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This letter presents theoretical, algorithmic, and experimental results
about nonnegative matrix factorization (NMF) with the Itakura-Saito
(IS) divergence. We describe how IS-NMF is underlaid by a well-defined
statistical model of superimposed gaussian components and is equiva-
lent to maximum likelihood estimation of variance parameters. This set-
ting can accommodate regularization constraints on the factors through
Bayesian priors. In particular, inverse-gamma and gamma Markov chain
priors are considered in this work. Estimation can be carried out using
a space-alternating generalized expectation-maximization (SAGE) algo-
rithm; this leads to a novel type of NMF algorithm, whose convergence
to a stationary point of the IS cost function is guaranteed.

We also discuss the links between the IS divergence and other cost
functions used in NMF, in particular, the Euclidean distance and the
generalized Kullback-Leibler (KL) divergence. As such, we describe how
IS-NMF can also be performed using a gradient multiplicative algorithm
(a standard algorithm structure in NMF) whose convergence is observed
in practice, though not proven.

Finally, we report a furnished experimental comparative study of
Euclidean-NMF, KL-NMF, and IS-NMF algorithms applied to the power
spectrogram of a short piano sequence recorded in real conditions, with
various initializations and model orders. Then we show how IS-NMF
can successfully be employed for denoising and upmix (mono to stereo
conversion) of an original piece of early jazz music. These experiments
indicate that IS-NMF correctly captures the semantics of audio and is
better suited to the representation of music signals than NMF with the
usual Euclidean and KL costs.
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1 Introduction

Nonnegative matrix factorization (NMF) is a popular dimension-reduction
technique, employed for nonsubtractive, part-based representation of non-
negative data. Given a data matrix V of dimensions F × N with nonnegative
entries, NMF is the problem of finding a factorization

V ≈ WH, (1.1)

where W and H are nonnegative matrices of dimensions F × K and K ×
N, respectively. K is usually chosen such that F K + K N $ F N, hence
reducing the data dimension. Note that the factorization is in general only
approximate, so that the terms approximate nonnegative matrix factorization
and nonnegative matrix approximation also appear in the literature. NMF
has been used for various problems in diverse fields. To cite a few, we
mention the problems of learning parts of faces and semantic features of text
(Lee & Seung, 1999), polyphonic music transcription (Smaragdis & Brown,
2003), object characterization by reflectance spectra analysis (Berry, Browne,
Langville, Pauca, & Plemmons, 2007), portfolio diversification (Drakakis,
Rickard, de Fréin, & Cichocki, 2008), and scotch whiskies clustering (Young,
Fogel, & Hawkins, 2006).

In the literature, the factorization, equation 1.1, is usually sought after
through the minimization problem

min
W,H≥0

D(V | WH), (1.2)

where D(V | WH) is a cost function defined by

D(V | WH) =
F∑

f =1

N∑

n=1

d([V] f n | [WH] f n), (1.3)

and where d(x | y) is a scalar cost function. Popular choices are the Euclidean
distance, which we here define as

dEUC (x | y) = 1
2

(x − y)2, (1.4)

and the (generalized) Kullback-Leibler (KL) divergence, also referred to as
I-divergence, defined by

dK L (x | y) = x log
x
y

− x + y. (1.5)

Both cost functions are positive and take value zero if and only if x = y.
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Lee and Seung (2001) proposed gradient descent algorithms to solve the
minimization problem, equation 1.2, under the latter two cost functions.
When a suitable step size is used, the gradient descent update rules are
turned into multiplicative rules, under which the cost function is shown
to be nonincreasing. The simplicity of the update rules has undoubtedly
contributed to the popularity of NMF, and most of the above-mentioned
applications are based on Lee and Seung’s algorithm for minimization of
either the Euclidean distance or the KL divergence.

Nevertheless, some papers have considered NMF under other cost func-
tions and other algorithmic structures. In particular Cichocki and coauthors
have devised several types of NMF algorithms for cost functions such as
Csiszár divergences (including Amari’s α-divergence) and the β-divergence
in Cichocki, Zdunek, and Amari (2006), with several other cost functions
considered in Cichocki, Amari et al. (2006). Also, Dhillon and Sra (2005)
have described multiplicative algorithms for the wide family of Bregman
divergences. The choice of the NMF cost function should be driven by the
type of data to analyze, and if a good deal of literature is devoted to im-
proving performance of algorithms given a cost function, little literature has
been devoted to how to choose a cost function with respect to a particular
type of data and application.

In this letter, we are specifically interested in NMF with the Itakura-Saito
(IS) divergence, and we demonstrate its relevance to the decomposition of
audio spectra. The expression of the IS divergence is given by

dIS(x | y) = x
y

− log
x
y

− 1. (1.6)

This divergence was obtained by Itakura and Saito (1968) from the max-
imum likelihood (ML) estimation of short-time speech spectra under au-
toregressive modeling. It was presented as “a measure of the goodness of fit
between two spectra” and became popular in the speech community during
the 1970s. It was in particular praised for the good perceptual properties of
the reconstructed signals it led to (Gray, Buzo, Gray, & Matsuyama, 1980).

As we shall see, this divergence has other interesting properties. It is
in particular scale invariant, meaning that low-energy components of V
bear the same relative importance as high-energy ones. This is relevant to
situations in which the coefficients of V have a large dynamic range, such
as in audio short-term spectra. The IS divergence also leads to desirable
statistical interpretations of the NMF problem. Indeed, we describe how
NMF in this case can be recast as ML estimation of W and H in superimposed
signals under simple gaussian assumptions. Equivalently, we describe how
IS-NMF can be interpreted as ML of W and H in multiplicative gamma noise.

The IS divergence belongs to the class of Bregman divergences and is
a limit case of the β-divergence. Thus, the gradient descent multiplicative
rules given in Dhillon and Sra (2005) and Cichocki, Zdunek et al. (2006),
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which coincide in the IS case, can be applied. If convergence of this al-
gorithm is observed in practice, its proof is still an open problem. The
statistical framework going along with IS-NMF allows deriving a new
type of minimization method, derived from space-alternating expectation-
maximization (SAGE), a variant of the standard expectation-maximization
(EM) algorithm. This method leads to new update rules, which do not
possess a multiplicative structure. The EM setting guarantees convergence
of this algorithm to a stationary point of the cost function. Moreover, the
statistical framework opens doors to Bayesian approaches for NMF, allow-
ing elaborate priors on W and H, for which maximum a posteriori (MAP)
estimation can again be performed using SAGE. Examples of such priors,
yielding regularized estimates of W and H, are presented in this work.

IS-NMF underlies previous work in the area of automatic music
transcription and single-channel audio source separation, but never
explicitly so. In particular, our work builds on Benaroya, Gribonval, and
Bimbot (2003), Benaroya, Blouet, Févotte, and Cohen (2006), Abdallah and
Plumbley (2004), and Plumbley, Abdallah, Blumensath, and Davies (2006),
and the connections between IS-NMF and these articles will be discussed.

This letter is organized as follows. Section 2 addresses general properties
of IS-NMF. The relation between the IS divergence and other cost functions
used in NMF is discussed in section 2.1, section 2.2 addresses scale in-
variance, and section 2.3 describes the statistical interpretations of IS-NMF.
Section 3 presents two IS-NMF algorithms; an existing multiplicative algo-
rithm is described in section 3.1, and section 3.2 introduces a new algorithm
derived from SAGE. Section 4 reports an experimental comparative study
of Euclidean-NMF, KL-NMF, or IS-NMF algorithms applied to the power
spectrogram of a short piano sequence recorded in real conditions, with
various initializations and model orders. These experiments show that IS-
NMF correctly captures the semantics of the signal and is better suited
to the representation of audio than NMF with the usual Euclidean and KL
costs. Section 5 presents how IS-NMF can accommodate regularization con-
straints on W and H within a Bayesian framework and how SAGE can be
adapted to MAP estimation. In particular, we give update rules for IS-NMF
with gamma and inverse-gamma Markov chain priors on the rows of H. In
section 6, we present audio restoration results of an original early recording
of jazz music; we show how the proposed regularized IS-NMF algorithms
can successfully be employed for denoising and upmix (mono to stereo
conversion) of the original data. Finally, conclusions and perspectives of
this work are given in section 7.

