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Abstract—A variety of resting state neuroimaging data tend
to exhibit fractal behavior where their power spectrums fol-
low power-law scaling. Resting state functional connectivity
is significantly influenced by fractal behavior which may not
directly originate from neuronal population activities of the brain.
To describe the fractal behavior, we adopted the fractionally
integrated process (FIP) model instead of the fractional Gaussian
noise (FGN) since the FIP model covers more general aspects of
fractality than the FGN model. This model provides a theoretical
basis for the dependence of resting state functional connectivity
on fractal behavior. Inspired by this idea, we introduce a novel
concept called the nonfractal connectivity which is defined as the
correlation of short memory independent of fractal behavior,
and compared it with the fractal connectivity which is an
asymptotic wavelet correlation. We propose several wavelet-based
estimators of fractal connectivity and nonfractal connectivity
for a multivariate fractionally integrated noise (mFIN). These
estimators were evaluated through simulation studies and applied
to the analyses of resting state fMRI data of the rat brain.

I. INTRODUCTION

The dynamics of endogenous neuronal activities has been
an important issue in neuroscience since it is supposed to take
control of most neuronal activities arising in the brain [1].
The huge default-mode functional network of the brain has
been usually investigated through resting state neuroimaging
data such as electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) [2]–[5]. One of the major
goals in resting state neuroimaging research is the reliable
inference of functional dynamics of spontaneous neuronal
population activities from resting state neuroimaging data.
However, it is not straightforward since resting state signals
may be significantly affected by non-neuronal physiological
factors. On the other hand, the response to stimulation in task-
based experimental paradigm is prominently correlated with
brain activities either directly or indirectly.

One of the non-neuronal obstacles in resting state neu-
roimaging studies is the fractal behavior (or long-range depen-
dence) where the power spectrum tends to exhibit 1/fα power
law scaling across low frequencies. This phenomenon has
been observed through a number of resting state neuroimaging
studies [6]–[9]. As such a phenomenon has been ubiquitously
observed in nature, the fractal behavior in neuroimaging data
may also arise from various mediators such as respiration [10],

[11], cardiac fluctuations [12], system noise, hemodynamics
(in the case of fMRI) as well as neuronal activities [13]–[15].

The classical model of fractal behavior or long memory
in baseline neuroimaging signals has been the fractional
Gaussian noise (FGN) which is defined as an increment
process of fractional Brownian motion (FBM) and completely
characterized by both Hurst exponent and variance [16]. The
FGN model has been adopted to various fractal-based analyses
of fMRI data for a decade so as to account for scale-free
dynamics of neuroimaging signals [17]–[21].

However, there is a controversy about whether the FGN
is the most appropriate model for resting state neuroimaging
signals among a variety of long memory models. While the
FGN model is defined just with two parameters under math-
ematically strict conditions of self-similarity, a neuroimaging
signal is produced from a nonlinear biological system which
is controlled by numerous hidden parameters. In this reason,
the fractionally integrated process (FIP) model, based on the
concept of fractional differencing [22], is worth consideration
as an alternative to the FGN model since it embraces diverse
types of long memory. Indeed, the FGN is regarded as a special
type of the FIP model which is more extensive than FGN.

In this paper, we adopted the fractionally integrated process
(FIP) model to effectively describe the fractal behavior of
neuroimaging signals. In the FIP model, a neuroimaging signal
is represented as the output of a long memory (LM) filter
whose input is a nonfractal signal (sometimes called short
memory as a notion corresponding to long memory). In other
words, a nonfractal signal is transformed into a neuroimaging
signal with fractal behavior through long memory filtering as
shown in Fig. 1, which indicates that the fractal behavior is
attributed not to the nonfractal input but to the LM filter. The
influence of several factors on the fractal behavior can be well
aggregated in terms of a sequence of long memory filters.

