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Abstract

The discovery of long-range dependence (a kind of asymptotic fractal scaling) in packet data from LANs and

WANs, was followed by further work detailing evidence for multifractal behaviour in TCP/IP traffic in WANs. In terms

of networking however, physical mechanisms for such behaviour have never been convincingly demonstrated, leaving

open the question of whether multifractal traffic models are of black box type, or alternatively if there is anything �real�
behind them. In this paper we review the evidence for multifractal behaviour of aggregate TCP traffic, and show that in

many ways it is weak. Our study includes classic traces and very recent ones. We point out misunderstandings in the

literature concerning the scales over which multifractality has been claimed. We explain other pitfalls which have led to

the multifractal case being overstated, in particular the possibility of �pseudo scaling� being confused with true scaling,

due to shortcomings in the statistical tools. We argue for an alternative point process model with strong physical

meaning. It reproduces the higher order statistics of the data well, despite not being calibrated for them, yet is not

multifractal. From its standpoint, the empirical multifractal behaviour is seen as a misinterpretation due to a lack of

power in the statistical methodology.
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1. Introduction

1.1. Motivation

Teletraffic analysis and practice was trans-

formed by the discovery of scale invariance proper-

ties in packet traffic [1]. The presence of large-scale
asymptotic scale invariance, or long-range depen-

dence (LRD), is remarkably universal, and has
ed.
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become an indispensable part of traffic modelling,

in particular for TCP/IP traffic in the Internet. This

role is destined to continue, as the phenomena has

a physical underpinning which is both generic and

readily understandable in networking terms,
namely the heavy tailed nature of file sizes [2],

which, through a well-known mechanism [3],

results in heavy tailed flows and thereby LRD.

The discovery of evidence for multifractal

behaviour, a richer form of scaling behaviour asso-

ciated with non-uniform local variability, raised

hopes that another �traffic invariant� had been

found which could lead to a complete, robust
model of aggregate wide area network (WAN)

traffic over all time scales. There is now a literature

which accepts the existence of multifractal traffic,

exploring alternative multifractal models [4], traffic

generators [5], and related performance studies [6].

More broadly, it has become somewhat accepted

that traffic has multifractal characteristics, despite

the fact that physical mechanisms, and network
meaning, has never been established in the way it

has for LRD.

In this paper we review the evidence underlying

the adoption of multifractal traffic models. We are

motivated primarily by two factors arising from

our own work in the modelling of TCP/IP packet

traffic: (i) the weakness of the evidence seen when

using the available statistical tools in a careful
way and (ii) a realisation of the lack of statistical

power of those same tools, leading to the possibil-

ity of erroneous interpretation. The question we

wish to answer is whether the original enthusiasm

for multifractal models was warranted, or is war-

ranted today, when using the default statistical

tools (arguably the best available) in a consistent

and thorough way. We conclude that the evidence
is not only weak but misleading, and that (in most

senses) there has been up to now no compelling

reason to conclude that a MF model is indicated,

or is particularly natural, to describe traffic.

It is not possible for us here to definitively rule

on the deeper question of whether traffic is multi-

fractal or not, for three reasons. First, the set of

available statistical tools are not powerful enough
to clarify all the related issues. Improvements are

needed in their performance, the knowledge of

their performance under different conditions, and
important capabilities such as hypothesis tests are

absent. Second, ultimately there is no �is�, modelling

data by mathematical processes with multifractal

properties reduces to a philosophical issue of model

choice, there may always be some sense in which
a MF model is correct, or rather, useful and/or

appropriate (over some scale range). Finally, traffic

is an evolving phenomenon, and so conclusions

clearly cannot be final in a temporal sense.

After describing necessary background on mul-

tifractals and the statistical tools in the remainder

of this introduction, Section 2 provides a succinct

overview of the key parts of the literature. In Sec-
tion 3 we compare and contrast the claims of this

prior work, and attempt to clarify the causes of the

sometimes contradictory claims, particularly with

regard to the scale-range over which evidence of

multifractality is found. We then offer our own

reexamination of the question for several traces,

including two of historical importance. Section 4

discusses drawbacks in the existing statistical pro-
cedures and tools, and illustrates circumstances

where they can be misleading. Through a non-mul-

tifractal point process cluster model we recently

proposed in [7], Section 5 completes our discussion

by combining issues of physical meaning with esti-

mator limitations to decide against multifractal

models. This model is greatly preferable to multi-

fractal alternatives on physical and networking
grounds. Although not being fitted for the purpose

or designed to do so, it can produce multifractal-

like statistical signatures which can be as convinc-

ing as those for the data, although it is not multi-

fractal. We summarise our findings in Section 6.

1.2. Wavelets, scaling and multifractals

It is not possible here to give a detailed intro-

duction to the field of statistical estimation, or

the realm of multifractal processes. We provide a

concise practically oriented background sufficient

to support our presentation. We follow the wavelet

viewpoint, first introduced to traffic analysis in [8],

and since become the defacto standard, due to its

advantageous statistical and computational prop-
erties. We use software we developed ourselves

(freely available at [9]) to perform the statistical

analysis both at second order and at higher order,
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and are guided by the methodology outlined in

[10]. These procedures are (arguably) the best

available, but are nonetheless far from perfect,

and in particular the analysis beyond second order

is not as well understood as the second order anal-
ysis used to study LRD. We describe a theoretical

limitation of the techniques we use here below, and

discuss other drawbacks in Section 4. Further de-

tails of the use of these tools in the networking

context can also be found in the review article

[11]. A more mathematical introduction to multi-

fractal processes can be found in [12].

Long-range dependence is a form of asymptotic
scale invariance in the limit of large scale (low fre-

quency). If X(t) is a continuous time stationary

process with power spectral density CX(m), LRD

can be defined as a power law divergence of the

spectrum at the origin:

CX ðmÞ � cf jmj�a
; jmj ! 0; with a 2 ð0; 1Þ: ð1Þ

To detect this phenomena using wavelets, first

define the discrete wavelet transform coefficients as

dX ðj; kÞ ¼
Z 1

�1
X ðtÞwj;kðtÞdt; ð2Þ

where the member wj,k(t) = 2�j/2w(2�jt � k) of the

basis function family is generated from the mother

wavelet w(t) by dilation by a scale factor a = 2j,
and translation by 2jk. At fixed octave j, the se-

quence {dX(j, Æ)} corresponds to an analysis of

X(t) at scale 2j. It can be shown that the variance

of this process satisfies

EjdX ðj; 
Þj2 ¼
Z

CX ðmÞ2jjWð2jmÞj2 dm; ð3Þ

where W(m) denotes the Fourier transform of w.
This equation defines a kind of wavelet energy
spectrum, analogous to a Fourier spectrum, but

much better suited to the study of fractal pro-

cesses. In the case of LRD it reads

EjdX ðj; 
Þj2 � cfCðaÞ2ja; j ! þ1; ð4Þ
where C(a) = �jmj�ajW(m)j2dm is close to a constant.

