invariant* so that it is not stationary in the strict sense.

The work by Barral & Mandelbrot [5] opened a door to overcome these drawbacks by introducing the *Multifractal Products of Cylindrical Pulses* (MPCP). Essentially, the key idea consists in replacing the dyadic grid by a well chosen *random Poisson point process* \((t_i, r_i)\) in the time-scale plane, see Fig. 1(center):

\[
Q_r(t) = \frac{\prod_{(t_i,r_i) \in C_r(t)} W_i}{E \left[\prod_{(t_i,r_i) \in C_r(t)} W_i \right]} \quad (4)
\]

Aiming at power law scaling, “well chosen” means that it has density \(dm(t, r) = dt dr/r^2\). Thus, the density in points increases as \(r \to 0\) in a way similar to a dyadic grid. Note that this density is time-shift invariant. Thus, MPCP are stationary. Moreover, scaling laws are observed over a continuous range of scales since no privileged scale ratio has been introduced. From a time-scale point of view, MPCP may be called *Compound Poisson Cascades* since the distribution of \(Q_r(t)\) is a compound Poisson distribution. The Poisson distribution coming from the point process \((t_i, r_i)\) is compound with the distribution of the random multipliers \(W_i\).

Noting that compound Poisson distributions are infinitely divisible and that

\[
\ln Q_r(t) \propto \ln \prod_{(t_i,r_i) \in C_r(t)} W_i = \sum_{(t_i,r_i) \in C_r(t)} \ln W_i \quad (5)
\]

one may go one step further. Indeed, the right hand term above can be read as a specific (discrete) case of a random measure of the set \(C_r(t)\). This leads to the definition of a process \(Q_r(t)\) based on the summation of a *continuous* random measure \(dM(t, r)\) [10, 18]:

\[
Q_r(t) \propto \exp \int_{C_r(t)} dM(t', r') = \exp M(C_r(t)). \quad (6)
\]

It appears that the continuous random measure \(M\) needs to be defined from an *infinitely divisible distribution*. The
idea of introducing an infinitely divisible random measure \(dM(t, r) \) appeared in [22] where no systematic scaling analysis was performed. The multifractal random walk (MRW) introduced in [3] was built without using any explicit multiplicative construction but, interestingly, the MRW can be described as resulting from an infinitely divisible as well. Infinitely divisible cascades following the intuition given by (6) were simultaneously and independently introduced in [18] and [10] in the scale invariant case (with power law scaling). The purpose of our contribution below is to show how far infinitely divisible cascades may lead to non power law scaling behaviors.

Infinitely divisible cascades. Now, we give precise definitions. Let \(G \) be an infinitely divisible distribution with moment generating function \(\tilde{G}(q) \) that can be written in the form \(e^{-\rho(q)} \).

Let \(dn(t, r) = g(r)dt dr \) a positive measure on the time-scale half-plane \(\mathcal{P}^+ := \mathbb{R} \times \mathbb{R}^+ \).

Let \(M \) denote an infinitely divisible, independently scattered random measure distributed by \(G \), supported on the time-scale half-plane \(\mathcal{P}^+ \) and associated to its so-called control measure \(dm(t, r) \). The random measure \(M \) is such that \(\mathbb{E}[\exp[qM(E)]] = \exp[-\rho(q)m(E)] \); for all disjoint subsets \(E_1 \) and \(E_2 \), \(M(E_1) \) and \(M(E_2) \) are independent random variables and \(M(E_1 \cup E_2) = M(E_1) + M(E_2) \).

Definition 1.

A cone of influence \(C_r(t) \) is defined\(^2\) for every \(t \in \mathbb{R} \) as \(C_r(t) = \{ (t', r') : r \leq r' \leq 1, t - r'/2 \leq t' \leq t + r'/2 \} \) (see Fig. 1(right)). With an infinitely divisible randomly scattered measure \(M \) given, an Infinitely Divisible Cascading noise (IDC noise) is a family of processes \(Q_r(t) \) parametrized by \(r \) of the form

\[
Q_r(t) = \frac{\exp[M(C_r(t))]}{\mathbb{E}[\exp M(C_r(t))]} \tag{7}
\]

Possible choices for distribution \(G \) are the Normal distribution, Poisson distribution, compound Poisson distributions, Gamma laws, Stable laws... See Fig. 3(left) for a sample of a replication.

An immediate consequence of the definition is that \(Q_r \) is a stationary positive random process with:

\[
\mathbb{E}Q_r = 1. \tag{8}
\]

Stationarity is ensured by the time-invariance of both, control measure and cone of influence. Moreover, \(Q_r \) has a log-infinitely divisible distribution, that is \(\ln Q_r \) has an infinitely divisible distribution.

Altogether, the measure \(M \), the distribution \(G \), the control measure \(m \) and the geometry of the cone of influence \(C_r(t) \) control the scaling structure as well as marginal and higher order distributions of the cascade. One major scaling property of IDC noises is:

\[
\mathbb{E}[Q_r(t)^q] = \exp[-\varphi(q) m(C_r)] \tag{9}
\]

\(^2\)Note that the large scale in the definition of \(C_r(t) \) has been arbitrarily set to 1 without loss of generality. Choosing a different large scale \(L \) would simply reduce to a change of units \(t \rightarrow t \cdot L, r \rightarrow r \cdot L \).