The FIP model sheds light on the influence of fractal
behavior on functional connectivity. The correlation of resting
state neuroimaging signals between two brain regions may
significantly differ from that of the nonfractal input signals
according to the difference of memory parameters. Hence, the
ordinary correlation of resting state neuroimaging data may not
well reflect the functional dynamics of spontaneous neuronal
activities due to the fractal behavior.
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Fig. 1. The FIP model representation of resting state neuroimaing signals.

The theoretical expectation that functional connectivity may
be influenced by fractal behavior leads us to take into ac-
count the correlation of fractal-free input signals as a novel
concept of resting state functional connectivity while the
Pearson correlation of neuroimaging signals has been the most
popular definition of functional connectivity. This particular
correlation, which is independent of fractal behavior, is called
the nonfractal connectivity. Its mathematical description is
provided in section III. The nonfractal connectivity is not
exactly identical to the correlation of spontaneous neuronal
population activities due to the nonlinearity of neurophysio-
logical systems. However, it may give us better information on
correlation structure of spontaneous neuronal populations than
ordinary correlation of neuroimaging data since it eliminates
the distortion of functional connectivity due to fractal behavior.

The nonfractal connectivity is comparable to fractal connec-
tivity which was first proposed in [24] as the asymptotic value
of wavelet correlations over low frequency scales. The wavelet
correlations of two long memory processes are converged on
a specific value which is determined by the correlation of
short memory parts as well as memory parameters. We show
the theoretical relevance of nonfractal connectivity to fractal
connectivity.

In this paper, we propose three wavelet-based approaches
to estimating both nonfractal connectivity and fractal connec-
tivity: (1) the SDF(Spectral density function)-based method,
(2) the covariance-based method, and (3) the linearity-based
method. As prerequisite to estimating these connectivities,
memory parameters should be estimated a priori. We tested
two wavelet-based univariate estimators of memory parame-
ter: the wavelet-based least-mean-squares (LMS) method and
the wavelet-based maximum likelihood (ML) method. The
performance of all proposed estimators was verified through
simulation studies. We also show an example of applying these
estimators to resting state fMRI data taken from anesthetized
rat brains to estimate nonfractal connectivity.

This paper is organized as follows. In section II, the FIP
model of resting state neuroimaging signals is briefly intro-
duced, and the concepts of nonfractal connectivity and fractal
connectivity are described in section III. The wavelet-based
estimators of both connectivities are proposed in section IV.
The results of simulation studies and experiments in fMRI data
are provided in section V and VI.

II. LONG MEMORY MODEL

Fractal properties of a time series can be modeled as long
memory models such as FGN, ARFIMA, and GARCH pro-
cesses. In this section, we especially introduce both univariate

and multivariate fractionally integrated processes (FIP) that
encompass several classes of long memory such as fractionally
integrated noise (FIN), FGN, and ARFIMA [22], [25].

A. Univariate case

Let x(t) be a real-valued discrete process of length N given
by

u(t) = (1− L)
d
x(t) (1)

where d ∈ R, L denotes the back-shift operator, and u(t)
(called short memory) is a stationary process whose spectral
density Su (f) is a non-negative symmetric function bounded
on (−π, π) and bounded away from zero at the origin. x(t)
can be represented as the convolution of u(t) with the long
memory (LM) filter g(t) as follows

x(t) =
∞∑
τ=0

g(τ)u(t− τ) (2)

where

g(t) :=
dΓ(d+ t)

Γ(d+ 1)Γ(t+ 1)
. (3)

If −1/2 < d < 1/2, the spectral density of x(t) is given by

S(f) =
∣∣1− e−if ∣∣−2d

Su(f). (4)

The fractal behavior is controlled by the memory parameter
d. If 0 < d < 1/2, the process x(t) is said to be a stationary
long memory process with memory parameter d while x(t)
is nonstationary if d > 0.5. If d = 0, the process becomes a
white noise.

B. Multivariate case

The definition of the univariate long memory model can
be extended to the multivariate case. Consider a real-valued
q-vector process X(t) given by (1− L)d1 0

. . .
0 (1− L)dq


 X1(t)

...
Xq(t)

 =

 U1(t)
...