2 Properties of NMF with the Itakura-Saito Divergence

In this section we address the links between the IS divergence and other
cost functions used for NMF. Then we discuss its scale invariance property
and, finally, describe the statistical interpretations of IS-NMF.
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2.1 Relation to Other Divergences Used in NMF.

2.1.1 β-Divergence. As observed by Cichocki, Amari et al. (2006) and
Cichocki, Zdunek et al. (2006), the IS divergence is a limit case of the β-
divergence introduced by Eguchi and Kano (2001) that we here define as

dβ (x | y) def=






1
β (β − 1)

(
xβ + (β − 1) yβ − β x yβ−1) β ∈ R\{0, 1}

x log x/y + (y − x) β = 1
x
y

− log
x
y

− 1 β = 0.

(2.1)

Eguchi and Kano (2001) assume β > 1, but the definition domain can very
well be extended to β ∈ R. The β-divergence is shown to be continuous in
β by using the identity limβ→0 (xβ − yβ )/β = log(x/y). It was considered in
NMF by Cichocki, Zdunek et al. (2006) and also coincides up to a factor 1/β

with the generalized divergence of Kompass (2007), which, in the context
of NMF as well, was separately constructed so as to interpolate between
the KL divergence (β = 1) and the Euclidean distance (β = 2). Note that the
derivative of dβ (x | y) with regard to y is also continuous in β and is simply
written as

∇y dβ (x | y) = yβ−2 (y − x). (2.2)

The derivative shows that dβ (x|y), as a function of y, has a single minimum
in y = x and that it increases with |y − x|, justifying its relevance as a
measure of fit. Figure 1 represents the Euclidean, KL, and IS costs for x = 1.

When equation 2.2 is used, the gradients of criterion Dβ (V | WH) with
regard to W and H are written as

∇H Dβ (V | WH) = WT (
(WH).[β−2] . (WH − V)

)
(2.3)

∇W Dβ (V | WH) =
(
(WH).[β−2] . (WH − V)

)
HT , (2.4)

where . denotes Hadamard entrywise product and A.[n] denotes the matrix
with entries [A]n

i j . The multiplicative gradient descent approach taken in
Lee and Seung (2001) and Cichocki, Zdunek et al. (2006) is equivalent to
updating each parameter by multiplying its value at previous iteration by
the ratio of the negative and positive parts of the derivative of the criterion
with regard to this parameter, namely, θ ← θ.[∇ f (θ )]−/[∇ f (θ )]+, where
∇ f (θ ) = [∇ f (θ )]+ − [∇ f (θ )]− and the summands are both nonnegative.
This ensures nonnegativity of the parameter updates, provided initializa-
tion is with a nonnegative value. A fixed point θ$ of the algorithm implies



798 C. Févotte, N. Bertin, and J. Durrieu

Figure 1: Euclidean, KL, and IS costs d(x | y) as a function of y and for x = 1.
The Euclidean and KL divergences are convex on (0, ∞). The IS divergence is
convex on (0, 2x] and concave on [2x,∞).

either ∇ f (θ$) = 0 or θ$ = 0. This leads to the following updates,

H ← H.
WT

(
(WH).[β−2].V

)

WT (WH).[β−1] (2.5)

W ← W.

(
(WH).[β−2].V

)
HT

(WH).[β−1] HT , (2.6)

where A
B denotes the matrix A.B.[−1]. Lee and Seung (1999) showed that

Dβ (V | W H) is nonincreasing under the latter updates for β = 2 (Euclidean
distance) and β = 1 (KL divergence). Kompass (2007) generalizes the proof
to the case 1 ≤ β ≤ 2. In practice, we observe that the criterion is still non-
increasing under updates 2.5 and 2.6 for β < 1 and β > 2 (and in particular
for β = 0, corresponding to the IS divergence), but no proof is available.
Indeed, the proof Kompass gives makes use of the convexity of dβ (x|y) as
a function of y, which is true only for 1 ≤ β ≤ 2. In the rest of the letter,
EUC-NMF will be used as shorthand for Euclidean-NMF.
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2.1.2 Bregman Divergences. The IS divergence belongs to the class of Breg-
man divergences, defined as dφ(x|y) = φ(x) − φ(y) − ∇φ(y) (x − y), where
φ is a strictly convex function of R that has a continuous derivative ∇φ. The
IS divergence is obtained with φ(y) = − log(y). Using the same approach
as in the previous paragraph, Dhillon and Sra (2005) derive the following
update rules for minimization of Dφ(V | WH):

H ← H.
WT (∇2φ(WH).V)

WT (∇2φ(WH).WH)
(2.7)

W ← W.
(∇2φ(WH).V) HT

(∇2φ(WH).WH) HT . (2.8)

Again, the authors observed in practice continual descent of Dφ(V | WH)
under these rules, but a proof of convergence is yet to be found. Note
that equations 2.5 and 2.6 coincide with equations 2.7 and 2.8 for the IS
divergence.

2.2 Scale Invariance. The following property holds for any value of β:

dβ (γ x | γ y) = γ β dβ (x | y). (2.9)

It implies that the IS divergence is scale invariant (i.e., dI S(γ x | γ y) = dI S(x |
y)) and is the only one of the β-divergence family to possess this property.
Scale invariance means that same relative weight is given to small and large
coefficients of V in cost function (see equation 1.3) in the sense that a bad
fit of the factorization for a low-power coefficient [V] f n will cost as much
as a bad fit for a higher-power coefficient [V] f ′n′ . In contrast, factorizations
obtained with β > 0 (such as with the Euclidean distance or the KL diver-
gence) will rely more heavily on the largest coefficients, and less precision
is to be expected in the estimation of the low-power components.

The scale invariance of the IS divergence is relevant to decomposition
of audio spectra, which typically exhibit exponential power decrease along
frequency f and also usually comprise low-power transient components
such as note attacks, together with higher-power components such as tonal
parts of sustained notes. The results of the decomposition of a piano spec-
trogram presented in section 4 confirm these expectations by showing that
IS-NMF extracts components corresponding to very low residual noise and
hammer hits on the strings with great accuracy. These components are either
ignored or severely degraded when using Euclidean or KL divergences.

2.3 Statistical Interpretations. We now turn to statistical interpreta-
tions of IS-NMF, which lead to the new EM-based algorithm described in
section 3.
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2.3.1 Notations. The entries of matrices V, W, and H are denoted v f n, w f k ,
and hkn, respectively. Lowercase bold letters in general denote columns,
such that W = [w1, . . . , wK ], while lowercase plain letters with a single
index denote rows, such that H = [hT

1 , . . . , hT
K ]T . We also define the matrix

V̂ = WH, whose entries are denoted v̂ f n. Where these conventions clash,
the intended meaning should be clear from the context.

2.3.2 Sum of Gaussian Components.

Theorem 1 (IS-NMF as ML estimation in sum of gaussian components). Con-
sider the generative model defined by, ∀n = 1, . . . , N,

xn =
K 

k=1

ck,n, (2.10)

where xn and ck,n belong to CF×1 and

ck,n ∼ Nc(0, hkn diag (wk)), (2.11)

whereNc(µ,  ) denotes the proper multivariate complex gaussian distribution and
where the components c1,n, . . . , cK ,n are mutually independent and individually
independently distributed. Define V as the matrix with entries v f n = |x f n|2. Then,
maximum likelihood estimation of W and H from X = [x1, . . . , xN] is equivalent
to NMF of V into V ≈ WH , where the Itakura-Saito divergence is used.