Fig. 2: Dependence between \(Q_r(t) \) and \(Q_r(s) \), in particular their correlation, stems entirely from the contribution of the intersection of two cones \(C_r(t) \) and \(C_r(s) \)

where

\[
\varphi(q) = \rho(q) - \rho(1), \quad (\rho(1) = 0), \tag{10}
\]

for all \(q \) for which \(\rho(q) = -\ln \tilde{G}(q) \) is defined. Note the similarity between (9) and (2). Power laws are recovered when \(m(C_r) \) is proportional to \(-\ln r \). The cascade is called warped when \(m(C_r) \) is not proportional to \(-\ln r \).

A nice property of IDC noises lies in the geometrical interpretation of their correlations that are controlled by the intersections of cones \(C_r(t) \cap C_r(s) \) in the time-scale plane \(\mathcal{P}^+ \) (see Fig. 2):

\[
\mathbb{E}[Q_r(t)Q_r(s)] = \exp[-\varphi(2)m(C_r(s) \cap C_r(t))] \tag{11}
\]

This highlights the fact that multiplicative cascades provide an easy way towards complex correlation structures: prescribing the autocorrelation function of \(Q_r \) is equivalent to choosing measure \(dm(t, r) \) and cone \(C_r(t) \).

As explained in the previous section, the IDC-noise can be recognized as a “continuously iterative” multiplication (compare Fig. 1 (left) & (right)) where \(m(C_r(t)) \) can be interpreted as the “average number of multipliers” that determine \(Q_r(t) \). A causal definition can be proposed as well by simply defining \(C_r(t) = \{(t', r') : r \leq r' \leq 1, t - r'/2 \leq t' \leq t + r'/2 \} \). For sake of simplicity in this presentation, we will keep the symmetric non causal definition while results presented below extend without restriction to the causal definition.

3 IDC Motion & Random Walk

Besides their nice scaling properties, the IDC have the distinct property of being positive. While this can provide an ideal match in some applications such as network traffic modeling, it is inappropriate in others such as the description of the velocity in a turbulent flow where data shows oscillations in both positive and negative directions. Two steps will permit to overcome this restriction. First, we define an increasing process \(A(t) \) (IDC Motion). Then we define some process \(V_H(t) = B_H(A(t)) \) (IDC Random Walk) as a fractional Brownian motion \(B_H \) of which time has been replaced by the irregular time \(A(t) \).

By analogy with binomial measures, we introduce the **Infinitely Divisible Cascading Motion** as the integral of \(Q_r(t) \).
Definition 2.
An Infinitely Divisible Cascading Motion (IDC-Motion) \(A(t) \) is the limiting integral\(^3\) of an IDC-noise \(Q_r(t) \) (see Fig. 3):

\[
A(t) = \lim_{r \to 0} A_r(t),
\]

where

\[
A_r(t) = \int_0^t Q_r(s)ds.
\]

The increment process \(\delta_r A_r(t) = A_r(t+\tau) - A_r(t) \) of \(A_r \) inherits stationarity from \(Q_r \) since \(\delta_r A_r(t) = \int_{t}^{t+\tau} Q_r(s)ds \). An IDC Motion \(A(t) \) inherits scaling properties from its IDC Noise \(Q_r(t) \) as shown below in Section 4.

By construction, \(A \) is a non-decreasing process which appears most natural in some real world contexts, but can be seen as a severe limitation in others. Following an idea which goes back to Mandelbrot [16] and to the Brownian motion in multifractal time, we define a fractional Brownian motion in warped IDC time. This process has stationary increments, continuous scaling, prescribed departures from power laws and prescribed scaling exponents as well as positive and negative fluctuations.

\[\text{Definition 3. Let } A \text{ be an infinitely divisible cascading motion, and } B_H \text{ the fractional Brownian motion with Hurst parameter } H. \text{ The process}
\]

\[V_H(t) = B_H(A(t)), \quad t \in \mathbb{R}^+,
\]

\[\text{is called an Infinitely Divisible Cascading Random Walk (IDC Random Walk).}
\]

The IDC Random Walk inherits stationary increments from both \(B_H \) and \(A \). Above all, the precise scaling behavior of \(A(t) \) is transferred to \(V_H(t) \) thanks to the self-similarity of the fractional Brownian motion as explained below. A sample of infinitely divisible cascading processes \(Q_r(t) \) and \(V_H(t) \) is shown in Fig. 3.

4 Scaling behavior of IDC

This section states our main results: it characterizes the scaling properties of certain IDC-Motions and their associated IDC-Random Walk. The reader is referred to Appendix A for the full theorem and an outline of its demonstration. See [9] for detailed proofs. Here only a corollary of the general results is stated.

\[\text{Theorem (simplified version)}
\]

\[\text{Let } q > 0. \quad \text{Let } A \text{ be either a CPC Motion with finite } \mathbb{E}[W^q] \text{ or a log-normal IDC Motion. Assume that the control measure } g(r)dr \text{ is such that } g^{(n)}(r) := b^{nq}g(b^r) \text{.} \]

\[\mathbf{1}_{[0,1]} \text{ converges as } n \to \infty. \quad \text{Assume that } A_r \text{ converges in } L_q; \text{ for } q < 2, \text{ e.g., it suffices that } c_F(2) > -1 \text{ and } g(r) \leq 1/r^2. \text{ Then, there exist constants } C_q \text{ and } C'_q \text{ and } C''_q \text{ such that for any } t < b
\]

\[C_q \leq \mathbb{E}[A(t)^q] - t^{-q}e^q(q)c(q)m(C_q) \leq C'_q, \quad (15)
\]

\[C'_q \leq \mathbb{E}[V_H(t)^q] - t^{-qH}e^{qH}(qH)m(C'_q) \leq C''_q. \quad (16)
\]

\[3\text{Conditions for the convergence of the positive martingale } A_r \text{ as } r \to 0 \text{ are detailed in [9].}
\]