Uq(t)

 ,

(5)
where U(t) = (U1(t), ..., Uq(t)) is a multivariate stationary
process whose spectral density S(f) = [Sm,n(f)] is bounded
on (−π, π) and bounded away from zero at the origin. For
−1/2 < dk < 1/2, the spectral density of U is given by

S (f) = Φ (f) Su (f) Φ∗ (f) (6)

where

Φ (f) =

 (1− eif )−d1 0
. . .

0 (1− eif )−dq

 . (7)

In the case of 0 < dk < 1/2 for 1 ≤ k ≤ q for
1 ≤ k ≤ q, X(t) is said to be a stationary long memory
process with memory parameter d = (d1, · · · , dq). If U(t) is a
vector ARMA process, X(t) becomes a multivariate ARFIMA



process. On the other hand, if U(t) is a vector i.i.d. random
variable, i.e.

U(t)
i.i.d.∼ N (0,Σu) , (8)

X(t) becomes a multivariate fractionally integrated noise
(mFIN). In this case, the cross-spectral density of xm(t) and
xn(t) is given by

Sm,n (f) = γm,n
(
1− eif

)−dm (
1− e−if

)−dn (9)

where γm,n is identical to the (m,n)-th element of Σu.

III. NONFRACTAL AND FRACTAL CONNECTIVITY

As discussed in the section I, the most popular definition
of functional connectivity has been the Pearson correlation.
The multivariate long memory model introduced in the section
II additionally provides two novel definitions of resting state
functional connectivity: fractal connectivity and nonfractal
connectivity. While fractal connectivity is defined based on
the asymptotics of wavelet correlation, nonfractal connectivity
is defined based on the covariance of short memory.

A. Nonfractal connectivity

Let X(t) be an mFIN process with memory parameter d,
and U(t) be a short memory function of X(t) given in (5).
The nonfractal connectivity of xm(t) and xn(t) is defined as

Dm,n =
γm,n√
γm,mγn,n

(10)

where γm,n denotes the covariance of um(t) and un(t); that
is, γm,n := E [um(1)un(1)].

B. Fractal connectivity

The variance of a discrete time series can be decom-
posed over several frequency bands (called scales) through
the discrete wavelet transform (DWT). Let Wi(j, k) be the
wavelet coefficient of the ith process xi(t) at scale j and
time point k. The wavelet covariance is defined as νm,n(j) :=
cor (Wm(j, k),Wn(j, k)) at scale j. Since the wavelet coeffi-
cients of an FIP at a scale j is covariance stationary, νm,n(j) is
independent of time t. Let Hj(f) be the squared gain function
of the wavelet filter such that

Hj(f) ≈
{

2j for 2π/2j+1 ≤ |f | ≤ 2π/2j

0 otherwise . (11)

Then, the wavelet covariance of xm(t) and xn(t) at scale j is
related to the cross-spectral density [26] as follows

νm,n(j) = 2π

∫ π

−π
Hj(f)SX(f)df. (12)

The wavelet correlation ρm,n(j) := cor (Wm(j, k),Wn(j, k))
is given by

ρm,n(j) =
νm,n(j)√
νm(j)νn(j)

. (13)

Theorem 1 (Asymptotic wavelet covariance): Suppose that
X(t) is a multivariate FIN process which satisfies the condition

(8). Then, the wavelet covariance of xm(t) and xn(t) at scale
j is approximated by

νm,n(j) ≈ γm,nβm,n2j(dm+dn) as j →∞ (14)

where

βm,n := 2 cos
(π

2
(dm − dn)

) 1− 2dm+dn−1

1− dm − dn
(2π)−dm−dn .