Proof. Under the assumptions of theorem 1 and using the expression
of Nc(µ,  ) given in appendix A, the minus log-likelihood function
CML ,1(W, H) def= − log p(X | W, H) simply factorizes as

CML ,1(W, H) = −
N∑

n=1

F∑

f =1

logNc

(

x f n | 0,
∑

k

w f k hkn

)

(2.12)

= NF log π +
N∑

n=1

F∑

f =1

log

(
∑

k

w f k hkn

)

+ |x f n|2(∑
k w f k hkn

)

(2.13)

c=
N∑

n=1

F∑

f =1

dI S

(

|x f n|2 |
∑

k

w f k hkn

)

, (2.14)

where c= denotes equality up to constant terms. The minimization of
CML ,1(W, H) with regard to W and H thus amounts to the NMF V ≈ WH
with the IS divergence. Note that theorem 1 holds also for real-valued
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gaussian components. In that case, CML ,1(W, H) equals DIS(V | WH) up to
a constant and a factor 1/2.

The generative model, equation 2.10, was introduced by Benaroya et al.
(2003, 2006) for single-channel audio source separation. In that context,
xn = [x1n, . . . , x f n, . . . , xF n]T is the short-time Fourier transform (STFT) of
an audio signal x, where n = 1, . . . , N is a frame index and f = 1, . . . , F is
a frequency index. The signal x is assumed to be the sum of two sources,
x = s1 + s2, and the STFTs of the sources are modeled as s1,n =

∑K1
k=1 ck,n and

s2,n =
∑K1+K2

k=K1+1 ck,n, with K1 + K2 = K . This means that each source STFT
is modeled as a sum of elementary components, each characterized by a
power spectral density (PSD) wk modulated in time by frame-dependent
activation coefficients hkn. The PSDs characterizing each source are learned
on training data, before the mixture spectrogram |X|.[2] is decomposed onto
the known dictionary W = [w1, . . . , wK1 , wK1+1, . . . , wK1+K2 ]. However, in
these articles, the PSDs and the activation coefficients are estimated sepa-
rately using somewhat ad hoc strategies (the PSDs are learned with vector
quantization) and the equivalence between ML estimation and IS-NMF is
not fully exploited.

Complex gaussian modeling of STFT frames of audio signals has been
widely used in signal processing and has proven to be a satisfying model
for many applications, in particular for audio denoising (see, e.g., Cohen &
Gannot, 2007, for a review). But while denoising settings typically assume
one observation frame xn to be the sum of a source frame and a noise frame,
IS-NMF in essence extends this modeling by assuming that one observation
frame is the sum of several gaussian frames with different covariances.

The generative model, equation 2.10, may also be viewed as a general-
ization of well-known models of composite signals. For example, inference
in superimposed components with gaussian structure can be tracked back
to Feder and Weinstein (1988). In the latter article, however, the components
are assumed stationary and solely modeled by their PSD wk , which in turn
is parameterized by a set of parameters of interest  k , to be estimated. One
extension brought in equation 2.10 is the addition of the amplitude param-
eters H. This, however, has the inconvenience of making the total number
of parameters F K + K N dependent on N, with the consequence of losing
the asymptotical optimality properties of ML estimation. But note that it is
precisely the addition of the amplitude parameters in the model that allows
W to be treated as a set of possibly identifiable parameters. Indeed, if hkn
is set to 1 for all k and n, the variance of xn becomes

∑
k wk for all n (i.e., is

equal to the sum of the parameters). This would obviously make each PSD
wk not uniquely identifiable.

Interestingly, the equivalence between IS-NMF and ML inference in the
sum of gaussian components provides means of reconstructing the compo-
nents ck,n with a sense of statistical optimality, which contrasts with NMF
using other costs where methods of reconstructing components from the



802 C. Févotte, N. Bertin, and J. Durrieu

factorization WH are somewhat ad hoc (see below). Indeed, given W and
H, minimum mean square error (MMSE) estimates can be obtained through
Wiener filtering, such that

ĉk, f n = w f k hkn∑K
l=1 w f l hln

x f n. (2.15)

Because the Wiener gains sum up to 1 for a fixed entry ( f, n), the decompo-
sition is conservative:

xn =
K∑

k=1

ĉk,n. (2.16)

Note that a consequence of Wiener reconstruction is that the phase of all
components ĉk, f n is equal to the phase of x f n.

Most works in audio have considered the NMF of magnitude spectra
|X| instead of power spectra |X|.[2] (see, e.g., Smaragdis & Brown, 2003;
Smaragdis, 2007; Virtanen, 2007; Bertin, Badeau, & Richard, 2007). In that
case, it can be noted (see, e.g., Virtanen, Cemgil, & Godsill, 2008) that KL-
NMF is related to the ML problem of estimating W and H in the model
structure

|xn| =
K∑

k=1

|ck,n| (2.17)

under Poissonian assumptions, that is, |ck, f n| ∼ P(w f khkn), where P(λ) is
the Poisson distribution, defined in appendix A. Indeed, the sum of Poisson
random variables being Poissonian itself (with the shape parameters sum-
ming up as well), one obtains |x f n| ∼ P(

∑K
k=1 w f khkn). Then it can easily

be seen that the likelihood − log p(X | W, H) is equal up to a constant to
DK L ( |X| | W H). Here, W is homogeneous to a magnitude spectrum and not
to a power spectrum. After factorization, component estimates are typically
formed using the phase of the observations (Virtanen, 2007) such that

ĉk, f n = w f k hkn arg(x f n), (2.18)

where arg(x) denotes the phase of complex scalar x. This approach is
worth a few comments. First, the Poisson distribution is formerly defined
only for integers, which impairs the statistical interpretation of KL-NMF
on uncountable data such as audio spectra (but one could assume an
appropriate data scaling and a very fine quantization to work around this).1

1Actually, KL-NMF has interesting parallels with inference in probabilistic latent vari-
able models of histogram data; see Shashanka, Raj, and Smaragdis (2008a).
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Second, this approach enforces nonnegativity in a somehow arbitrary way
by taking the absolute value of data X. In contrast, with gaussian model-
ing, nonnegativity arises naturally through the variance fitting problem
equivalence. Similarly, the reconstruction method enforces the components
to have same phase as observation coefficients, while this is a consequence
of Wiener filtering only in the gaussian modeling framework. Last, the
component reconstruction method is not statistically grounded and is not
conservative: xn ≈

∑K
k=1 ĉk,n. Note that Wiener reconstruction is used with

KL-NMF of the magnitude spectrum |X| by Smaragdis (2007), where it is
presented as spectral filtering, and its conservativity is pointed out.

2.3.3 Multiplicative Noise.

Theorem 2 (IS-NMF as ML estimation in gamma multiplicative noise). Consider
the generative model

V = (WH) . E , (2.19)

where E is multiplicative independent and identically distributed (i.i.d.) gamma
noise with mean 1. Then, maximum likelihood estimation of W and H is equivalent
to NMF of V into V ≈ WH , where the Itakura-Saito divergence is used.