The scaling behavior of \(V_H \) is a direct consequence of the self-similarity of a fractional Brownian motion \(B_H \) combined to the scaling behavior of an IDC Motion \(A \) [20]. Using the self-similarity of \(B_H \), one finds that

\[
\mathbb{E}[V_H(t)^q] = \mathbb{E}[B_H(A(t))^q] = \mathbb{E}[B(1)^q] \cdot \mathbb{E}[A(t)^{qH}].
\]

The fact that \(A(t) \) and \(V_H(t) \) have stationary increments and \(A(0) = 0 \) and \(V_H(0) = 0 \), \(\forall r \leq 1, \)

\[\begin{cases}
\mathbb{E}[\delta_r A^q] = C_q(\tau)^{qH} \exp[-\varphi(q)m(C_q)], \\
\mathbb{E}[\|\delta_r V_H^q] = C'_q(\tau)^{qH} \exp[-\varphi(qH)m(C'_q)],
\end{cases}
\]

where \(C_q(\tau) \) and \(C'_q(\tau) \) are bounded, see (15) and (16). In numerical experiments it turns out that both \(C_q(\tau) \) and \(C'_q(\tau) \) are close to constant for \(\tau \ll 1 \). Moreover, one expects that \(C_q(\tau) \sim \tau^q \) and \(C'_q(\tau) \sim \tau^{qH} \) for large \(\tau \gg 1 \). This can be understood thanks to a central limit theorem argument under some technical assumptions [9].

A key property of these scaling behaviors (15) or (18) is that they hold continuously through the scales, not only for a particular set of discrete scales. Again, we put the emphasis as well on the fact that the construction of \(Q_r \) and \(A \) enables a full control of the way the cascading process develops along scales and not only of the multifractal behavior obtained in the limit \(\tau \to 0 \). As far as applications and real world data modeling are concerned, we believe that the control of the entire cascade process is probably more relevant than that of the asymptotic behavior as \(\tau \to 0 \) only.

5 Evolution of the increments distributions

IDCs and infinitely divisible scaling. Let us note that previous work in this area [6, 7, 23] inspired a priori the search for non power law scaling as in (2) of the form \(\exp[-\zeta(q)m(\tau)] \) by analysis and measurement. This approach has been referred to as log-infinitely divisible cascades in the past. To avoid confusion between synthesis and analysis, we prefer to reserve the word "cascade" to describe a construction and to talk of Infinitely Divisible Scaling as far as the analysis is concerned below.

In this paper, we have focussed on the construction of processes with such prescribed properties. On one hand, this is achieved as far as the behavior of \(Q_r \) with \(r \) or the behavior of \(\delta_r A/\tau \) are concerned. On the other hand, we are naturally led in (15) (16) and (18) to a mixture of a power law and a non power law behavior of the form \(\tau^q \mathcal{E}[-\varphi(q)m(C_q)] \). This result is inherent to the use of an integral to define \(A(t) \). The \(\tau^q \) term is due to the fact that an IDC-Motion is obtained by integration of an IDC-Noise. The \(\mathcal{E}[-\varphi(q)m(C_q)] \) term is related to the underlying IDC-Noise \(Q_r(t) \). Equation (18) does not reduce to (2) unless \(m(C'_q) = n(\tau) = -\ln \tau \). Even though the processes presented here do not exactly match the framework of the traditional infinitely divisible scaling analysis,
this approach provides us with a way to point out relevant quantity to look at when aiming at a precise description of IDC motion and IDC Random Walk introduced above. The content of next paragraph is inspired by the spirit of infinitely divisible scaling analysis but will mainly focus on the particular properties of the IDC Motion and Random Walk.

Evolution of probability density functions. Self-similar processes such as fractional Brownian motion and Lévy motion are bound to have linear exponents \(\zeta(q) = qH \). A non-linear dependence of scaling exponents on \(q (\zeta(q) \neq qH) \) on the other hand has its bearing on at least two approaches to the analysis of process with complex scaling structure.

First, in multifractal analysis the presence of a non-linear function \(\zeta(q) \) is usually taken as an indication of a rich and highly interwoven local regularity structure, though the connection between the global \(\zeta \) and the local Hölder regularity can be made precise only in the context of the multifractal formalism, which usually has to be established with much effort. Second, a non-linear function \(\zeta \) can also be observed as well as an evolution of the probability density functions (PDF) of the increments of a process through the scales as we are about to explain.

For a self-similar process like a fractional Brownian motion, the PDF of the increments over small or large lags are identical up to some adapted renormalization (e.g., an fBm has Gaussian increments). In contrast, those PDFs for an IDC process display an evolution from Gaussian at large scales to non-Gaussian at small scales. We now briefly explain how those PDF of increments for IDC Motion and Random walk evolve through the scales (see Fig. 9).