(15)
Proof: It is well known the following Taylor series

sin−dm−dn (f/2) ≈

(f/2)
−dm−dn +

dm + dn
6

(
f

2

)2−(dm+dn)

. (16)

From (9) and (16),

Sm,n (f) = γm,n2−dm−dn

((
f

2

)−dm−dn
+

dm + dn
6

(
f

2

)2−(dm+dn)
)
. (17)

Substituting Sm,n (f) in (12) with (17), we finally get (14).

The asymptotic property of wavelet correlation 1 was also
proved for more general cases of short memory in [24]. From
(13) and (14), the wavelet correlation of xm(t) and xn(t)
asymptotically converges to

ρm,n(j)→ ρ∞m,n := Dm,nΥ(dm, dn) as j →∞ (18)

where
Υ(dm, dn) :=

βm,n√
βm,mβn,n

. (19)

The asymptotic wavelet correlation ρ∞m,n is called the fractal
connectivity of xm(t) and xn(t). The ratio of fractal connec-
tivity to nonfractal connectivity is given from (18) by

ρ∞m,n
Dm,n

= Υ(dm, dn). (20)

The ratio depends just on a pair of long memory parameters
as depicted in Fig. 2. As the difference of long memory
parameters increases, fractal connectivity gets away from
nonfractal connectivity. On the other hand, fractal connectivity
is nearly identical to nonfractal connectivity if the difference
of two memory parameters approaches zero.

IV. ESTIMATION OF FRACTAL CONNECTIVITY AND
NONFRACTAL CONNECTIVITY

The multivariate FIP model indicates that both nonfractal
connectivity and fractal connectivity can be well estimated if
memory parameters are known. Here we deal with a simple
case such that a given time series is approximated as a
multivariate FIN process (mFIN). The estimation of nonfractal
connectivity and fractal connectivity is organized as two steps.
The first step is to estimate memory parameters, and the next
step is to compute both fractal connectivity and nonfractal
connectivity given the memory parameters. In this section,



Fig. 2. The ratio of fractal connectivity to nonfractal connectivity in a
bivariate ARFIMA(0, d, 0) process over memory parameters. Note that H1 =
d1 + 0.5 and H2 = d2 + 0.5.

several wavelet-based techniques which can be exploited in
each step are introduced. All of these methods are based on
the wavelet transform which are optimal to investigate the
properties of long memory processes.

A. Estimation of memory parameters

1) Wavelet least-mean-squares method (LMS): By taking
logarithm to (14), we obtain the following linear relationship
of wavelet variance in the logarithm scale:

log2 [νm(j)] ≈ 2dmj + cm. (21)

It enables us to estimate the memory parameters d̂m by linear
regression over a given scale interval J = jlow → jhigh on the
basis of the biased estimator of wavelet variance given by

ν̂m(j) =
1

nj2j

nj∑
t=1

W 2
m(j, t) (22)

where nj is the number of coefficients in scale j except
boundary coefficients [26]. In a similar manner with [24],
the optimal scale interval Jopt for linear regression in (21)
is globally determined by

Jopt = arg min
J⊂J

σ2
LS(J ) (23)

where J is the space of all scale intervals, ∆J = jhigh−jlow+1,
and

σ2
LS(J ) =

1

∆J

jhigh∑
j=jlow

q∑
m=1

{
log2 [ν̂m]− 2d̂mj − ĉm

}2

. (24)

2) Wavelet maximum-likelihood method (ML): The like-
lihood function for memory parameter dm and asymptotic
variance Gm is given by

L
(
d̂m, γ̂m |xm(t)

)
:=

1

(2π)N/2 |Σm|1/2
e−xT Σ−1

m x/2. (25)

The matrix Σm denotes the covariance matrix of xm(t), and
can be replaced by Σ̃m := WTΛW where W is a wavelet

transform matrix and Λ is a diagonal matrix which has diago-
nal elements Λm(j) := νm(j) given in (14) for j = 1, ..., J as
an average value of spectral density function (SDF) over the
band