To estimate the wavelet spectrum from data,

the time averages

S2ðjÞ ¼
1

nj

X
k

jdX ðj; kÞj2; ð5Þ
where nj is the number of dX(j,k) available at oc-

tave j (scale a = 2j), perform very well, because of

the short range dependence in the wavelet domain.

Indeed, the mother wavelet is characterised by an

integer N P 1, known as the number of vanishing
moments, which satisfies

R
R
tkwðtÞdt � 0 for all

k = 1,2, . . . ,N � 1, and
R
R
tNwðtÞdt 6¼ 0. It plays a

central role in the wavelet based analysis of long

memory processes, since the wavelet coefficients

{dX(j,k), k 2 Z} at a given scale 2j are short range

dependent provided N > a � 1. This has been pro-

ven in various contexts, see [10] for a review. To

enable approximate but analytic analysis of the
performance of the scaling exponent estimation

procedures, we idealised this whitening of the

dX(j,k) to exact independence. Numerical simula-

tions such as those reported in [8,13] show that this

is a useful approximation.

A plot of the logarithm of the estimates S2(j)

against j we call the Logscale Diagram (LD):

LD : log2S2ðjÞ vs log2a ¼ j: ð6Þ

In these diagrams, straight lines constitute empiri-

cal evidence for the presence of scaling. For exam-

ple, a straight line observed in the range of the

largest scales with slope a 2 (0,1) (see Fig. 1) both

reveals long memory and measures its exponent a.
This wavelet based estimator, beyond its con-

ceptual and practical simplicity, also offers robust-

ness against various types of non-stationarity that

may be superimposed onto truly LRD data. This

again derives from the possibility of easily per-

forming wavelet decompositions with different

vanishing moments and comparing the corre-

sponding estimates, as discussed at length in

[8,13]. The estimator can also be used to test for
the constancy of the scaling exponent along time.

It therefore constitutes a tool enabling one to dis-

criminate between true scaling and certain types of

non-stationarities that may conspire to imitate it.

These topics are detailed in [14] and illustrated

using time series of network traffic.

The above definition of scaling is second order

based. If X were Gaussian then this would be suf-
ficient, but this is far from the case for TCP/IP

traffic over small timescales. One can generalise

the 2nd order definition and study qth order
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Fig. 1. Wavelet spectra of packet count series X(t). Series are pAug (left), LBL-TCP-3 (middle), and AUCK-d1 and CAIDA-b1 (right).

For each series LRD is seen. Each of the three WAN traces exhibit biscaling: a second scaling regime to the left of a knee marking the

onset of LRD, found respectively at j* = {�6.6,�1,1,�1}. At very small scales the second regime breaks down, eventually tending to a

flat point process spectrum at j!�1. For calibration, a vertical line is placed at the scale jIAT of the average inter-arrival time.
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quantities EjdX ðj; 
Þjq, for arbitrary q 2 R, by using
the estimates

SqðjÞ ¼
1

nj

X
k

jdX ðj; kÞjq: ð7Þ

Just as the wavelet spectrum serves as a statisti-
cally effective summary of second order statistics

regardless of whether scaling is at issue or not, a

plot of Sq(j) against j, the qth order Logscale

Diagram:

q-LD : log2SqðjÞ vs ¼ j ð8Þ
is a useful way of examining the raw qth order con-

tent of data, independently of any multifractal

question, and we use it in this sense below.
For q fixed, a behaviour EjdX ðj; 
Þjq ¼ c2jaq over

some scale range is seen as a straight line in the q-

LD, and a measurement of its slope is an estimate

of the corresponding q-specific scaling exponent

aq. If, for each q, a straight line is found in the

q-LD over the same range of scales, then the scal-

ing exponents {aq} are the manifestation of a sin-

gle underlying scaling phenomenon which we
refer to as multiscaling. We thereby distinguish it

from the conclusion of multifractality, which may

not necessarily follow, as we will see below.Multi-

scaling will be used synonymously with �evidence
for multifractal behaviour�.

We now explain the connection to multifractals.

For many multifractal processes, the collection of

exponents {aq} are related to the so called multi-
fractal spectrum, which captures the essential de-
tails of the multifractal scaling, and can be used

to estimate it [12]. We do not attempt to estimate

the multifractal spectrum itself, as this would

introduce even more estimation difficulties. In-

stead we adopt the simpler operational approach

[10] of testing for linearity of the function f(q).
This is because for simple cases such as the exactly

self-similar (H-SS) processes with Hurst exponent
H, for the corresponding increments processes

(which are stationary) f(q) = qH = aq + q/2 is a

simple linear function, and one speaks of mono-

fractality, whereas for true multifractal processes

this is not the case. The same is true for LRD (sta-

tionary) processes for which at large scales

f(q) = q(a2 � 1)/2. Deviations from linearity can

therefore be taken as evidence for the more com-
plex multifractal (MF) behaviour, where a single

scaling exponent is insufficient.

In the multifractal case, there is an important

theoretical restriction concerning the range of q

over which the analysis is to be performed. Expo-

nents f̂ðqÞ, estimated according to a multiresolu-

tion procedure such as that above, can only be

meaningfully measured within a restricted range
of q values: q 2 ½q�� ; qþ� �, where q�� < 0 < 1 < qþ� .
This is not a limitation of the estimation proce-

dures themselves. The fact that f(q) 5 qH intrinsi-

cally implies that the f(q) are related to the scaling

or multifractal properties of the analysed process

in a limited range only. This point is studied in
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detail in [15,16], where theoretical results obtained

on Mandelbrot cascades [17] using an aggregation

techniques in [18] are extended to a large variety of

true multifractal processes such as compound

Poisson cascades [19], infinitely divisible random
walks [20–23], and fractional Brownian motion

in multifractal time [12,24]. The practical conse-

quences are that ðqþ� ; qþ� Þ must first be estimated

(cf. [15,16] for estimation procedures), and second,

that the linear behaviour of the f(q) with respect to

q should be tested only for q 2 ½q�� ; qþ� �.
Following [10], rather than plotting fq against q

and looking for linearity, which can be delicate in
marginal cases, we plot hq � fq/q against q and

check for horizontal alignment. This plot:

LMD : hq vs q; ð9Þ
we call the Linear Multiscale Diagram. Using this

approach also has the advantage that the confi-

dence intervals are approximately of the same size,

making it easier to assess alignment.

Confidence intervals are a minimal requirement
to assess whether slope measurements of lines

drawn in any of the LD, q-LD, or LMD defined

above are meaningful in any way. Our approach

incorporates estimation of confidence intervals.

When analysing LRD with our LDestimate tool

(also available at [9]), confidence intervals are cal-

culated from formulae based on Gaussian approx-

imations. Here we use the MDestimate routine
and estimate confidence intervals empirically from

data. 1 This is because the data at the smallest

scales is always non-Gaussian by definition. In-

deed, we have routinely observed that at small

scales the Gaussian derived intervals are much

smaller than those from data, whereas when tested

on fractional Gaussian noise, they are almost the

same. Even at larger scales when marginals can ap-
pear Gaussian, because of the complexity of the

data the Gaussian formulae may be misleading

over a wide range of scales. Of course assuming

non-gaussianity when studying potentially multi-

fractal phenomena is consistent with the well-
1 We use the sigtype=1 option to MDestimate, and

internally to the wtspecq_statlog routine we set para-

metric to 0.
known fact that Gaussian processes cannot be

multifractal.