Proof. Let us note {e f n}, the entries of E. We have v f n = v̂ f n e f n, with
p(e f n) = G(e f n | α, β), and where G(x | α, β) is the gamma probability den-
sity function (PDF) defined in appendix A. Under the iid noise assumption,
the minus log likelihood CML ,2(W, H) def= − log p(V | W, H) is

CML ,2(W, H) =−
∑

f,n

log p(v f n | v̂ f n) (2.20)

=−
∑

f,n

logG
(
v f n/v̂ f n | α, β

)
/v̂ f n (2.21)

c=β
∑

f,n

v f n

v̂ f n
− α

β
log

v f n

v̂ f n
− 1. (2.22)

The ratio α/β is simply the mean of the gamma distribution. When it is
equal to 1, we obtain that CML ,2(  ) is equal to DI S(V | V̂) = DI S(V | WH)
up to a positive factor and a constant.

The multiplicative noise equivalence explains the scale invariance of the
IS divergence because the noise acts as a scale factor on v̂ f n. In contrasts
EUC-NMF is equivalent to the ML likelihood estimation of W and H in
additive iid gaussian noise. The influence of additive noise is greater on
coefficients of V̂ with small amplitude (i.e., low SNR) than on the largest
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ones. As to KL-NMF, it corresponds to neither multiplicative nor additive
noise but to ML estimation in Poisson noise.2 To summarize, we have

EUC-NMF: p(v f n | v̂ f n) =N (v f n|v̂ f n, σ
2), (2.23)

KL-NMF: p(v f n | v̂ f n) =P(v f n|v̂ f n), (2.24)

IS-NMF: p(v f n | v̂ f n) = 1
v̂ f n

G
(

v f n

v̂ f n

∣∣∣∣α, α

)
, (2.25)

and in all cases, E{v f n | v̂ f n} = v̂ f n.
Theorem 2 reports in essence how Abdallah and Plumbley (2004) derive

a “statistically motivated error measure,” which happens to be the IS di-
vergence, in the very similar context of nonnegative sparse coding (see also
developments in Plumbley et al., 2006). Pointing out the scale invariance of
this measure, this work leads Virtanen (2007) to consider the IS divergence
(but again without referring to it as such) for NMF in the context of single-
channel source separation, but the algorithm is applied to the magnitude
spectra instead of the power spectra, losing statistical coherence, and the
sources are reconstructed through equation 2.18 instead of Wiener filtering.

3 Algorithms for NMF with the Itakura-Saito Divergence

In this section, we describe two algorithms for IS-NMF. The first one has
a multiplicative structure and is only a special case of the derivations of
section 2.1. The second one is a novel type, EM based, and is derived from
the statistical presentation of IS-NMF given in theorem 1.

3.1 Multiplicative Gradient Descent Algorithm. A multiplicative gra-
dient descent IS-NMF algorithm is obtained by setting either β = 0 in equa-
tions 2.5 and 2.6 or φ(y) = − log(y) in equations 2.7 and 2.8. The resulting
update rules coincide and lead to algorithm 1:

Algorithm 1: IS-NMF/MU
Input: nonnegative matrix V
Output: nonnegative matrices W and H such that V ≈ WH
Initialize W and H with nonnegative values
for i = 1: niter do

H ← H.WT ((WH).[−2].V)
WT (WH).[−1]

W ← W. ((WH).[−2].V) HT

(WH).[−1] HT

Normalize W and H
end for

2KL-NMF is wrongly presented as ML estimation in additive Poisson noise in numer-
ous publications.



Nonnegative Matrix Factorization with the Itakura-Saito Divergence 805

These update rules were also obtained by Abdallah and Plumbley (2004),
prior to Dhillon and Sra (2005) and Cichocki, Zdunek et al. (2006). In the fol-
lowing, we refer to this algorithm as IS-NMF/MU. This algorithm includes
a normalization step at every iteration, which eliminates trivial scale in-
determinacies, leaving the cost function unchanged. We impose ‖wk‖2 = 1
and scale hk accordingly. Again, we emphasize that continual descent of the
cost function is observed in practice with this algorithm but that a proof of
convergence is yet to be found.

3.2 SAGE Algorithm. We now describe an EM-based algorithm for es-
timating the parameters  = {W, H}, derived from the statistical formalism
introduced in theorem 1. The additive structure of the generative model,
equation 2.10, allows updating the parameters describing each component
Ck

def= [ck,1, . . . , ck,N] separately, using SAGE (Fessler & Hero, 1994). SAGE
is an extension of EM for data models with particular structures, includ-
ing data generated by superimposed components. It is known to converge
faster in iterations than standard EM, though one iteration of SAGE is
usually more computationally demanding than EM as it usually requires
updating the sufficient statistics “more often.” Let us consider a partition
of the parameter space  =

⋃K
k=1  k with

 k = {wk, hk} , (3.1)

where we recall that wk is the kth column of W and hk is the kth row of
H. The SAGE algorithm involves choosing for each subset of parameters
 k a hidden-data space that is complete for this particular subset. Here,
the hidden-data space for  k is simply chosen to be Ck

def= [ck,1, . . . , ck,N].
An EM-like functional is then built for each subset  k as the conditional
expectation of the minus log likelihood of Ck :

QML
k (  k |  ′) def= −

∫

Ck

log p(Ck |  k) p(Ck | X,  ′) dCk . (3.2)

One iteration i of the SAGE algorithm then consists of computing (E-step)
and minimizing (M-step) QML

k (  k |  ′) for k = 1, . . . , K . Note that  ′ always
contains the most up-to-date parameter values, and not only the values at
iteration i − 1 as in standard EM. This leads to the increase in computational
burden, which is mild in our case.

The derivations of the SAGE algorithm for IS-NMF are detailed in ap-
pendix B. However, for a fixed k, the E-step merely consists of comput-
ing the posterior power Vk of component Ck , defined by [Vk] f n = vk, f n =
|µpost

k, f n|2 + λ
post
k, f n, where µ

post
k, f n and λ

post
k, f n are the posterior mean and variance
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of ck, f n, given by

µ
post
k, f n = w f k hkn∑

l w f l hln
x f n, (3.3)

λ
post
k, f n = w f k hkn∑

l w f l hln

∑

l 1=k

w f l hln. (3.4)

The M-step is then shown to amount to the following one-component NMF
problem,

min
wk , hk≥0

DI S(V′
k | wk hk), (3.5)

where V′
k denotes Vk as computed from  ′. Interestingly, in the one-

component case, the gradients simplify to

∇hkn QML
k (wk, hk |  ′) = F

hkn
− 1

h2
kn

F∑

f =1

v′
k, f n

w f k
, (3.6)

∇w f k QML
k (wk, hk |  ′) = N

w f k
− 1

w2
f k

N∑

n=1

v′
k, f n

hkn
. (3.7)

The gradients are easily zeroed, leading to the following updates,

h(i+1)
kn = 1

F

∑

f

v′
k, f n

w
(i)
f k

, (3.8)

w
(i+1)
f k = 1

N

∑

n

v′
k, f n

h(i+1)
kn

, (3.9)

which guarantees QML
k (w(i+1)

k , h(i+1)
k |  ′) ≤ QML

k (w(i)
k , h(i)

k |  ′). This can also
be written in matrix form, as shown in algorithm 2, which summarizes the
SAGE algorithm for IS-NMF:

Algorithm 2: IS-NMF/EM
Input: nonnegative matrix V
Output: nonnegative matrices W and H such that V ≈ WH
Initialize W and H with nonnegative values
for i = 1: niter do

for k = 1: K do
Compute Gk = wk hk

WH % Wiener gain

Compute Vk = G.[2]
k .V+(1−Gk).(wkhk) % Posterior power of Ck
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hk ← 1
F (w.[−1]

k )T Vk % Update row k of H
wk ← 1

N Vk (h.[−1]
k )T % Update column k of W

Normalize wk and hk
end for

end for

% Note that WH needs to be computed only once, at initialization,

and be subsequently updated as WH − wold
k hold

k + wnew
k hnew

k .