[
1/2j+1, 1/2j

]
. The reduced log likelihood function can

be obtained on the basis of the Brockwell and Davis’s method
[27]:

l
(
d̂m, γ̂m |xm(t)

)
(26)

= −2 logL
(
d̂m, γ̂m |xm(t)

)
−N log(2π)−N

= N log (γ̂m,m) + log(Λm(J + 1)) +
J∑
j=1

Nj log (Λm(j))

with N = 2J , Nj = N/2j , and

γ̂m,n :=
1

N

(
V TmVn

Λm,n(J + 1)
+

J∑
j=1

1

Λm,n(j)

Nj−1∑
t=0

Wm(j, t)Wn(j, t)

 (27)

where Vm are the scaling coefficients at scale J and Wj,t is
the t-th element of j-th level wavelet coefficients. The optimal
memory parameter d̂m can be estimated by minimizing (26)
with respect to d̂m [26].

B. Estimation of short-memory covariance

1) The SDF-based method (SDF): The estimator γ̂m,n of
short memory covariance can be semiparametrically computed
by (27). Since Vm ≈ 0 in stationary long memory processes,
the equation can be approximated as

γ̂m,n ≈
1

N

J∑
j=1

1

Λm,n(j)

Nj−1∑
t=0

Wm(j, t)Wn(j, t). (28)

2) The covariance-based method (COV): Alternatively, the
short memory covariance can be estimated by exploiting the
properties such that the sum of wavelet covariances over all
scales is identical to the covariance of a time series; i.e.,

σ̂2
m,n =

cov (Vm, Vn)

N
+

J∑
j=1

cov (Wm(j, t),Wn(j, t))

2j
. (29)

Since cov (Vm, Vn) ≈ 0 for a FIN process, the estimator of
short memory covariance can be obtained from (14) and (29)
as follows

γ̂m,n =
σ̂2
m,n

2Bm,n
∑J
j=1 2(dm+dn−1)j

(2π)
dm+dn . (30)

3) The linearity-based method (LIN): The estimator of
short memory covariance can be also obtained in the other
way based on the linearity of wavelet covariance over scales
as follows.

γ̂m,n =
2ĉm,n−1

Bm,n cos
(
π
2 (dm − dn)

) (2π)dm+dn (31)



where

ĉm,n =
1

J

J∑
j=1

[log2 ν̂m,n(j)− (dm + dn)j] , (32)

Bm,n :=
1− 2dm+dn−1

1− dm − dn
. (33)

C. Estimation of fractal and nonfractal connectivity

After the estimators for memory parameters d̂ and the short
memory covariance Γ̂ are obtained, the nonfractal connectivity
D̂m,n can be estimated by using (10) as follows

D̂m,n =
γ̂m,n√
γ̂m,mγ̂n,n

. (34)

Likewise, fractal connectivity ρ̂∞m,n can be estimated from (18)
and (34) as follows

ρ̂∞m,n := D̂m,nΥ(d̂m, d̂n). (35)

V. SIMULATION STUDY

In this section, the performance of three wavelet-based
estimators for nonfractal connectivity was evaluated. We also
analyzed the influence of short memory condition, dimension,
and length of time series on the estimation of nonfractal
connectivity. By combining a connectivity estimator with a
memory parameter estimator, six pairs of estimator, such as
LMS-LIN, LMS-COV, LMS-SDF, ML-LIN, ML-COV, ML-
SDF methods, were finally tested.

A. Setup

We simulated multivariate ARFIMA(p,d, 0) processes that
belong to the FIP model. First, the short memory U(t) in (5)
was given as an ARMA(p, 0) process as follows

U(t) = Φ−1
p (L)Aε(t). (36)

In (36), εi(t) for i = 1, · · · , q is an i.i.d. random variable
where

cov(εm(t), εn(t)) =

{
1 if m = n

0 if m 6= n,
(37)

Φp(L) =


∑p
i=1 ϕ1,iL

i 0
. . .