Let \(P_\tau \) the probability density function of \(Y = \ln |\delta X| \) at scale \(\tau \). Note that,

\[
\mathbb{E}[\delta X|Y] = \int_{-\infty}^{\infty} e^{y \ln |\delta X|} P_\tau(y) dy = \bar{P}_\tau(y)
\]

where \(\bar{P}_\tau(y) \) is the moment generating function (analogous to a two-sided Laplace transform) of \(P_\tau \). If scaling laws (18) are power laws, one has for \(0 < \tau_2 < \tau_1 < 1 \):

\[
\mathbb{E}[\delta_{\tau_2} X|Y] = \exp \{-\zeta(q)(-\ln \tau_2) - (-\ln \tau_1)\} \cdot \mathbb{E}[\delta_{\tau_1} X|^q
\]

\[
\tilde{P}_{\tau_2}(q) = \tilde{G}(q)^{(-\ln \tau_2) - (-\ln \tau_1)} \cdot \tilde{P}_{\tau_1}(q).
\]

Subjecting the last product to an inverse Laplace transform it turns into the following convolution in the "real" space:

\[
P_{\tau_2}(Y) = \tilde{G}_{\tau_1, \tau_2}(q) \ast P_{\tau_1}(Y) \ast P_{\tau_1}(Y),
\]

where \(\tilde{G}_{\tau_1, \tau_2} \) is the probability density function of a distribution that carries the whole information describing the evolution of the probability density functions \(P_{\tau}(\ln |\delta X|) \) through the scales \(\tau \). Note that \(\tilde{G}_{\tau_1, \tau_2} \) takes a special form with an exponent in \(\tau \) when associated to a power law scaling.

Let us now remark that the general form of the last line of (22) may suit more general scaling processes like IDC Motion and Random Walk. Indeed, using (18), \(\tilde{G}_{\tau_1, \tau_2}(q) \) in (21) becomes for \(A \) and \(VH \) respectively:

\[
\tilde{G}_{\tau_1, \tau_2}^{A}(q) = \exp(q \ln(X_{\tau_1} - \varphi(q)(m(C_{\tau_1}) - m(C_{\tau_2})))
\]

\[
\tilde{G}_{\tau_1, \tau_2}^{VH}(q) = \exp(qH \ln(X_{\tau_1} - \varphi(q)(m(C_{\tau_1}) - m(C_{\tau_2})))
\]

(23)

Cumulants. Since the evolution of the PDF is described by a convolution, a description in terms of the cumulants of distributions is enlightening:

\[
\ln \tilde{G}_{\tau_1, \tau_2}^{A}(q) = \sum_{k=1}^{\infty} \frac{C_k^{A}(\tau_1, \tau_2)}{k!} q^k.
\]

(24)

Thus, the cumulants \(C_k^{A}(\tau) = \ln |\delta X| \) obey:

\[
C_k^{A}(\tau_2) = C_k^{A}(\tau_1, \tau_2) + C_k^{A}(\tau_1).
\]

(25)

Recall that \(C_1 \) and \(C_2 \) are respectively the mean and the variance of the corresponding distribution. Note that only the mean may vary for a self-similar process: the invariance by dilation on \(\delta X \) becomes an invariance by translation on \(Y = \ln |\delta X| \). The PDF of the increments

\footnote{This description makes sense only under the assumption that the cumulants are well defined. This may not be true in some cases. For instance, only one singular cumulants \(C_{\alpha}, 0 < \alpha \leq 2, \) may be defined for \(\alpha \)-stable cascades.}
so that \(\phi(X) = \frac{\tau}{2} q(1 - q) \), and

\[
\tilde{G}^\nu_t(q) = \exp(-1 + \frac{\tau^2}{2} q H + \sigma^2 H^2 q^2 / 2)
\] (26)

so that

\[
G_{\tau_1, \tau_2} = \mathcal{N}(-(1 + \frac{\tau^2}{2}) H \ln(\frac{\tau_1}{\tau_2}), \sigma^2 H^2 \ln(\frac{\tau_1}{\tau_2})).
\] (27)

Then

\[
\begin{cases}
C^G_1 &= (1 + \frac{\tau^2}{2}) H \ln(\frac{\tau_1}{\tau_2}) \\
C^G_2 &= -\sigma^2 H^2 \ln(\frac{\tau_1}{\tau_2}).
\end{cases}
\] (28)

Thus \(C^G_1(\tau) \) (resp. \(C^G_2(\tau) \)) is expected to be an increasing (resp. decreasing) function of \(\ln \tau \) (see Fig. 10). The log-normal cascade corresponds to Kolmogorov’s 1962 model of turbulence[13] and is usually referred to as the simplest model to describe the evolution of the PDF of the increments of a multifractal process. Here a synthetic (not analytic) model is provided.

In general, we get for IDC Motion A:

\[
\begin{align*}
C^G_1(\tau_1, \tau_2) &= \ln(\frac{\tau_1}{\tau_2}) - \phi'(0)[m(C_{\tau_2}) - m(C_{\tau_1})], \\
C^G_2(\tau_1, \tau_2) &= -\phi''(0)[m(C_{\tau_2}) - m(C_{\tau_1})], k \geq 2.
\end{align*}
\] (29)

For IDC Random Walk \(V_H \), we get:

\[
\begin{align*}
C^G_1(\tau_1, \tau_2) &= H \ln(\frac{\tau_1}{\tau_2}) - H \phi'(0)[m(C_{\tau_2}) - m(C_{\tau_1})], \quad (30) \\
C^G_2(\tau_1, \tau_2) &= -H^2 \phi''(0)[m(C_{\tau_2}) - m(C_{\tau_1})], k \geq 2.
\end{align*}
\]

The next section will show that properties (29) and (30) can be checked on synthesized processes \(A \) and \(V_H \). As soon as \(\phi(q) \) is a non-linear function of \(q \) (which is always the case, otherwise resulting processes are trivial), the PDF of the increments evolve from large scales to smaller scales from Gaussian to non-Gaussian.