The confidence intervals follow from an

approximate analytic expression for the large n

asymptotic form of the variance of log2Sq(j), which
relies on the idealised independence property of

the wavelet coefficients. A full collection of numer-

ical simulations performed by the authors, as

detailed in [10,25], showed that the resulting confi-

dence intervals have acceptable accuracy.
2. A history of MF in traffic

Our aim in this section is to clarify precisely

what has been said before, as a backdrop to the

analyses that follow. The papers we include in this

history of multiscaling in TCP/IP traffic are those

which, to the best of our knowledge, really exam-

ine the empirical evidence in some detail. Not sur-

prisingly, they are heavily weighted towards the
very first discoveries. We do not include papers,

for example [26], which are more focused on

exploring modelling approaches in a class which

is chosen in advance to be of multifractal type. In

such cases multiscaling analyses, if they are per-

formed, aim to confirm that plots showing multi-

scaling can be obtained which are similar to those

already seen and interpreted elsewhere, rather than
contributing to a debate on the origin and meaning

of the evidence itself.

The summaries we give are necessarily brief,

and cannot do justice to the full content of the

papers. Our main focus is on time indexed traffic

processes for which time scales of observation

can be meaningfully discussed. We denote these as

• W(t): full byte arrival process (takes values in

{0,1}).

• Wd(k): discretised W, byte count in intervals of

width d.
• X(t): point process of packet arrival times.

• Xd(k): discretised X, packet counts in intervals

of width d.

Apart from a desire to report precisely

which traffic processes have been studied in the

literature, we make the above distinction between
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the discretised and continuous time versions

(which in practice will also be analysed above

some chosen minimum resolution d) for a technical
reason involving the correct initialisation of the

algorithm used to calculate the discrete wavelet
transform. In essence, discretising before analysing

creates a sampling error, whereas a direct analysis

(which is possible for point processes like X(t) but

not generally), avoids these errors. Further details

of this point can be found in [7]. After this section

we focus on X(t) and use an exact initialisation

procedure to avoid sampling errors (these are gen-

erally negligible beyond the smallest three octaves,
i.e. for a > 8d). This allows the important flexibil-

ity of choosing d at will, subject to computational

constraints. We use Daubechies wavelets with

three vanishing moments

Two early studies asked whether the early Bell-

core Ethernet LAN traces, including the celebrated

�pAug� trace [1,27], were MF or not. Using multi-

scale diagram methods in the time domain, Ref.
[28] studied packet count Xd and byte count Wd

timeseries with bin sizes of d = 10 ms. They con-

cluded that each were LRD and monofractal at

large scale. The qualifier �large scale� was needed

because one of the traces studied was of incoming

WAN traffic for which the LRD regime was seen

to begin at a cutoff scale around 10d = 100 ms, be-

low which one saw ‘‘a distinctly different scaling
behaviour’’. This regime however was not investi-

gated. In [8], a distribution rescaling method in

the wavelet domain was used to conclude that

the continuous time byte arrival process W(t) in

pAug was monofractal over timescales above

12 ms.

In [29] we find the first report hailing the discov-

ery of multifractal behaviour in TCP/IP traffic.
The traces were collected at LAN gateways. One

of these, �LBL-TCP-3�, is publicly available [27]

and is revisited below. Using time domain incre-

ment based estimation, MF was concluded for

the sequence of packet sizes, of inter-arrival times

of packets over all scales, and for both the Xd and

Wd timeseries. In the case of LBL-TCP-3 (see [30]

for the original discussion of this trace), the base
resolution used was d = 150 ms (corresponding to

the largest inter-arrival time). In [31] the same

authors discussed a subset of these results, empha-
sizing the fact that multifractal models are essen-

tially trying to model the �high frequency�
components of data, whereas LRD relates to low

frequency. The brief report [32] looked at the num-

ber of ATM cells per 1 ms, based on traces two
seconds long of outgoing traffic from a university,

and found multiscaling using the time domain esti-

mation approach of [29].

In [33] (an early version was published as [34]) it

was clearly pointed out for the first time that evi-

dence for scaling behaviour in TCP/IP traffic could

be found in two separate regimes, one at �small

scales�, and one at �large scales�. These two regimes
were defined empirically by a visually obvious

change point in the wavelet spectrum, found to oc-

cur at scales of a few 100 ms in the traces exam-

ined, which included LBL-TCP-3 (see Fig. 1).

The process observed was Xd with d = 10 ms, how-

ever a single example was given with d = 1 ms,

where the �very small scale� behaviour changed

again. The conclusion from a wavelet based multi-
scale analysis was MF behaviour over small scales,

and LRD (asymptotic second order self-similarity)

over large scales. A protocol driven hierarchal

redistribution of data was suggested as a possible

mechanism for the MF.

The introduction of a multiplicative cascade

model was the main aim of [35] (note that such

models were already discussed in [29]), however
the observation of twin scaling regimes was also

confirmed here for different traces. A change point

or �knee� was again found for Xd with d = 10 ms at

a similar time scale, and it was claimed that WAN

traffic is MF at scales below the knee. An attempt

was made to locate the source of the multiscaling

in the protocol hierarchy, with mixed results.

In [36] new data sets from ISPs were examined
and an analysis similar to [35] performed. The

same conclusions were reached, but it was noted

that the small scale behaviour is complex and

can be affected by various factors including net-

work features such as bottlenecks. Most of the pa-

per deals not with real data but with exploring the

effects of network parameters on the multiscaling

in a detailed TCP simulation over a simple
topology.

In [37] (an earlier version appeared as [38]) the

term biscaling was coined to refer to the presence
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of twin scaling regimes, again using the empirically

clear knee point in a wavelet spectrum to separate

the two. Similar results to [33] were found for more

recent TCP/IP traces gathered at the Internet ac-

cess point of the University of Auckland. These
are publicly available [39], and are used below.

The time series focussed on was Xd for TCP con-

nection arrivals. The paper�s main point was the

observation that a class of scaling models known

as infinitely divisible cascades (IDC), which include

multifractals as a special case, could be used to

unify the scaling evidence seen over the two re-

gimes, rather than seeing them as entirely separate.
For the first time, confidence intervals for the mul-

tiscale analysis were calculated and used [9].

In [40] the IDC modelling was explored further

for many different time series extracted from

Auckland data sets, and the near ubiquity of the

biscaling phenomenon highlighted. Again, results

were consistent with LRD at large scales, and

MF at small. However, it was noted that the qual-
ity of the fit and the confidence intervals were such

that a monofractal conclusion could almost be

drawn at small scales.