0
∑p
i=1 ϕq,iL

i

 , (38)

and

A =


1 0 · · · · · · 0
0 1 a · · · a
... a

. . .
...

...
... 1 a

0 a · · · a 1

 . (39)

If we set

a =
1±
√

1− bρ
b

(40)

where b = ρ(q− 2)− (q− 3), the short memory correlation is
forced to be Dm,n = ρ for m,n > 1 and m 6= n. Afterwards,

the memory parameters d were equally distributed over d ∈
(−1/2, 1/2), and the multivariate ARMA(p, 0) process was
filtered by the LM filter defined in (3).

B. Effects of short memory condition

To study the effects of short memory conditions on
the performance of estimators, we performed Monte
Carlo simulations with 100 repetitions of four-dimensional
ARFIMA(p, d, 0) processes under four different types of short
memory condition in (38) and (39):

(1A) A = I and ϕk,i = 0
(1B) A = I, ϕk,1 = 0.9 and ϕk,i = 0 for i > 1
(2A) A = A0 and ϕk,i = 0
(2B) A = A0, ϕk,1 = 0.9 and ϕk,i = 0 for i > 1

where d = {0.2, 0.4, 0.6, 0.8} and A0 was set with ρ = 0.3
in (40). In the conditions (1A) and (1B), each short memory
process is statistically independent of each other while the
conditions (2A) and (2B) let short memory processes be cross-
correlated. On the other hand, the conditions (1B) and (2B)
let each process be autocorrelated.

In Fig. 3, all methods were weak in the conditions (1B) and
(2B) where short memory parts were more auto-correlated; the
relative decrease in consistency for two cases was common to
all six methods. The deteriorated performance in (1B) and (2B)
is a foreseeable result since these short memory conditions
no longer follow the assumption of mFIN in (8) adopted for
our proposed estimators. Hence, our proposed estimators were
not efficient when the set of short memory signals cannot be
approximated as a multivariate i.i.d. process.

In the cases (2A) and (2B) where short memory processes
are cross-correlated, LMS-LIN, ML-LIN, and ML-COV esti-
mators were not significantly biased. However, Fig 4 and 5
show that all estimators except LMS-LIN are more biased as
the correlation of short memory increases when the dimension
(the number of time series) is large.

In these experiments, the short memory processes were
given as a multivariate ARMA(0, 0) process with innovation
which fulfills (39) and (40). The short memory correlation
coefficient in (40) was set by either ρ = 0.2 or ρ = 0.8.
In Fig 4 and 5, the absolute bias of estimators except LMS-
LIN increased as the dimension increases, and the increasing
rate of bias was faster when the short memory correlation
was high. Hence, the high correlation of short memory results
in the deterioration of estimation performance. All the above
results show that the bias of estimators tends to be associated
with cross-correlation of short memory parts, but also that the
consistency tends to be related to auto-correlation of each short
memory part. In summary, the performance of our proposed
estimators for nonfractal connectivity is manifestly influenced
by the short memory conditions.

C. Effects of dimension and length of time series

Fig 4 and 5 show that the estimators of nonfractal connectiv-
ity except LMS-LIN depend on the dimension of time series.
The LMS-LIN method was relatively less biased even in high
dimension than other methods, however the consistency was



(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Fig. 3. Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(p, d, 0) processes with different short memory conditions.

large. On the other hand, the other methods were more biased
as the dimension increases; especially the increase in bias
was more prominent in the LMS-SDF and ML-SDF methods.
Hence, the increase in the number of time series leads to
the poor performance of estimating nonfractal connectivity.
Nevertheless, the ML-COV method has the best consistency
even in high dimension and high correlation.

Fig. 6 shows that the performance of nonfractal connectivity
estimation is associated with the length of time series. In multi-
variate ARFIMA(0, d, 0) processes with zero cross-correlation
between short memory parts, the consistency of all methods
was improved as the length of time series increases. However,
the LMS-LIN method had greater bias than ML-LIN when
the length of time series was small. In Fig. 3, the LMS-LIN
and ML-LIN methods had different performance in all tested
short memory conditions even though they have the common
approach to estimating nonfractal connectivity. These results
imply that the estimation of nonfractal connectivity can be
affected by the estimator of memory parameter.