\section{6 Numerical validations}

\subsection{6.1 A model from hydrodynamics}

To give some pictures of these processes, we describe the numerical examples of two IDC with respectively power law scaling and warped scaling behaviors. We propose to consider a Log-Normal cascade, i.e., distribution \(G \) is \(\mathcal{N}(\mu, \sigma^2) \) and \(\phi(q) = \frac{\sigma^2}{2} q(1 - q) \). For the warped IDC we choose the control measure \(dm(t, r) = 1/\tau^{2 + \beta} dt dr \) with \(\beta < 0 \), which leads to the function \(m(C_r(0)) = (\tau^{-\beta} - 1)/\beta \). This choice provably satisfies the conditions of the theorem above, e.g., there are no convergence problems, and corresponds to the model known as the Cattaneo model [6] in hydrodynamic turbulence. Note that \(\beta = 0 \) reduces to the well-known power law scaling case \((m(C_r) = -\ln \tau) \) [3, 5, 10]. Parameters of the simulation are \(\mu = -0.1, \sigma^2 = 0.2 \) and \(\beta = -0.4 \). The Hurst exponent \(H \) of the fractional Brownian motion \(B_H \) used to build \(V_H(t) \) has been set to \(H = 1/3 \).

The next sections will illustrate with some graphics that the numerically synthesized processes have the prescribed properties described in previous sections.

\subsection{6.2 Scaling of IDC Noise}

Marginal distribution. A very basic property of the IDC noise under study is that \(Q_r(t) \) has a Log-Normal distribution with known parameters \(\mu(r) = \mu m(C_r) \) and \(\sigma^2(r) = \sigma^2 m(C_r) \). The log Normal nature of this distribution is independent of the precise form of \(m(C_r) \); only parameters \(\mu(r) \) and \(\sigma^2(r) \) are sensitive to \(m(C_r) \). Fig. 4 shows that the estimated normalized histogram...
and the theoretical probability density function are in perfect agreement.

Autocorrelation. From (11), we get in the power law scaling case \((dm(t,r) = dtdr/r^2)\) for \(r \leq |t-s| \leq 1\):

\[
\mathbb{E}[Q_r(t)Q_r(s)] = |t-s|^{\varphi(2)} e^{-\varphi(2)(|t-s|-1)}. \tag{31}
\]

Note that a power law behavior is expected at small scales: power law scaling is connected to the power law behavior of the autocorrelation of \(Q_r\). In contrast, we get for the warped scaling case under study (recall that \(\beta = -0.4\)) for \(r \leq |t-s| \leq 1\):

\[
\mathbb{E}[Q_r(t)Q_r(s)] = e^{-\varphi(2)} \left(\frac{1 - |t-s|^{-\beta}}{-\beta} + \frac{|t-s| - |t-s|^{-\beta}}{1 + \beta} \right). \tag{32}
\]

Figure 5 shows both theoretical and experimental autocorrelation functions obtained from a power law scaling \((dm(t,r) = dtdr/r^2)\) and a warped \((dm(t,r) = dtdr/r^{2+\beta})\) cascades with identical parameters. The observed behaviors are clearly distinct and are in good agreement with theoretical computations.

6.3 IDC Motion & Random Walk

Scaling behaviors. Departures from powerlaw behaviors corresponding to the \(\exp[-\varphi(q)m(C_\tau)]\) term in (15) are expected. Fig. 6 and Fig. 7 shows the results obtained from the analysis of IDC processes respectively in the power law scaling and the warped scaling cases. The comparison between these results shows that such departures are observed on both \(A(t)\) and \(V_H(t)\). The performed analysis focuses on \(\mathbb{E}[\delta_r A/\tau^q] \sim \exp[-\varphi(q)m(C_\tau)]\), resp. \(\mathbb{E}[\delta_r V/\tau H^q] \sim \exp[-\varphi(qH)m(C_\tau)]\). In a log-log plot, a curvature is clearly visible whereas the power law scaling case \((\beta = 0)\) would have led to straight lines. Note that this warping is accurately controlled for \(\tau < 1\) by the form of \(m(C_\tau) \neq -\ln \tau\). These numerical observations are perfectly consistent with our theoretical results. Exponents \(\varphi(q)\) can be estimated as well from linear regressions in \(\ln \mathbb{E}[\delta_r A/\tau^q]\) vs \(m(C_\tau)\) diagrams – Fig. 7: prescribed exponents are recovered.

Note that a trivial scaling behavior is observed for \(A(t)\) as well as for \(V_H(t)\) at large scales. For \(\tau > 1\), \(\mathbb{E}[\delta_r A^q]\) behaves as \(\tau^q\), while \(\mathbb{E}[\delta_r V_H^q]\) behaves as \(\tau_q H\) (see Section 4).

At small scales, the behavior of \(\mathbb{E}[\delta_r A^q]\) is dominated by
the term τ^q. As a consequence, log-log diagrams display close to linear behaviors if no renormalization is used. The warping of the power law, due to the term $\exp[-\varphi(q)m(C_\tau)]$, may be subtle yet it is true functional dependence and cannot be subsumed by a constant error bound. One may also object that a trivial scaling may be observed at infinitely small scales. Again, we emphasize that the infinitely small scales limit remains out of reach from measurements in applications. Furthermore, there generally exists some finite smallest scale, e.g., the dissipation scale in turbulence. Thus, it should be clear that the purpose is not to control the scaling behavior over the whole range $\tau \in [0,1]$: the control of a finite range of scales of several decades is sufficient for modeling in applications.