The paper [41] does not investigate multifractal-

ity in TCP/IP traffic as such, however it contrib-

utes to the issue by identifying sources of

burstiness in Wd on scales above d = 500 ms. A

minority of high rate high byte-volume alpha flows
are identified as the main source of burstiness,

whereas the remaining beta traffic is LRD but

not bursty in amplitude, and is close to Gaussian

at high enough aggregation levels. The fact that

the alpha component can be identified, and carries

most of the burstiness, was also verified down to

d = 50 ms [42]. Multifractal spectra were calcu-

lated as a means of quantifying the degree of
burstiness.

The more recent paper [43] examined traces

from high rate Internet backbone links in the

Sprint network. The Wd timeseries was extracted

with d = 10 ls over hour long traces (however only

results for d = 1 ms were presented). The wavelet

analysis tools of [9] were used. Scaling ranges 3 oc-

taves wide around 30 ms were used to conclude
that the byte level data is monofractal over small

scales. The disagreement with the previous litera-

ture was explained by observing that in the back-
bone aggregation levels are much higher, so Wd

is Gaussian, precluding multifractality. The paper

goes on to explain the observed second order

structure in terms of a classification of flow type.

Finally, Ref. [7] also deals with investigating the
network origins of small scale behaviour, for TCP

flows from a variety of traces. The focus is mainly

on X at second order through the wavelet spec-

trum (again code from [9] is used), with d from

5 ls to 5 ms. Using simple point process models

which are not scaling at small scales but which

empirically show signs of scaling in the wavelet

spectrum, the point is made that blind use of the
estimation tools can lead to conclusions, such as

multifractality, which are not necessarily justified.

The main part of the paper then develops the point

process cluster model for X which we use below.
3. Reviewing the evidence

As the above history shows, the story of multi-

fractal scaling in TCP/IP traffic contains many

variations in terms of traces, time series, time series

resolution d, scale ranges, and finally conclusions.

Not all of the latter are compatible.

Of the potential inconsistencies, the most obvi-

ous is that not all authors have agreed on the time

scale regime to which their conclusions refer.
Whereas [29,31] discuss the �large� scale regime of

a few 100 ms and above and conclude in favour

of MF as a means to capture the high frequency

behaviour, Refs. [32,34,33,35,36] are happy to con-

firm the adequacy of a LRD asymptotically self-

similar model over these scales, and instead claim

MF behaviour over the �small� scale regime below

a few 100 ms. There is no published clarification of
this point, explaining that different authors were in

essence not talking about the same thing, and it is

still not commonly appreciated today.

The plot comes together yet thickens in the light

of [38,37,40], where evidence for multiscaling is

admitted over both regimes, but given confidence

intervals, a monofractal conclusion is handed

down over large scales, and a MF conclusion over
small—but just barely. Finally, the more recent

work of [43,7], whilst again not even considering

the possibility of a MF model at large scale, begins
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to question the MF conclusion even at small scale.

Even in [36], it was noted that the MF evidence

was not robust in various ways, and that the wave-

let spectra reveals a complex combination of ef-

fects. In [41,42], multifractality is mentioned in
relation to large-scale behaviour, but this time

only to describe a small (though important) traffic

component.

To attempt to answer further the question of

�what is really going on?�, we perform multiscaling

analyses for a set of four traces, paying particular

attention to the issues mentioned above. In partic-

ular, we always compare traces over a common
�real-time� scale, and seek to understand and com-

pare actual values, rather than just looking for

slopes. We will in each case analyse the process

X. Studies by many groups, including ourselves,

show that the scaling properties of X and W are

very similar, and these time processes are in many

ways also the most important. We briefly consider

the time series of inter-arrival times of packets at
the end of the section. We employ our wavelet

based code [9], using the �non-Gaussian� option
for confidence intervals, as explained above. In

this section we will �trust� the tools, but couch con-

clusions cautiously in the language of �multiscal-

ing�, and focus on the empirical evidence and the

soundness of the analysis methodology. In Section

4 we examine the drawbacks of the wavelet based
tools themselves, and in the light of these Section 5

reexamines the conclusions.

The traces, detailed in Table 1, include two

traces of historical importance mentioned above,

pAug and LBL-TCP-3. We include a trace,

AUCK-d1, from the Auckland-IV archive collected

at the University of Auckland [39]. This repository

of high quality traces (timestamp accuracy 100 ns)
Table 1

The traces used

Traces Date Start time Duration (s) Link

pAug 1989-08-29 11:25 3142 10BaseT

LBL-TCP-3 1994-01-20 14:10 7200 10BaseT

AUCK-d1 2001-04-02 13:00 10800 OC3

CAIDA-b1 2002-08-14 10:00 600 OC48c

Last three columns give three j values (log2(scale)) of interest—jIAT: sc

scaling region, j*: biscaling �knee� with �small scales� to its left and LR
has become increasingly popular, and therefore

useful. From previous published work (for exam-

ple [40,41]) we know that traces in this archive

are very similar to one another in terms of scaling

as well as generally, and that the one we choose
here is representative. Finally, we include a recent

and high rate trace from an Internet backbone,

CAIDA-b1, also with high timestamp precision,

kindly made available by CAIDA from their

MFN network [44].

To give a feeling for the different traces, in addi-

tion to the average bitrates, the last three columns

in Table 1 give j values of particular significance,
which can be used in Fig. 1 to better interpret fea-

tures of the wavelet spectra.

The octave jIAT gives the scale corresponding to

the average inter-arrival time between the points

(packet arrival times) of X. To the left of this scale,

one is really examining in detail residual correla-

tions of individual inter-arrivals, and packet level

effects (such as back to back packets due to some
bottleneck in the network) which can be extremely

complex and of arguable importance for aggregate

traffic modelling.

Octave j* marks the traditional �knee� of biscal-
ing, which effectively defines the right boundary of

the small scale regime (so called by ourselves and

most others), and separates it from the large scale

regime, where LRD can be found. Typically all
scales below j* are considered to be in the small

scale regime. We look further, and define a break-

down scale regime beginning at octave j**. This is

not done in the spirit of an endless and arbitrary

classification scheme. Any non-trivial scaling

behaviour which may exist must break down when

the Poisson-like behaviour of the simple point pro-

cess limit is reached, that is when individual points
Network Rate (Mbps) jIAT j** j*

LAN Frame 0.138 �8.31 N/A �6.6

WAN TCP 0.35 �7.96 �7 �1

WAN IP 2.5 �9.75 �7 1

Backbone IP 638 �16.7 �12 �1

ale of isolation of individual packets, j**: breakup of small scale

D to the right over �large scales�.



2 The energy spike near j = �1.5 may surprise some readers,

who are familiar with the Bellcore traces and their invariably

�perfect� scaling. This same spike was also seen in [8] for X.

Much �straighter� spectra are found for almost any other time

series, in particular Wd which is the most commonly studied.
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are seen as isolated, and may do so earlier. Keep-

ing track of this scale helps compare behaviour

across different traces. Comparison with jIAT is

useful to build intuition about packet patterns at

the finest scales.
Each of j* and j** are empirically, visually, de-

fined, based on observing the LD plots. Whilst this

procedure is far from rigorous and certainly not

ideal, it is nonetheless, since we employ confidence

intervals in a systematic way, at least as thorough

as the approaches found in the literature, which

tend to ignore issues of goodness of fit.