In the following, we refer to this algorithm as IS-NMF/EM.
IS-NMF/EM and IS-NMF/MU have the same complexity O(12 F K N)

per iteration, but can lead to different run times, as shown in the results be-
low. Indeed, in our Matlab implementation, the operations in IS-NMF/MU
can be efficiently vectorized using matrix entrywise multiplication, while
IS-NMF/EM requires looping over the components, which is more time-
consuming.

The convergence of IS-NMF/EM to a stationary point of DI S(V | WH) is
granted by property of SAGE. However, it can converge only to a point in
the interior domain of the parameter space; W and H cannot take entries
equal to zero. This is seen in equation 3.5: if w f k or hkn is zero, then the
cost dI S(v′

k, f n | w f khkn) becomes infinite. This is not a feature shared by IS-
NMF/MU, which does not a priori exclude zero coefficients in W and H
(but excludes v̂ f n = 0, which would lead to a division by zero). However,
because zero coefficients are invariant under multiplicative updates (see
section 2.1), if IS-NMF/MU attains a fixed-point solution with zero entries,
then it cannot be determined if the limit point is a stationary point. Yet if
the limit point does not take zero entries (i.e., it belongs to the interior of
the parameter space), then it is a stationary point, which may or may not be
a local minimum. This is stressed by Berry et al. (2007) for EUC-NMF but
holds for IS-NMF/MU as well.

Note that SAGE has been used in the context of single-channel source
separation by Ozerov, Philippe, Bimbot, and Gribonval (2007) for inference
on a model somehow related to the IS-NMF model, equation 2.10. Indeed,
these authors address voice and music separation using a generative model
of the form xn = cV,n + cM,n where the first component represents voice and
the second one represents music. Then each component is given a gaussian
mixture model (GMM). The GMM parameters for voice are learned from
training data, while the music parameters are adapted to data. Though
related, the GMM and NMF models are quite different in essence. The
first one expresses the signal as a sum of two components that each can
take different states. The second one expresses the signal as a sum of K
components, each representative of one object. It cannot be claimed that one
model is better than the other; rather, they address different characteristics.
It is anticipated that the two models can be used jointly within the SAGE
framework, for example, by modeling voice cV,n with a GMM (i.e., a specific
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component with many states) and music cM,n with an NMF model (i.e., a
composite signal with many components).

4 Analysis of a Short Piano Excerpt

In this section, we report an experimental comparative study of the NMF al-
gorithms applied to the spectrogram of a short monophonic piano sequence.
In the first step, we compare the results of multiplicative Euclidean, KL, and
IS NMF algorithms for several values of K before we more specifically com-
pare the multiplicative and EM-based algorithms for IS-NMF in the second
step.

4.1 Experimental Setup. A piano sequence played from the score given
in Figure 2 on a Yamaha DisKlavier MX100A upright piano was recorded in
a small-size room by a Schoeps omnidirectional microphone, placed about
15 cm (6 inches) above the opened body of the piano. The sequence is
composed of four notes, played all at once in the first measure and then
played by pairs in all possible combinations in the subsequent measures.
The 15.6-seconds-long recorded signal was downsampled to νs = 22,050 Hz,
yielding T = 339,501 samples. A STFT X of x was computed using a sinebell
analysis window of length L = 1024 (46 ms) with 50% overlap between
two frames, leading to N = 674 frames and F = 513 frequency bins. The
time-domain signal x and its log-power spectrogram are represented in
Figure 2.

IS-NMF/MU, IS-NMF/EM, and the multiplicative gradient descent
NMF algorithms with Euclidean and KL costs were implemented in Matlab
and run on data V = |X|.[2]. Note that in the following, the terms EUC-NMF
and KL-NMF will implicitly refer to the multiplicative implementation of
these NMF techniques. All algorithms were run for several values of the
number of components, more specifically, for K = 1, . . . , 10. For each value
of K , 10 runs of each algorithm were produced from 10 random initial-
izations of W and H, chosen, in Matlab notation, as W = abs(randn(F,K))

+ ones(F,K) and H = abs(randn(K,N)) + ones(K,N). The algorithms were
run for niter = 5000 iterations.

4.2 Pitch Estimation. In the following results, it will be observed that
some of the basis elements (columns of W) have a pitched structure, char-
acteristic of individual musical notes. If pitch estimation is not the objective
per se of the following study, it is informative to check if correct pitch values
can be inferred from the factorization. As such, a fundamental frequency (or
pitch) estimator is applied using the method described in Vincent, Bertin,
and Badeau (2007). It consists of computing dot products of wk with a set
of J frequency combs and retaining the pitch number corresponding to the
largest dot product. Each comb is a cosine function with period f j , scaled
and shifted to the amplitude interval [0 1], which takes its maximum value
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Figure 2: Three representations of data: (Top) Original score. (Middle) Time-
domain recorded signal x. (Bottom) Log-power spectrogram log |X|.[2]. The four
notes read D+

4 (pitch 61), F4 (pitch 65), A+
4 (pitch 68), and C5 (pitch 72). Together

they form a D+ major seventh chord. In the recorded interpretation, the third
chord is slightly out of tempo.

1 at bins multiple of f j . The set of fundamental frequency bins f j = ν j
νs

L is
indexed on the MIDI logarithmic scale, such that

ν j = 440 × 2
p j −69

12 . (4.1)

The piano note range usually goes from pmin = 21, that is, note A0 with
fundamental frequency fmin = 27.5 Hz, to pmax = 108, that is, note C8 with
frequency fmax = 4186 Hz. Two adjacent keys are separated by a semitone
(,p = 1). The MIDI pitch numbers of the notes pictured in Figure 2 are
61 (D+

4), 65 (F4), 68 (A+
4), and 72 (C5) and were chosen arbitrarily. In our

implementation of the pitch estimator, the MIDI range was sampled from
20.6 to 108.4 with step 0.2. In the following, an arbitrary pitch value of 0
will be given to unpitched basis elements. The classification of pitched and
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Table 1: Run Times in Seconds of 1000 Iterations of the NMF Algorithms Ap-
plied to the Piano Data.

K 1 2 3 4 5 10 O(.)

EUC-NMF 17 18 20 24 27 37 4 F K N + 2 K 2(F + N)
KL-NMF 90 90 92 100 107 117 8 F K N
IS-NMF/MU 127 127 129 135 138 149 12 F K N
IS-NMF/EM 81 110 142 171 204 376 12 F K N

Notes: This was implemented in Matlab on a 2.16 GHz Intel Core 2 Duo iMac with 2 GB
RAM. The run times include the computation of the cost function at each iteration (for
possible convergence monitoring). The last column shows the algorithm complexities per
iteration, expressed in number of flops (addition, subtraction, multiplication, division).
The complexity of EUC-NMF assumes K < F, N.

unpitched elements was done manually by looking at the basis elements
and listening to the component reconstructions.

4.3 Results and Discussion

4.3.1 Convergence Behavior and Algorithm Complexities. Run times of 1000
iterations of each of the four algorithms are shown in Table 1, together
with the algorithm complexities. Figure 3 shows for each algorithm and
for every value of K the final cost values of the 10 runs, after the 5000
algorithm iterations. A first observation is that the minimum and maximum
cost values differ: K > 4 in the Euclidean case, K > 3 in the KL case, and
K > 2 in the IS case. This means either that the algorithms have failed to
converge after 5000 iterations in some cases or the presence of local minima.
Figure 4 displays for all four algorithms the evolution of the cost functions
along the 5000 iterations for all 10 runs in the case K = 6.