Concluding Fig. 3-6, the ML-COV method would be the
best choice as an estimator of nonfractal connectivity since it
exhibits small bias in various cases of short memory conditions
and high consistency even in high dimension and high short
memory correlation. As shown in Fig 7, the connectivity ma-
trix estimated by the ML-COV method has smaller difference

(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Fig. 4. Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable dimensions when the short
memory correlation is ρ = 0.2.

with the original short memory correlation matrix than those
produced by other methods have. However, it is theoretically
expected that the covariance-based method including ML-
COV may be more sensitive to additive noises than other
methods. In the case that the signal-to-noise ratio is low, the
ML-LIN method may have better performance than ML-COV.

VI. RESTING STATE FUNCTIONAL MRI

We applied our proposed estimator of nonfractal connectiv-
ity to a resting state fMRI data of the anesthetized rat brain
taken from 4.7T MRI scanner. We manually separated the
15 ROIs from the anatomical MRI image, and mapped them
into the 64× 64× 8 volume of blood-oxygen-level-dependent
(BOLD) signals in fMRI by using the FLIRT (FMRIB’s
Linear Image Registration Tool). These ROIs correspond to
aCG, CPu-L, CPu-R, MEnt+MEntV-L, MEnt+MEntV-R, HIP-
L, HIP-R, S1-L, S1-R, S2-L, S2-R, LSI+MS, TE-L, TE-R, and
TH [28].

We computed both the Pearson correlation and nonfractal
connectivity by using the ML-LIN method. In Fig. 8, the
estimated nonfractal connectivity has significantly different
patterns from the ordinary correlation. As shown in the mod-
ularized graph representations of Pearson correlation and non-
fractal connectivity obtained after thresholding the number of
edges by 20, the nonfractal functional network tends to exhibit



(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Fig. 5. Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable dimensions when the short
memory correlation is ρ = 0.8.

increased modularity while the correlation-based functional
network exhibits high randomness.

VII. CONCLUSION

In this article, we modeled a resting state neuroimaging
signal as a fractionally integrated process and introduced
the nonfractal connectivity as a novel concept of resting
state functional connectivity. There is no empirical evidence
which demonstrates that the nonfractal connectivity reflects
the correlation of spontaneous neuronal population activities.
Through empirical analyses and computational modeling of
resting state neuroimaging data, the association of nonfractal
connectivity and neuronal population activities needs to be
clarified in the future.

We also proposed several wavelet-based methods for es-
timating nonfractal and fractal connectivity. These estimators
are optimal under the assumption that the given signals can be
approximated by an mFIN while neuroimaging signals would
have various short memory and can be seriously contaminated
by physiological or system noises. Hence, the estimators need
to be improved in a variety of short memory conditions and
the existence of additive noises. It would be also valuable to
figure out the biological mechanism of fractal behavior which
gives rise to the distortion in functional connectivity. All these
challenges may give us insight into the relationship of resting

(a) LMS-LIN (b) ML-LIN

(c) LMS-COV (d) ML-COV

(e) LMS-SDF (f) ML-SDF

Fig. 6. Box plots of bias in estimation of nonfractal connectivity for simulated
ARFIMA(0, d, 0) processes according to variable length of time series when
the short memory correlation is ρ = 0.

(a) Short memory correlation (b) ML-LIN

(c) ML-COV (d) ML-SDF

Fig. 7. An example of nonfractal connectivity estimation in a simulated
8-dimensional ARFIMA(0, d, 0) process.

state functional connectivity and fractal behavior.



(a) Nonfractal connectivity (b)

(c) Pearson correlation (d)

Fig. 8. An example of nonfractal connectivity estimation in resting state
fMRI data of the anesthetized rat brain.
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