No analysis should begin without first consider-
ing the primordial issue of stationarity. Although

the wavelet tools are particularly forgiving with re-

spect to certain kinds of non-stationarities [8]

(including additive polynomial trends), they none-

theless assume stationarity of the key statistical

features. Numerous studies, of which [8] is a good

example, have verified the stationarity of the pAug

data. We examined each of the other four data sets
ourselves by splitting the data into four equal sized

blocks, and comparing (informally) estimates of

mean, variance, wavelet spectra, and q-LD plots.

In each case the stationarity was convincing at

2nd order, including with respect to scaling fea-

tures. At other orders the stationarity usually ap-

peared satisfactory but was sometimes doubtful,

for example in the q-LD with q = 0.5 for LBL-
TCP-3, but not extremely so.

3.1. Scaling analysis

The wavelet spectra from the traces are shown

in Fig. 1. The values on the upper axis are cali-

brated in (approximate) time. In fact they are

nothing other than the scale values a = 2j corre-
sponding to the j values on the lower x-axis. In

each plot straight lines can be drawn at large scale

to the right of j* (see Table 1 for values, which are

not marked on the plots to avoid prejudicing the

eye), corresponding to LRD. The presence of

LRD is neither surprising nor controversial, and

we will not discuss it further.

Note that we are not concerned in this paper
with the interesting issue of the physical meaning

of the coexistence of LRD and multifractal scal-

ing. To treat this question correctly would require
a discussion of model processes with such proper-

ties, whereas this paper focuses firmly on empirical

evidence. We simply ask, in an entirely separate

way over two empirically identified and non-over-

lapping scale regimes, if there is credible evidence
for multifractal scaling.

In each of the three WAN traces (middle and

right plots) biscaling is evident: in addition to

LRD to the right of the knee at j*, to its left a dif-

ferent straight line can be drawn for over 4 octaves

(a minimum practical number). This is not true

for pAug, which only exhibits a single alignment

region corresponding to LRD beginning at
j* = �6.6. 2 Again, for these traces these findings

are not controversial, and are consistent with the

literature which has dealt with scales below the

LRD range.

For each trace we calculate the spectrum from

very small scales, at least as small as the average

packet inter-arrival time jIAT, ensuring an ability

to compare against the wide range of sampling
rates used in the literature. This broader analysis

bandwidth enables us to document clearly for the

first time (see however Fig. 8 of [33]), the break-

down of the �small scale� scaling regime. For these

traces, we see this occuring at the j** values

marked in Table 1. It also gives us the opportunity

to note a leveling off of the spectra at very small

scales, corresponding to the Poisson-like point
process limit (the ordinate of this level corresponds

to the inverse of the arrival intensity, which is just

equal to jIAT in value). Note that in other traces

the breakdown of the small scale scaling regime

can be much more violent than here (see Fig. 9

for a hint as to how this could occur).

We now present a multiscale analysis for the

three WAN traces. There is no disagreement in
the literature over the monofractal character of

pAug (at scales above j*, for X orW), and as below

j* we simply observe a rapid convergence to the

point process limit, we do not investigate that trace

any further.
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For each of the three WAN traces in Fig. 2 the

q-LDs for orders q = {0.5,1,2,3,4,5,6,8,10,12}

are plotted together. This representation is com-

monly used (for example [29,33]) as it is very com-

pact, and allows a direct comparison between

different orders. However it is not practical to in-
clude confidence intervals in such a plot, and fur-

thermore the compression of scale makes it very

difficult to make clear judgements. For example

the detail in the q = 2 curves (the thicker line third

from the bottom), is virtually impossible to read—

compare the same curves plotted in Fig. 1!

We regroup in Table 2 the boundaries of the

scaling zones both at small or fine scales (FS),
and at large or coarse scales (CS), as determined

from the wavelet spectrum. Even after marking

these boundaries by vertical lines in the respective

plots in Fig. 2, it is not very clear if the conclusion

of biscaling made at q = 2 is contradicted or not at

other orders, that is if multiscaling is present both

in the fine scale regime and at coarse scales (recall

that biscaling is merely a convenient term to refer,
Table 2

Scales defining twin scaling (biscaling) regimes as measured

from the LD (spectrum), and used for estimation in the q-LDs,

over fine (FS) and coarse (CS) scales

Trace Biscaling regimes from spectrum

FS CS

LBL-TCP-3 [j**, j*] = [�7,�1] [j*, jmax] = [�1,9]

AUCK-d1 [j**, j*] = [�7,1] [j*, jmax] = [1,6]

CAIDA-b1 [j**, j*] = [�12,�1] [j*, jmax] = [�1,7]
for a given q, to the observation of twin scaling

regimes).

To investigate the underlying evidence for mul-

tiscaling more carefully, it is necessary to look

individually at each qth order Logscale Diagram,

and to carefully check that a range of scales exists
where scaling is present, separately over the fine

and coarse scales. We have done this for each

trace, and show the results for AUCK-d1 in Fig.

3. As detailed in the caption, multiscaling is in fact

found over both FS and CS. The evidence for it

seems quite convincing.

Having established a case for multiscaling, we

proceed to estimate the slopes over the FS and
CS scales following Table 2. We must first however

determine the range of q values to use. Using tools

proposed in [15], an analysis that will not be de-

tailed here indicates that, for the LBL-TCP-3,

CAIDA-b1 and AUCK-d1 time series, the cutoff

parameter qþ� lies in the range 15 6 qþ� 6 20 for

each scale regime, suggesting the range q 2 [0,15].

This is mainly good news for the literature on traf-
fic modelling, which has not taken into account the

need to estimate below qþ� prior to now, and which

has tended to use values no higher than 20. It is

nonetheless possible that the issue of qþ� has biased

some published results. In practical terms how-

ever, a more pressing problem is that high order

moments are notoriously difficult to estimate accu-

rately, and will tend to have poor robustness even
to minor non-stationarities. A possible example is

the spike in Fig. 3 near j = �3, which grows

steadily with increasing q. Although apparently
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indicating a deviation from the multiscaling model
at FS, it could also be due to a non-stationarity

whose effect on the estimators becomes more pro-

nounced as order increases. (Complementary anal-

yses not detailed here show that the feature is

associated with the repartition of packets within

long flows.) As it is not possible to precisely deter-

mine the value of q for which estimation, using
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From the estimated slopes, we obtain finally the

LMD plots of Fig. 4. From these plots alone, tak-

ing into account the confidence intervals therein,

we would be obliged to conclude the following.

Over the CS regime, for each trace, given the con-

fidence intervals a hypothesis of monofractality
3 4 5 6

der q

Fine Scales
Coarse Scales

0 1 2 3 4 5 6
—0.5

—0.45

—0.4

—0.35

—0.3

—0.25

—0.2

—0.15

—0.1

—0.05

0

Order q

h q =
 ζ

q/q

CAIDA-b1 Fine Scales
Coarse Scales

d CAIDA-b1 (right) over fine scales and coarse scales.