4.3.2 Evolution of the Factorizations with Order K . In this paragraph, we
examine in detail the underlying semantics of the factorizations obtained
with all three cost functions. We address only the comparison of factoriza-
tions obtained from the three multiplicative algorithms. IS-NMF/EM and
IS-NMF/MU will be more specifically compared in the next paragraph.
Otherwise stated, the factorizations studied are those obtained from the run
yielding the minimum cost value among the 10 runs. Figures 5 to 8 display
the columns of W and corresponding rows of H. The columns of W are rep-
resented against frequency bin f on the left (in log10 amplitude scale), and
the rows of H are represented against frame index n on the right (in linear
amplitude scale). Pitched components are displayed first (top to bottom,
in ascending order of estimated pitch value), followed by the unpitched
components. We reproduce only part of the results in this letter, but the
factorizations obtained with all four algorithms for K = 4, 5, 6 are available
online at http://www.tsi.enst.fr/∼fevotte/Samples/is-nmf, together with



Nonnegative Matrix Factorization with the Itakura-Saito Divergence 811

Figure 3: Cost values after 5000 iterations, obtained from 10 random initial-
izations. (a) Euclidean distance. (b) KL divergence. (c) IS divergence (using
IS-NMF/MU). (d) IS divergence (using IS-NMF/EM). On each plot, the solid
line connects all minimum cost values, and the dashed line connects all maxi-
mum cost values.

sound reconstructions of the individual components. Component STFTs Ĉk
were computed by applying the Wiener filter, equation 2.15, to X using
the factors W and H obtained with all three cost functions. Time-domain
components ck were then reconstructed by inverting the STFTs using an
adequate overlap-add procedure with dual synthesis window. By conser-
vativity of Wiener reconstruction and linearity of the inverse STFT, the time
domain decomposition is also conservative, such that

x =
K∑

k=1

ck . (4.2)

Common sense suggests that choosing as many components as notes
forms a sensible guess for the value of K so as to obtain a meaningful
factorization of |X|.[2], where each component would be expected to repre-
sent one and only one note. The factorizations obtained with all three costs
for K = 4 prove that this is not the case. Euclidean and KL-NMF rather
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Figure 4: Evolution in log-log scale of the cost functions along the 5000 iterations
of all 10 runs of the four algorithms in the specific case of K = 6.

successfully extract notes 65 and 68 into separate components (second and
third), but notes 61 and 72 are melted into the first component, while a
fourth component seems to capture transient events corresponding to the
note attacks (the sound of the hammer hitting the string) and the sound
produced by the release of the sustain pedal. The first two components
obtained with IS-NMF have a similar interpretation to those given by EUC-
NMF and KL-NMF. However, the two other components differ in nature:
the third component comprises note 68 and transients, while the fourth
component is akin to residual noise. It is interesting to notice how this last
component, though of much lower energy than the other components (on
the order of 1 compared to 104 for the others) bears equal importance in the
decomposition. This is undoubtedly a consequence of the scale invariance
property of the IS divergence discussed in section 2.2.

A fully separated factorization (at least as intended) is obtained for K = 5
with KL-NMF, as displayed in Figure 5. This results in four components,
each made up of a single note, and a fifth component containing sound
events corresponding to note attacks and pedal releases. However, these
latter events are not well localized in time and suffer from an unnatural
tremolo effect (oscillating variations in amplitudes), as can be heard from
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Figure 5: KL-NMF with K = 5. Pitch estimates: [61 65 68 72.2 0]. (Left) Columns
of W (log10 scale). (Right) Rows of H.

the reconstructed sound files. Surprisingly, the decomposition obtained
with EUC-NMF by setting K = 5 results in splitting the second component
of the K = 4 decomposition into two components with estimated pitches 65
and 65.4 instead of actually demixing the third component, which comprises
notes 61 and 72. As for IS-NMF, the first component now groups notes 61
and 68; the second and third components, respectively, capture notes 65
and 72; the fourth component is still akin to residual noise; and the fifth
component perfectly renders the attacks and releases.

Full separation of the individual notes is finally obtained with Euclidean
and IS costs for K = 6, as shown in Figures 6 and 7. KL-NMF produces an
extra component (with pitch estimate 81) that is not clearly interpretable
and is in particular not akin to residual noise as could have been hoped
for. The decomposition obtained with the IS cost describes as follows. The
four first components correspond to individual notes whose pitch estimate
matches exactly the pitches of the notes played. The visual aspect of the
PSDs is much better than the basis elements learned from EUC-NMF and
KL-NMF. The fifth component captures the hammer hits and pedal releases
with great accuracy, and the sixth component is akin to residual noise.
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Figure 6: EUC-NMF with K = 6. Pitch estimates: [61 65 65.4 68 72 0]. (Left)
Columns of W (log10 scale). (Right) Rows of H.

When the decomposition is carried beyond K = 6, EUC-NMF and KL-
NMF split existing components into several subcomponents (such as com-
ponents capturing sustained and decaying parts of one note) with pitch
in the neighborhood of the note fundamental frequency. In contrast, IS-
NMF/MU spends the extra components in fine-tuning the representation of
the low-energy components—residual noise and transient events (as such,
the hammer hits and pedal releases eventually get split in two distinct com-
ponents). For K = 10, the pitch estimates read EUC-NMF: [61 64.8 64.8 65
65 65.8 68 68.4 72.2 0], KL-NMF: [61 61 65 65 66 68 72 80.2 0 0], IS-NMF/MU:
[61 61 65 68 72 0 0 0 0 0]. If note 61 is indeed split into two components with
IS-NMF/MU, one of the two components is actually inaudible.

The message of this experimental study is that the nature of the decom-
position obtained with IS-NMF, and its progression as K increases, is in
accord with an object-based representation of music, close to our own com-
prehension of sound. Entities with well-defined semantics emerge from
the decomposition (individual notes, hammer hits, pedal releases, resid-
ual noise), while the decompositions obtained from the Euclidean and KL
costs are less interpretable from this perspective. These conclusions do not
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Figure 7: IS-NMF/MU with K = 6. Pitch estimates: [61 65 68 72 0 0]. (Left)
Columns of W (log10 scale). (Right) Rows of H.

always hold when the factorization is not the one yielding the lowest-cost
values from the 10 runs. As such, we also examined the factorizations
with highest-cost values (with all three cost functions), and we found out
that they did not reveal the same semantics, which was not always eas-
ily interpretable. The upside, however, is that the lowest IS cost values
correspond to the most desirable factorizations, so that IS-NMF “makes
sense.”

4.3.3 Comparison of Multiplicative and EM-Based IS-NMF. Algorithms IS-
NMF/MU and IS-NMF/EM are designed to address the same task of min-
imizing the cost DI S(V | WH), so that the achieved factorization should
be identical in nature, provided they complete this task. As such, the pro-
gression of the factorization provided by IS-NMF/EM is similar to the one
observed for IS-NMF/MU, described in the previous paragraph. However,
the resulting factorizations are not exactly equivalent, because IS-NMF/EM
does not inherently allow zeros in the factors (see section 3.2). This feature
can be desirable for W, as the presence of sharp notches in the spectrum
may not be physically realistic for audio, but can be considered a draw-
back as far as H is concerned. Indeed, the rows of H being akin to activation
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Figure 8: IS-NMF/EM with K = 6. Pitch estimates: [61 65 68 72 0 0]. (Left)
Columns of W (log10 scale). (Right) Rows of H.

coefficients, when a sound object k is not present in frame n, then hkn should
be strictly zero. These remarks probably explain the factorization obtained
from IS-NMF/EM with K = 6, displayed in Figure 8. The notches present in
the PSDs learned with IS-NMF/MU, as seen in Figure 7, have disappeared
from the PSDs on Figure 8, which exhibit better regularity. Unfortunately,
IS-NMF/EM does not fully separate out the note attacks in the fifth compo-
nent as IS-NMF/MU does. Indeed, some parts of the attacks appear in the
second component, and the rest appear in the fifth component, which also
contains the pedal releases. This is possibly explained by the a priori high
sparsity of a transients component, which can be handled by IS-NMF/MU
but not IS-NMF/EM (because it does not allow zero values in H). Increasing
the number of components K or the number of algorithm iterations niter
does not solve this specific issue.