We emphasize that, as far as we are aware of, these are the first cascades displaying controlled non power law behaviors up to a large range of scales (two decades on Fig. 7).

Evolution of probability density functions. As explained in section 5, one expects that the probability density functions of the increments of an IDC Random Walk change from Gaussian at large scales ($\tau \ge 1$) to non Gaussian at smaller scales ($\tau \ll 1$). This is numerically observed on Fig. 9. Figure 9(a) shows this evolution in the power law scaling case ($m(C_\tau) = -\ln \tau$) while Fig. 9(b) deals with the warped case ($m(C_\tau) \neq -\ln \tau \Rightarrow$ non power laws scaling). From a qualitative viewpoint, the effect is the same even though it seems that this evolution is less important in the warped case – Fig. 9(b). This is actually true: the kurtosis varies from 3 to 3.6 for the warped case while it varies from 3 to 4.6 for the power law case. This is consistent with the cumulant analysis performed below.

Cumulants of $\ln |\delta_x V_H|$. We have seen in section 5 that the information describing the evolution of the PDF of the increments from large scales to smaller scales was held by some distribution G_{τ_1,τ_2} (see (22)). Moreover, the cumulants of this distribution or equivalently the cumulants C_k^Y of $Y = \ln |\delta_x X|$ appeared as relevant quantities to look at to precisely describe this evolution. Cumulants of order 1 and 2 are shown on Fig. 10 for both a power law scaling and a warped scaling processes. We emphasize the fact that the comparison with the expected theoretical behaviors is rather satisfactory in both cases. This is an evidence of the quality of the synthesis method. Note that it can be proven that if v is some Gaussian random variable, the second order cumulant of $\ln |v|$ is some universal constant close to 1.23. As a consequence, one expects that $C_2^Y \simeq 1.23$ at large scales as observed on Fig. 10(b).

Auto/correlation of $\ln |\delta_x V_H|$. A last quantity people often look at is the autocorrelation function of $\ln |\delta_x V_H|$. Indeed, its functional form is fundamentally linked to the type of scaling the moments of the increments $E[\delta_x V_H]^{q}$ obey. Power law scaling is intimately connected to a logarithmic dependence on τ [2, 3]. Figure 8 shows that this is indeed the case for the power law scaling IDC Random Walk while a departure from this canonical behavior is clearly observed for the warped one. Again, the departure from a power law is visible where it was expected to be.

7 Conclusion

In the present work, we gave an overview of the definitions and main properties of continuous time processes with controlled continuous multiscaling behavior. Most importantly, scaling laws exist continuously through the scales and possible departures from a power law behavior are taken into account. We have shown that numerical replications of such processes satisfied the expected theoretical properties that can be consistently studied from various viewpoints (scaling of the moments $E[\delta_x X]^{q}$, autocorrelation functions, probability density functions, cumulants of $\ln |\delta_x X|$…). Reference [9] gives a detailed presentation of synthesis algorithms and theoretical results. Up to our knowledge, Infinitely Divisible Cascading processes are the first continuous multiplicative cascades displaying controlled non power law scaling behaviors. Potential fields of application range from hydrodynamic turbulence to computer network traffic. Matlab routines to synthesize these processes are available on our web pages:

Acknowledgements. P. Chainais and P. Abry thank F. Schmitt for stimulating discussions. R. Riedi was in part supported through DARPA NMS F30602-00-2-0557 and through NSF ANI-00099148.

A Outline of proofs

This section outlines the proofs of our main theoretical results which characterize the scaling properties of an IDC-Motion and its associated IDC-Random Walk. The reader is referred to [9] for detailed proofs. While scaling behaviors are rather easy to describe, their mathematical proof calls for some technical assumptions.
Let us start by making precise the rescaling property of IDCs. To this end we introduce for \(r < b^n \),

\[
A_r^{(n)}(t) = \frac{1}{b^n} \int_0^{b^n t} \frac{Q_r(s)}{Q_{bs}(s)} ds. \tag{33}
\]

This cascade has control measure \(dm^{(n)}(t, r) \) where

\[
g^{(n)}(r) := b^{2n} g(b^n r) \cdot 1_{[0,1]}. \tag{34}
\]

Since \(m^{(n)}(C_{r,bs}(s)) = m(C_r(b^n s)\cdot C_{bs}(b^n s)) \) we may understand \(A^{(n)} \) as a rescaled zoom into the small scale details of \(A \). In the power law scaling case (\(dm(t, r) = dt dr/r^2 \)) we have \(g^{(n)} = g \) and, thus, \(A^{(n)} \) is equal in distribution to \(A \).

Lemma 1

Let \(Q_r \) be an Infinitely Divisible Cascading Noise and \(A_r \) its Motion. Let \(0 < r \leq b < 1 \). Then there exists a non-decreasing process \(A_r^{(1)} \) independent of \(Q_r \), such that

\[
A_r(t) = b \int_0^t Q_b(s)d[A_r^{(1)}(s/b)]. \tag{35}
\]

In analogy, we may replace \(A \) by \(A^{(n)} \) and \(A^{(1)} \) by \(A^{(n+1)} \).

Proof of Lemma 1.