304 D. Veitch et al. / Computer Networks 48 (2005) 293–313
cannot be rejected. Over the FS regime, a careful

look at the confidence intervals shows that mono-

fractality cannot be rejected for CAIDA-b1,

whereas for either of LBL-TCP-3 or AUCK-d1

there is only a small deviation from it. It is how-
ever marginal, and certainly not convincing evi-

dence for a non-trivial multiscaling consistent

with multifractality.

The above conclusions of weak, or no evidence

in favour of a multifractal scaling, are summarised

in Table 3. They differ from the multifractal con-

clusions found in the literature at small or large

scales, as detailed in Section 2. The principle rea-
son for these disagreements is the use of confidence

intervals. By using confidence intervals which re-

flect the true variations of non-Gaussian data,

the LMD plots suddenly paint a far less convinc-

ing picture than if one uses very optimistic confi-

dence intervals, or none at all. Another reason is

the individual treatment that we give for different

q values. Using plots such as those in Fig. 3 makes
manifest the many deviations from perfect align-
Table 3

Formal conclusion on scaling at fine (FS) and coarse (CS)

scales, using confidence intervals estimated from data

Trace Biscaling? MultiScaling?

FS CS

LBL-TCP-3 Yes Yes: �MonoF Yes: MonoF

AUCK-d1 Yes Yes: �MonoF Yes: MonoF

CAIDA-b1 Yes Yes: MonoF Yes: MonoF
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Fig. 5. LMDs for AUCK-d1 (left), and CAIDA-b1 (right) over FS an

multifractality applies at FS.
ment that exist in the data, and avoids the overly

optimistic impression one can obtain from repre-

sentations like that of Fig. 2.

We add two caveats to the summary above.

First, the conclusions do in fact agree with those
of [43]. However, we disagree with the methodol-

ogy used. At fine scales a regime only three octaves

wide was chosen in [43], which was at some dis-

tance from the knee j*, and no results were given

over the scales above and below this range. It is

also not clear whether the data based �non-Gauss-

ian� confidence intervals were used or not. For

these reasons their conclusions may not be robust.
We return to the question of gaussianity in Section

5.2.

Second, our results do not in fact contradict

those of [41], as the alpha traffic is only one traffic

component. Whilst the overall traffic may not sup-

port a multifractal model at large scale, a specific

component may. To resolve this, it must be ana-

lysed separately. However, we believe that more
work is needed to clarify whether the burstiness

of alpha traffic is best seen as non-stationaries at

the time scales considered. We note however that

[41] does not claim that alpha traffic is multifractal.

We emphasize that the conclusions of Table 3

are formal, in the sense of a conscientious but

straightforward application of standard wavelet

tools and a heuristic approach to goodness of fit
based on confidence intervals. In the next section

we consider new issues which can potentially revise

these conclusions.
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We quickly include some analyses for a different

time series, the discrete series of packet inter-arri-

val times. The q-LD plots (not shown) reveal clear

high quality multiscaling, and the corresponding

LMD plots in Fig. 5 show monofractal scaling at
large scales, but pronounced multifractal scaling

at small scales. Similar results were found for

many other traces. The inter-arrival time process

is closely linked to X, in fact they each determine

the other. We therefore conjecture that the multi-

fractal behaviour of these two, if present, must

be closely linked. It is easier however to deal with

X, as time scales can be directly interpreted as
�real�-time. Our final conclusions for the inter-arri-

val time series therefore follow those for X as laid

out below.
4. Statistical limitations

The conclusions made in Section 3 are based on
the formal use of an estimator. In the current sec-

tion we discuss the limitations of that estimator

and the associated methodology. It is useful to

frame the discussion in terms of the language of

hypothesis testing, where the null hypothesis is

that there exists a true multifractal scaling. This

is particularly instructive when we discuss how

the estimator can be fooled in Section 4.2. Our dis-
cussion remains qualitative however. No well de-

fined statistical test exists for the detection of

multifractal scaling, and it is beyond the scope of

this paper to develop such.

4.1. Estimator performance

For second order analysis under Gaussian
hypotheses, analytic (approximate) expressions

are known [13] for the confidence intervals, and

also bias correction factors which account for

the logarithmic based analysis (since EðlogÞ 6¼
logðEÞ). Neither of these are available at qth order

and/or in the non-Gaussian context. The estimates

at each (q, j) may be biased, as therefore may be

the fq, and furthermore it is not known how this
bias may vary as a function of signal type. The

quality of the variance estimates which underlie

the confidence intervals is likewise not precisely
known. These limitations of bias and confidence

interval determination increase the chance of mak-

ing an �error of type I�, that is, of incorrectly

concluding that multifractal scaling is not pres-

ent, when in fact it is. Should MF scaling be
correctly detected, its characteristics, namely the

estimates fq and the multifractal spectrum one

could estimate from them, may nonetheless be

distorted.

Another drawback is that there is no formal

procedure for the choice of cutoff scales defining

the scaling regime, nor a well defined goodness

of fit statistic which is appropriate to multifractal
data and the q-order analysis. Instead these choice

are made informally, based on observed alignment

�within the confidence intervals�.
We should at this point mention that other, par-

ticularly non-wavelet based, estimators typically

have even more drawbacks, and that this area of

statistics needs further development. In particular

earlier work dealing with multifractal scaling in
traffic suffers from the same limitations.

4.2. Analysis power and pseudo-slopes

While the presence of some estimation bias will

surprise nobody, the possibility of measuring mul-

tiscaling behaviour in a process which does not

possess true multifractal scaling is more insidious,
and has not been widely discussed. In the hypoth-

esis test language it corresponds to an �error of

type II�. As we show below, signals exist which

can give signatures which are difficult, or impossi-

ble to distinguish from true multifractal scaling.

This weakness can be thought of as a lack of power

of the estimation procedure, that is, high probabil-

ity of an error of type II. We give two mechanisms
by which this can occur.

The first mechanism arises from discontinuities.

The thick grey line in Fig. 6(a) is a single isolated

discontinuity, whose LD appears as the grey line

in Fig. 6(b). This simple signal possesses a clear

scaling behaviour, which reflects the natural

invariance of a discontinuity under dilation. The

black square wave of Fig. 6(a) shows that we
may split the energy of the isolated jump into a

number of smaller discontinuities, and still obtain

a wavelet spectrum showing scaling, and the
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remaining curve in Fig. 6(a) and (b), which is of an

on–off process with exponentially distributed (and

mutually independent) on and off periods, shows

that this remains true even after further splitting
combined with randomization. Discontinuities

can represent the arrival of new, large traffic

sources such as alpha flows, or fundamentally

non-stationary features. On–off processes can be
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used to model different traffic sub-processes, such

as the arrival of packets within a flow.