Regarding the compared convergence of the algorithms, IS-NMF/MU
decreases the cost function much faster in the initial iterations and, with
this data set, attains lower final cost values than IS-NMF/EM, as shown
in Figure 3 or 4 for K = 6. Although the two algorithms have the same
complexity, the run time per iteration of IS-NMF/MU is smaller than IS-
NMF/EM for K > 3 (see Table 1).
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5 Regularized IS-NMF

We now describe how the statistical setting of IS-NMF can be exploited to
incorporate regularization constraints and prior information in the factors
estimates.

5.1 Bayesian Setting. We consider a Bayesian setting where W and H
are given (independent) prior distributions p(W) and p(H). We are looking
for a joint MAP estimate of W and H through minimization of criterion

CMAP (W, H) def= − log p(W, H | X) (5.1)
c= DI S(V | WH) − log p(W) − log p(H). (5.2)

When independent priors of the form p(W) =
∏

k p(wk) and p(H) =∏
k p(hk) are used, then the SAGE algorithm presented in section 3.2 can be

used again for MAP estimation. In that case, the functionals to be minimized
for each component k are

QMAP
k (  k |  ′) def= −

∫

Ck

log p(  k | Ck) p(Ck | X,  ′) dCk (5.3)

c= QML
k (wk, hk |  ′) − log p(wk) − log p(hk). (5.4)

Thus, the E-step still amounts to computing QML
k (wk, hk |  ′), as done in

section 3.2, and only the M-step is changed by the regularization constraints
− log p(wk) and − log p(hk), which now need to be taken into account.

Next, we more specifically consider Markov chain priors favoring
smoothness over the rows of H. In the following results, no prior struc-
ture will be assumed for W (i.e., W is estimated through ML). However, we
stress that the methodology presented for the rows of H can be transposed
to the columns of W, that prior structures can be imposed on both W and H,
and that these structures need not belong to the same class of models. Note
also that since the components are treated separately, each can be given a
different type of model (e.g., some components could be assigned a GMM,
as discussed at the end of section 3.2).

We assume the following prior structure for hk ,

p(hk) =
N∏

n=2

p
(
hkn | hk(n−1)

)
p(hk1), (5.5)

where p(hkn | hk(n−1)) is a PDF with mode hk(n−1). The motivation behind
this prior is to constrain hkn not to differ significantly from its value at entry
n − 1, hence favoring smoothness of the estimate. Possible PDF choices are,
for n = 2, . . . , N,

p
(
hkn | hk(n−1)

)
= IG

(
hkn | α, (α + 1) hk(n−1)

)
(5.6)
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Figure 9: Prior PDFs IG(hkn | α − 1, α hk(n−1)) (solid line) and G(hkn | α + 1,

α/hk(n−1)) (dashed line) for hk(n−1) = 1 and for α = {5, 50}.

and

p
(
hkn | hk(n−1)

)
= G

(
hkn | α, (α − 1)/hk(n−1)

)
, (5.7)

where G(x|α, β) is the previously introduced gamma PDF, with mode (α −
1)/β (for α ≥ 1) and IG(x|α, β) is the inverse-gamma PDF (see appendix A),
with mode β/(α + 1). Both priors are constructed so that their mode is
obtained for hkn = hk(n−1). α is a shape parameter that controls the sharpness
of the prior around its mode. A high value of α will increase sharpness and
thus accentuate the smoothness of hk , while a low value of α will render the
prior more diffuse and thus less constraining. The two priors become very
similar for large values of α (see Figure 9). In the following, hk1 is assigned
the scale-invariant Jeffreys noninformative prior p(hk1) ∝ 1/hk1.

5.2 New Updates. Under prior structure 5.5, the derivative of
QMAP

k (wk, hk |  ′) with regard to hkn writes ∀n = 2, . . . , N − 1,

∇hkn QMAP
k (wk, hk |  ′) =∇hkn QML

k (wk, hk |  ′) − ∇hkn log p
(
hk(n+1) | hkn

)

−∇hkn log p
(
hkn | hk(n−1)

)
. (5.8)
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Table 2: Coefficients of the Order 2 Polynomial to Solve in Order to Update hkn

in Bayesian IS-NMF with a Markov Chain Prior.

p2 p1 p0

Inverse-Gamma Markov chain
hk1 (α + 1)/hk2 F − α + 1 −F ĥML

k1
hkn (α + 1)/hk(n+1) F + 1 −F ĥML

kn − (α + 1) hk(n−1)

hk N 0 F + α + 1 −F ĥML
k N − (α + 1) hk(N−1)

Gamma Markov chain
hk1 0 F + α + 1 −F ĥML

k1 − (α − 1) hk2

hkn (α − 1)/hk(n−1) F + 1 −F ĥML
kn − (α − 1) hk(n+1)

hk N (α − 1)/hk(N−1) F − α + 1 −F ĥML
k N

Note: ĥML
kn denotes the ML update, given by equation 3.8.

This is shown to be equal to

∇hkn QMAP
k (wk, hk |  ′) = 1

h2
kn

(
p2 h2

kn + p1 hkn + p0
)
, (5.9)

where the values of p0, p1, and p2 are specific to the type of prior employed
(gamma or inverse-gamma chains), as given in Table 2. Updating hkn then
simply amounts to solving an order 2 polynomial. The polynomial has only
one nonnegative root, given by

hkn =

√
p2

1 − 4 p2 p0 − p1

2 p2
. (5.10)

The coefficients hk1 and hk N at the borders of the Markov chain require
specific updates, but they also require solving polynomials of order 2 or 1,
with coefficients given in Table 2 as well.

Note that the difference between the updates with the gamma and
inverse-gamma chains prior mainly amounts to interchanging the posi-
tions of hk(n−1) and hk(n+1) in p0 and p2. Interestingly, using a backward
gamma chain prior p(hk) =

∏N−1
n=1 p(hkn | hk(n+1)) p(hk N) with shape param-

eter α is actually equivalent (in terms of MAP updates) to using a forward
inverse-gamma chain prior as in equation 5.5 with shape parameter α − 2.
Respectively, using a backward inverse-gamma chain prior with shape pa-
rameter α is equivalent to using a forward-gamma chain prior with shape
parameter α + 2.

Note that Virtanen et al. (2008) recently considered gamma chains
for regularization of KL-NMF. The modeling proposed in their work is,
however, different from ours. Their gamma chain prior is constructed
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in a hierarchical setting, by introducing extra auxiliary variables, so as
to ensure conjugacy of the priors with the Poisson observation model.
Estimation of the factors is then carried out with the standard gradient
descent multiplicative approach, and single-channel source separation
results are presented from the factorization of the magnitude spectrogram
|X| with component reconstruction 2.18. Regularized NMF algorithms
for the Euclidean and KL costs with norm-2 constraints on hkn − hk(n−1)
have also been considered by Chen, Cichocki, and Rutkowski (2006) and
Virtanen (2007). Finally, we also wish to mention that Shashanka, Raj, and
Smaragdis (2008b) have recently derived a regularized version of KL-NMF
with sparsity constraints in a Bayesian setting.