For the duration of the proof, we introduce the "bandlimited cone"

\[
C_r(t) := \{(t',r') \in C_r(t) : r' \leq b \} = C_r(t) \cap C_b(t). \tag{36}
\]

and set

\[
Q_r(b) := \exp \left[\rho(1) m(C_r) \right] \exp \left[M(C_r(b)) \right]. \tag{37}
\]

By convention, \(Q_r(b) = 1 \) if \(r = b \). Note that \(\mathbb{E}[Q_r(b)] = 1 \). Note also that for any \(r < b \) and any \(t \) we have \(m(C_r) = m(C_{rb}) + m(C_b) \) and thus

\[
Q_r(s) = Q_r(b) \cdot Q_b(s). \tag{38}
\]

Now define \(Q_r^{(1)}(s) = Q_r(b)Q_b(s) \) and set

\[
A_r^{(1)}(t) = \int_0^t Q_r^{(1)}(s)ds = \int_0^t Q_r^{(1)}(bs)ds = \frac{1}{b} \int_0^{bt} Q_r^{(1)}(s)ds. \tag{39}
\]

Note that \(\mathbb{E}[A_r^{(1)}(t)] = t \). Also, (35) follows by elementary operation. Further, \(A_r^{(1)} = \lim_{n \to 0} A^{(n+1)} \) and \(Q_r \) are independent since they are built using disjoint sets of the time-scale half-plane \(\mathbb{T}^+ \). Finally, \(Q_r^{(1)}(b) \) forms an IDC-noise with control measure \(m^{(1)} \) as claimed, which can be
verified by defining $M^{(1)}(C_{r/b}(s)) = M(C_{r/b}(bs))$. Note that $m^{(1)}(C_{r/b}(s)) = m(C_{r/b}(bs)) = m(bC_{r/b}(s))$.

If the integrand Q_b in (35) were constant over the interval $[0, t]$ a scaling law of moments would immediately follow. A measure for the variation of the integrand which will prove useful is the following:

$$\Delta_b(t) := \frac{\mathbb{E} \sup_{0 \leq s \leq t} |Q_b(s)^q - Q_b(0)^q|}{\mathbb{E}[Q_b(0)^q]}. \quad (40)$$

The next lemma quantifies by how much the scaling law deviates from the Binomial case where $Q_b(t)$ is indeed a constant for $t < b$.

Lemma 2

Fix $q > 0$. Let $0 < r \leq b < 1$ and $0 \leq t \leq 1$. Then,

$$\mathbb{E}A_r(t)^q = b^q \cdot \mathbb{E}[Q_b(0)^q] \cdot \mathbb{E}[A_r^{(1)}(t/b)^q] \cdot (1 + \varepsilon). \quad (41)$$

The error term ε is bounded as: $|\varepsilon| \leq \Delta_b(t)$.

Proof of Lemma 2.

We will be using the fact [17] that

$$\left| \left(\int_I x(s) d\mu(s) \right)^q - C \right| \leq \sup_{s \in I} |x(s)^q \mu(I)^q - C| \quad (42)$$

Applying it for the measure μ induced by $A_r^{(1)}(\cdot/b)$ and using (9) and (35) we obtain

$$|A_r(t)^q - b^q Q_b(0)^q A_r^{(1)}(t/b)^q| = \left| \left(\int_I Q_b(s) d[A_r^{(1)}(s/b)] \right)^q - b^q \cdot Q_b(0)^q \cdot A_r^{(1)}(t/b)^q \right|$$

$$\leq b^q \sup_{0 \leq s \leq t} |Q_b(s)^q A_r^{(1)}(t/b)^q - Q_b(0)^q A_r^{(1)}(t/b)^q|$$

$$= b^q \cdot A_r^{(1)}(t/b)^q \cdot \sup_{0 \leq s \leq t} |Q_b(s)^q - Q_b(0)^q|. \quad (43)$$

The error term (41) in lemma 2 can be bounded for certain IDCs, such as the ones featured in the next lemma. To formulate it, some notation is required. For an IDC Motion A_r with control measure $dm(t,r) = g(r)dr$ we set for convenience

$$\overline{g}(b) := \int_b^1 g(r)dr \quad (44)$$

as well as for $b \in (0,1)$ and $\nu > 0$

$$C_{b,\nu}[g] := \sup_{0 < t \leq b} \frac{1}{\nu^t} \cdot \Delta_b(t) \in [0, \infty] \quad (45)$$

Lemma 3

Fix $q > 0$. Let $0 < t < b < 1$.

CPC Case: If Q_b is a Compound Poisson Cascade with weights W which possess finite q-th moments, then $C_{b,1}[g]$ is finite. In other words, for all $t < b$:

$$\frac{1}{t} \Delta_b(t) \leq C_{b,1}[g] < \infty. \quad (46)$$

Log-normal Case: For any log-normal IDC with

$$\rho(q) := -\mu q - q^2 \sigma^2, \quad (47)$$

$C_{b,1/2}[g]$ is finite. More precisely, given $q > 0$, $b \leq 1$ and g, there exist real numbers J, c_1 and c_2 depending only on q, b, μ, σ^2 and on $\overline{g}(b)$ such that:

$$\frac{1}{\sqrt{t}} \Delta_b(t) \leq (J \cdot c_1 \sqrt{t} + c_2) \cdot \max(1, e^{\rho(q)\overline{g}(b)}). \quad (48)$$

In both cases, if in addition $g^{(n)}$ as defined in Theorem 1 converges, then the bounds $C_{b,1/2}[g^{(n)}]$ remain uniformly bounded as $n \to \infty$.

Proof of Lemma 3.