In each of the three cases above, the LD does

not reveal the isolated nature of the discontinuities

generating the scaling, which could therefore be
erroneously taken to be evidence of a fractal pro-

cess. In these examples of �pure discontinuity� how-
ever, the slope in the LDs is a characteristic a = 2,

which, being beyond a = 1 and therefore incom-

patible with stationarity, is a hint that something

is awry. We illustrate in Fig. 6(c) how the a = 2 sig-

nature can be distorted. We consider the same on–

off sample path to which we add white Gaussian
noise. 3 The noise increases the energy at all scales,

hiding the signature entirely at small scales and

lowering the slope at medium scales. On the right,

the characteristic short-range dependence of the

on–off process begins to have an influence on the

larger scales, again reducing the slope. The result

is a slope around a = 0.5 when measured over

j 2 [6, 11] in Fig. 6(c), and a corresponding multi-
scaling behaviour with a LMD shown in Fig.

6(d). The evidence for multifractality in this exam-

ple seems �clear but weak� over a relatively narrow

range of scales, precisely the situation we find our-

selves in for real traffic over small scales.

The second mechanism arises from a transition

giving the appearance of alignment. We examine a

renewal process with (over dispersed) Gamma dis-
tributed inter-arrival times. One can show that the

LD of this point process is a monotonically

increasing function, which transits between a con-

stant value in the small scale limit to another con-

stant in the limit of large scales. Fig. 6(e) shows the

LD of a Gamma renewal process centered over

scales in the transition region. As noted also in

[7], the transition gives the appearance of align-
ment in this region, an artifact of what in reality

is a smooth cross over between two levels. In fact

one observes multiscaling over the range [�4,0],

and would be led to the formal conclusion of mul-

tifractality from the corresponding LMD of Fig.

6(f).
3 A detailed examination of the effect in LDs of mixing

discontinuities with fractional Gaussian noise can be found in

[45].
Each of the above mechanisms give rise to

apparent multiscaling, which does not have true

multifractal scaling underlying it. We refer to this

phenomenon as pseudo-scaling.
5. Adding physical meaning

The main aim of this section is to review the

conclusions of Section 3 in the light of the possibil-

ities for error revealed in the previous section. To

do so requires the introduction of a new criteria.

This will be physical meaning, which we explore
through the Poisson cluster process [7], recently

introduced as a powerful model of the packet arri-

val process X(t). A second aim then naturally

arises, to use the physical insights which this model

brings as a tool to help distinguish real from

apparent traffic evolution, and to learn how a fair

comparison between different traces can be made.

5.1. A case for multifractality?

Poisson (Barlett Lewis) cluster processes (PCP)

are a class of stationary point processes defined as

follows [46]: seeds are positioned according to a

Poisson process with rate kF, and each seed marks

the starting point of a cluster which takes the form

of a finite renewal process with rate kA. The num-
ber of points in a cluster is a random variable P.

The mapping from the cluster model to a traffic

model is very intuitive. The seeds model the arrival

of TCP connections as a Poisson process, and the

cluster of points associated with a seed correspond

to the packets belonging to that connection, or

flow. The variable P thus denotes the number of

packets per connection, and is taken to be heavy
tailed (infinite variance) to generate the LRD

found in X. Within a connection, packets are

spread out according to a renewal process. We

choose a Gamma inter-arrival variable, thereby

allowing the in-flow burstiness to be controlled

by the Gamma shape parameter. Flows are inde-

pendent and identically distributed.

The significance of the PCP model lies in the
fact that its underlying assumptions are not arbi-

trary, in the sense of black box modelling, but des-

cend directly from real data in a very definite way.
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In [7], a series of semi-experiments were performed

on a number of traces, including AUCK-d1, where-

by selected aspects of the real data were replaced

by neutral model substitutes. The most important

experiment involved replacing the true flow arrival
process with a simple Poisson process of the same

rate, whilst keeping the internal packet structures

within each flow intact. Using LDs to compare

X(t) before and after, essentially no change was ob-

served—a very strong indication that flows can be

treated as independent in so far as modelling X(t)

is concerned (the analysis was restricted to links of

low utilisation, such as those we study here). Other
key features of the PCP model were also strongly

motivated by physical observations of this

semi-experimental type. Therefore, the parame-

ters in the model are meaningful not only in the

sense of possessing clear interpretations, but also

in the much stronger sense of having verifiable

physical meaning, with values which are also

meaningful.
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Fig. 7. qth order logscale diagrams for the PCP model fitted to AUCK

show remarkable agreement with the corresponding ones for the da

moments. Multiscaling of comparable quality is found over the same sc

a separate calculation for the very small scales, performed over only
Following the procedures outlined in [7], we fit-

ted the PCP model to the AUCK-d1 dataset, and

repeated the multiscaling analysis of Section 3.

Fig. 7 shows the q-LD plots, where we notice that,

although the PCP model involves no matching of
�other� order moments of any kind, it reproduces

the q-LD curves of Fig. 3 remarkably well. The

match is not perfect, however the q-LD plots sat-

isfy the multiscaling criteria to a similar level of

quality as in the real data. Accordingly, using the

same scaling regimes as for AUCK-d1, we calcu-

lated the LMD, and placed it next to the LMD

of AUCK-d1 in Fig. 8 to favour a direct compari-
son. The agreement is excellent. Not only are the

general shapes comparable, but so are the values,

and the formal conclusions regarding multifractal-

ity are close to those of Table 3. The difference is

that the �marginally monofractal� conclusion over

FS from the data becomes �weakly multifractal�
in the case of the model, mainly since confidence

intervals are smaller.
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-d1. The details of the plots are exactly as for Fig. 3. The curves

ta, given that the model was not calibrated to match higher

aling regimes (the barely visible small jumps at j = �4 are due to

a subset of the data for computational reasons).
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fine and coarse scale regimes the multiscaling signatures are very similar, and similar formal conclusions follow: monofractal at CS,

�marginally monofractal� or �weakly multifractal� at FS. However, the PCP is not multifractal.

Table 4

Physically interpreted conclusions on scaling at fine (FS) and

coarse (CS) scales, using confidence intervals estimated from

data, and insights from the Poisson cluster model and under-

lying semi-experiments

Trace Biscaling? MultiScaling?

FS CS

LBL-TCP-3 Yes No: pseudo-scaling Yes: MonoF

AUCK-d1 Yes No: pseudo-scaling Yes: MonoF

CAIDA-b1 Yes No: pseudo-scaling Yes: MonoF
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Although the close agreement between the data
and the model is very satisfying, the point we wish

to make here is something quite different. The PCP

model is not multifractal, and yet, it reproduced a

non-trivial multiscaling behaviour (at least to the

same extent as the data). It therefore provides an-

other, rather powerful, example of pseudo-scaling.

In fact, it is shown in [7] that the PCP model, at

small scales, is closely related to the Gamma re-
newal example shown in Section 4, and the pseu-

do-scaling arises from the transition effect (in [7]

this was shown for the LD, here we extend this

through other orders to multiscaling).

From the above, we see that pseudo-scaling is

not only a possible explanation for the weak evi-

dence found in Section 3, it actually is responsible

for the empirical scaling within a model of that
data which has a strong physical foundation. If

we accept this model as preferable on physical

grounds, which we do here, then we are led to con-

clude that the evidence for the multiscaling itself

(whether it be monofractal or not) is misleading.

It is to be interpreted in fact as a pernicious exam-

ple of the pseudo-scaling described in Section 4.

Table 4 summarises our final conclusion regard-
ing scaling from the point of view just discussed.

The verdicts at fine scales have changed character,

from monofractal or weak multifractal multiscal-

ing, to no true scaling at all, effectively due to a lack

of power on the part of the statistical procedure.

The conclusions at coarse scales are unaffected.
Before leaving this section, we reiterate that we
have not demonstrated in a formal sense that the

data is not multifractal, nor have we formally dem-

onstrated a lack of power on the part of the esti-

mator. Instead, our main point is that, given the

limitations of the current tools, and the weak nat-

ure of the empirical evidence, there is no case for

concluding for multifractality, particularly when

there are conceptually simpler models which can
account for the empirical observations equally

well, as far as the statistical tools are concerned.
5.2. Traffic evolution, insights and misconceptions

In this subsection we use the cluster model to

guide a discussion on how different traces can be

compared. This is important when one wishes to
address questions such as whether evidence for

scaling is changing or not over time.
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It has been recently argued in [43] that Internet

backbone traffic can no longer be multifractal

since its rate is now so high that it has Gaussian

marginals even at �small� scales of the order of

1 ms. While it is true that backbone traffic margin-
als may seem close to Gaussian at such scales, they

can never be exactly Gaussian and therefore con-

clusions cannot be so readily drawn. To see this

consider the following argument. The indepen-

dence of flows inherent in the cluster model implies

the important fact that the parameter kF, the arri-
val rate of flows, plays the role of the �amount� of
traffic. Doubling kF simply yields �twice as much of
the same thing�, and corresponds, in terms of the

wavelet spectrum, to a simple addition of 1. Thus,

varying kF simply shifts the wavelet spectrum ver-

tically: it does not change the underlying structure

of traffic dependencies (in particular it leaves cor-

relations invariant), but it of course does changes

the nature of the marginals of Xd, making them

closer to or further from Gaussian.
Similarly, backbone traffic has been said to tend

to a Poisson process with increasing traffic rate

[47]. While it is true that the distribution of inter-

arrival times tends to exponential as kF increases,

the inter-arrivals remain correlated both in data

and within the cluster model. In the latter this

can be seen by the fact that the wavelet spectrum

is simply shifted. This contradicts the necessary
assumption of independent inter-arrival times of

a Poisson process. Indeed, what is at work here

is nothing other than the smoothing effect of mul-

tiplexing gain, which speaks of the relative size of

traffic variability, but not of its nature. One must

be careful of the subtle fact that when examining

inter-arrival times as traffic rates increase, one is

in fact shifting the focus of observation to smaller
and smaller scales.

The very high rates of backbone traces make it

difficult to compare today�s traffic with what it was

a decade ago. Although much has changed, biscal-

ing is still present, and firm conclusions about traf-

fic evolution cannot be made unless it is clear what

constitutes a fair comparison. A key element of

this is the meaning of terms such as �large� or
�small� scales. A priori, these could be defined

in terms of link bandwidth, flow rate, distance

from Gaussianity in some sense, or via phenome-
nological criteria such as the scale of an observed

�knee�.
Whilst, in the light of the above discussion, one

can compare the wavelet spectra of the CAIDA

and LBL traces by adjusting for kF, there are other
issues. A comparison should also be �fair� in terms

of marginals. However one cannot simply zoom in

on a trace until the marginals look the same for the

two, for at least two reasons. First, any fair com-

parison should be made in analogous regimes:

comparing the LRD behaviour of LBL with what

happens before the onset of LRD in CAIDA does

not make any sense. Another important reason is
that one cannot safely zoom in indefinitely. Fig.

9 shows the LD and an averaged periodogram of

the very small scale regime of the CAIDA-b1 trace

(the two can be linked by reinterpreting Eq. (3) as

a spectral estimator, and setting m = 1/a). The Fou-

rier analysis reveals periodicities in the packet arri-

val process at scales j 6 10 due to physical network

effects, such as back to back packets on upstream
bottleneck links, which translate to shaped,

roughly periodic traffic on the observed link (the

wavelet analysis averages these out and leads to

a roughly flat spectrum consistent with a Poisson

process). It would be unfair to compare a scale

where the physical layer is very strong, such as
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around j = �15 for CAIDA-b1, with one where it

is not.

One can make further use of the PCP model for

meaningful comparisons. For instance a random

flow based thinning of a high rate trace could be
performed to equalise kF whilst preserving the

auto-correlation structure and, in principle, gener-

ating a new marginal which could be fairly com-

pared to that of LBL.

Moving beyond traffic volume and marginals,

fairness with respect to scaling regime can be ac-

cessed through comparing the positions of the

knee scale j* in the light of the formulae given in
[7]. In this way, the PCP model can be used not

only to clarify the issue of multifractality in traffic

but also to track traffic evolution in a way that

does not ignore the undeniable presence of empir-

ical multiscaling.
6. Conclusion

This paper investigated in depth the case

against multifractal behaviour in TCP/IP traffic,

beginning with a careful literature review showing

that inconsistencies and confusion exist in the pre-

vailing views, justifying a new look at the evidence

and its interpretation.

Using wavelet based estimation methods, we
provided a thorough analysis of the process of

packet arrivals for four representative traces. In

terms of scaling regimes, we defined two, one at

�large� and one at �small� scales, and explored for

the first time the breakdown of the latter at very

small scales. In terms of scaling beyond second or-

der we clearly separated out the empirical concept

of �multiscaling� from the much stronger conclu-
sion of multifractality or monofractality. Our for-

mal conclusions, in terms of the careful use of the

available analysis tools, were that multiscaling ex-

ists at both large and small scales, with monofrac-

tal and long-range dependent behaviour at large

scale, in agreement with most, but not all, of the

literature. In contradiction with most of the litera-

ture, over small scales we concluded monofractal
(or very marginal multifractal) behaviour. The dif-

ference is due mainly to a more rigorous use of

confidence intervals.
We then examined the wavelet tools themselves,

detailed their weaknesses, and showed how they

could be fooled. Most importantly, data which is

not multifractal can nonetheless display multiscal-

ing features indistinguishable from genuine mono-
fractal or multifractal scaling, in effect revealing a

lack of power, in the sense of informal hypothesis

testing, of the statistical methodology. We empha-

sized this point by showing that a Poisson cluster

model, with very strong data based physical justi-

fication, could successfully model the higher order

statistics of the data, and even its multiscaling

wavelet signatures, even though it is not multifrac-
tal. This led to a revised conclusion at small scale,

that the observed multiscaling does not have a

physical basis but is best regarded in effect as a

misinterpretation, a pseudo-scaling. We empha-

sized that these conclusions, although persuasive,

cannot be entirely definitive, as they are linked to

the philosophical issue of model choice, as well

as limited by the available statistical machinery.
Finally the cluster model was used to clarify mis-

conceptions regarding the evolution of traffic and

its relation to gaussianity and the nature of fair

comparisons across scale.
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