First, we simplify the expressions and separate independent from dependent parts of $M(C_{b}(u))$ and $M(C_{b}(0))$. Thus, we write easily

$$\Delta_b(t) = \frac{\mathbb{E} \sup_{0 \leq s \leq t} |e^{qM(C_{b}(u))} - e^{qM(C_{b}(0))}|}{\mathbb{E}[e^{qM(C_{b}(0))}]} \quad (49)$$

and introduce the following parallelepiped as subsets of the time-scale strip:

$$\mathcal{L}(u,v) = \{ (s,r) : b \leq r \leq 1, -r + u \leq s \leq -r + v \},$$

$$\mathcal{R}(u,v) = \{ (s,r) : b \leq r \leq 1, r + u \leq s \leq r + v \}, \quad (50)$$

$$\mathcal{B} = \mathcal{C}_b(t) \cap \mathcal{C}_b(0) = \{ (s,r) : b \leq r \leq 1, -r + t \leq s \leq s \}. \quad (51)$$

Checking the constraints on the variable s one verifies quickly the following decomposition of a cone $\mathcal{C}_b(u)$ into disjoint sets which is valid for $u \in [0, t]$ and for $t \leq b$ (see Fig. 11):

$$\mathcal{C}_b(u) = \mathcal{L}(u,t) \cup \mathcal{B} \cup \mathcal{R}(0,u).$$

As a particular case we have $\mathcal{C}_b(u) = \mathcal{L}(0,t) \cup \mathcal{B}$. Noting that $\mathcal{L}(u,v) \cup \mathcal{L}(v,w) = \mathcal{L}(u,w)$ with disjoint union whenever $u \leq v \leq w$, we find $M(C_{b}(u)) - M(C_{b}(0)) = M(\mathcal{R}(0,u)) - M(\mathcal{L}(0,u))$ and may write $\Delta_b(t)$ as:

$$\Delta_b(t) = \frac{\mathbb{E}[e^{qM(\mathcal{B})}]}{\mathbb{E}[e^{qM(\mathcal{C}_b(0))}]} \cdot \mathbb{E} \left[e^{qM(\mathcal{L}(0,t))} \sup_{0 \leq u \leq t} \left| \frac{e^{qM(\mathcal{R}(0,u))}}{e^{qM(\mathcal{L}(0,u))}} - 1 \right| \right]. \quad (52)$$

Here, we used that the term $e^{qM(\mathcal{B})}$ is statistically independent of the others in the enumerator. We note that

$$\frac{\mathbb{E}[e^{qM(\mathcal{B})}]}{\mathbb{E}[e^{qM(\mathcal{C}_b(0))}]} = e^{-\rho(q)(m(\mathcal{B}) - m(\mathcal{C}_b(0)))}$$

$$= e^{\rho(q)m(\mathcal{L}(0,t))} \leq \max(1, \exp[\rho(q)m(\mathcal{L}(0,b))]). \quad (53)$$
using the fact that $m(\mathcal{L}(0, t))$ is monotonous in t. Note that $m(\mathcal{L}(0, b)) = \mathfrak{m}(b)$. It remains to bound the second term in (52).

Now the idea is to show that with t very small and thus u small, the control measures $m(R(0, u))$ and $m(\mathcal{L}(0, u))$ are very small, thus the corresponding random variables are small with high probability and thus $e^{\delta(M(R(0, u)))}$ and $e^{\delta(M(\mathcal{L}(0, u)))}$ are both close to 1. Thus their quotient is close to one and the contribution to the last term in (52) is small with large probability.

As a matter of fact, that quotient is exactly equal to 1 with large probability in the CPC case. The log-normal case is somewhat more intricate but relies only on standard bounds [9].

\[\text{Theorem} \]

Let $q > 0$. Let $\rho(\cdot)$ defining as above some infinitely divisible law. Let A_r be an IDC Motion with control measure $g(r)dt\,dr$. Assume that there are constants $b \in (0, 1)$ and $\nu > 0$ such that $C_{b, \nu}[g^{(n)}]$ are finite and remain bounded as $n \to \infty$; assume that A_r as well as $A^{(n)}_r$ for large n converge in \mathcal{L}_q. Then there exist constants C_q and C'_q such that for any $t < b$

\[C_q t^\nu e^{-\varphi(q)m(C_t)} \leq \mathbb{E} A_t^{(n)} \leq C'_q t^\nu e^{-\varphi(q)m(C_t)}, \quad (54) \]

\[C'_q t^\nu H e^{-\varphi(qH)m(C_t)} \leq \mathbb{E}[|V_H(t)|^\nu] \leq \mathbb{E} C^\nu q H e^{-\varphi(qH)m(C_t)}. \quad (55) \]

The assumptions of the Theorem are verified for compound Poisson distributions as well as for the Normal distributions, assuming that the functions $g^{(n)}$ converge (see above lemmas as well as [9]).

The proof of Theorem 1 relies on iterating (41) n times keeping b fixed. Thus, we will apply it successively with t/b^k to the cascades $A^{(k)}_r$ introduced in (33), for $k = 0, \ldots, n - 1$. Note that $A^{(k)}_r$ possesses the control measure $g^{(k)}(r)dt\,dr$ which leads to

\[\mathbb{E} A_r(t)^{\nu} = (b^\nu \cdot \mathbb{E}[Q_b(0)^{\nu}])^n \cdot \mathbb{E}[A^{(n)}_r(t/b^\nu)^{\nu}] \cdot \prod_{k=0}^{n-1} (1 + \varepsilon_k). \quad (56) \]

The error terms can be bounded using $C_b[g^{(k)}]$. \hfill \Box

\section*{References}