6 Learning the Semantics of Music with IS-NMF

The aim of the experimental study proposed in section 4 was to analyze
the results of several NMF algorithms on a short, simple, and well-defined
musical sequence with respect to the cost function, initialization, and model
order. We now present the results of NMF on a long polyphonic recording.
Our goal is to examine how much of the semantics NMF can learn from
the signal, with a fixed number of components and a fixed random initial-
ization. This is not easily assessed numerically in the most general context,
but quantitative evaluations could be performed on specific tasks in simu-
lation settings. Such tasks could include music transcription, as in Abdallah
and Plumbley (2004), single-channel source separation, as in Benaroya et al.
(2006, 2003), or content-based music retrieval based on NMF features.

Rather than choosing and addressing one of these specific tasks, we
use NMF in an actual audio restoration scenario, where the purpose is to
denoise and upmix original monophonic material (one channel) to stereo
(two channels). This task is very close to single-channel source separation,
with the difference that we are not aiming at perfectly separating each of
the sources, but rather isolating subsets of coherent components that can be
given different directions of arrival in the stereo remaster so as to render a
sensation of spatial diversity. We will show in particular that the addition of
smoothness constraints on the rows of H leads to more pleasing component
reconstructions and brings out the pitched structure of some of the learned
PSDs better.

6.1 Experimental Setup. We address the decomposition of a 108-
second-long music excerpt from “My Heart (Will Always Lead Me Back
to You)” recorded by Louis Armstrong and His Hot Five in the 1920s. The
band features (to our best hearing) a trumpet, a clarinet, a trombone, a
piano, and a double bass. The data are original unprocessed mono ma-
terial containing substantial noise. The signal was downsampled to νs =
11,025 kHz, yielding T = 1,191,735 samples. The STFT X of x was com-
puted using a sinebell analysis window of length L = 256 (23 ms) with 50%
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Figure 10: Original Louis Armstrong data. (Top) Time-domain recorded signal
x. (Bottom) Log-power spectrogram. The vertical dashed lines on the top plot
identify successive phases in the music piece, which we annotated manually:
(2,4,7) all instruments, (1) clarinet only, (3) trumpet solo, (5) clarinet and piano,
(6) piano solo.

overlap between two frames, leading to N = 9312 frames and F = 129 fre-
quency bins. The time domain signal x and its log-power spectrogram are
represented in Figure 10.

We applied EUC-NMF, KL-NMF, IS-NMF/MU, and IS-NMF/EM to V =
|X|.[2], as well as a regularized version of IS-NMF, as described in section 5.
We used the inverse-gamma Markov chain prior (see equation 5.6) with α

arbitrarily set to 10. We refer to this algorithm as IS-NMF/IG. Among many
trials, this value of α provided a good trade-off between the smoothness
of the component reconstructions and adequacy to data. Experiments with
the gamma Markov chain prior, equation 5.6, did not lead to significant
differences in the results and are not reported here.

The number of components K was arbitrarily set to 10. All five algo-
rithms were run for niter = 5000 iterations and were initialized with the
same random values. For comparison, we also applied KL-NMF to the
magnitude spectrogram |X| with component reconstruction described by
equation 2.18, as this can be considered state-of-the-art methodology for
NMF-based single-channel audio source separation (Virtanen, 2007).
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6.2 Results and Discussion. For conciseness, we here display only
the decomposition obtained with IS-NMF/IG (see Figure 11) because
it leads to the best results as far as our audio restoration task is con-
cerned. (All decompositions and component reconstructions obtained
from all NMF algorithms are available online at http://www.tsi.enst.fr/∼
fevotte/Samples/is-nmf.) Figure 11 displays the estimated basis functions
W in log-scale on the left and represents on the right the time-domain signal
components reconstructed from Wiener filtering.

Figure 12 displays the evolution of the IS cost along the 5000 iterations
with IS-NMF/MU, IS-NMF/EM, and IS-NMF/IG. In this case, IS-NMF/EM
achieves a lower cost than IS-NMF/MU. The run times of 1000 iterations
of the algorithms were, respectively: EUC-NMF, 1.9 min; KL-NMF, 6.8 min;
IS-NMF/MU, 8.7 min; IS-NMF/EM, 23.2 min; and IS-NMF/IG, 32.2 min.

The comparison of the decompositions obtained with the three cost func-
tions (Euclidean, KL, and IS), through visual inspection of W and listening
to the components ck , shows again that the IS divergence leads to the most
interpretable results. In particular, some of the columns of matrix W pro-
duced by all three IS-NMF algorithms have a clear pitched structure, which
indicates that some notes have been extracted. Furthermore, one of the
components captures the hiss noise from the recording. Discarding this
component from the reconstruction of x yields satisfying denoising (this
is particularly noticeable during the piano solo, where the input SNR is
low). Surprisingly, most of the rhythmic accompaniment (piano and dou-
ble bass) is isolated in a single component (component 1 of IS-NMF/MU,
component 2 of IS-NMF/EM and IS-NMF/IG), though its spectral content
is clearly evolving in time. A similar effect happens with IS-NMF/IG and
the trombone, which is mostly contained by component 7.

While we do not have a definite explanation for this, we believe that this
is a consequence of Wiener reconstruction. Indeed, the Wiener component
reconstruction is seen only as a set of K masking filters applied to x f n, so
that it does not constrain the spectrum of component k to be exactly wk (up
to amplitude hkn), as the reconstruction method described by equation 2.18
does. So if one assumes that the IS-NMF model, equation 2.10, adequately
captures some of the sound entities present in the mix (in our case, that
would be the preponderant notes or chords and the noise), then the
other entities are bound to be relegated in remaining components by
conservativity of the decomposition x =

∑K
k=1 ck .

As anticipated, the addition of frame-persistency constraints with
IS-NMF/IG has an impact on the learned basis W. In particular, some of
the components exhibit a more pronounced pitched structure. But more
important, the regularization yields more pleasing sound reconstructions,
which is particularly noticeable when listening to the accompaniment
component obtained from IS-NMF/MU (component 1) or IS-NMF/EM
(component 2) on the one side and from IS-NMF/IG (component 2) on
the other side. Note also that in every case, the sound quality of Wiener
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Figure 11: Decomposition of Louis Armstrong music data with IS-NMF/IG.
(Left) Columns of W (log10 scale). (Right) Reconstructed components ck . The
x-axis ticks correspond to the temporal segmentation border lines displayed
with signal x on Figure 10. Component 2 captures most of the acompaniment,
component 7 most of the trombone, and component 9 most of the hiss noise.
Summing up the other components leads to extracting the trumpet and clarinet,
together with some piano notes.
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Figure 12: Evolution in log-log scale of the IS cost function along the 5000
iterations of IS-NMF/MU, IS-NMF/EM, and IS-NMF/IG, initialized with the
same random values, with K = 10.

reconstructions is far better than state-of-the-art KL-NMF of |X| and ad hoc
reconstruction described by equation 2.18.

To conclude this study, we provide online a restored version of the origi-
nal recording, produced from the IS-NMF/IG decomposition. This is, to our
best knowledge, the first use of NMF in an actual audio restoration scenario.
The restoration includes denoising (by discarding component 9, which is
regarded as noise) and upmixing. A stereo mix is produced by dispatching
parts of each component to the left and right channels, hence simulating
directions of arrival. As such, we manually created a mix where the com-
ponents are arranged from 54 degrees left to 54 degrees right, such that
the wind instruments (trumpet, clarinet, trombone) are placed left and the
stringed instruments (piano, double bass) are placed right. While this stereo
mix does render a sensation of spatialization, we emphasize that its qual-
ity could undoubtedly be improved with appropriate sound engineering
skills.

The originality of our restoration approach lies in the joint noise removal
and upmix (as opposed to a suboptimal sequential approach) and the gen-
uine content-based remastering, as opposed to standard techniques based,
for example, on phase delays or equalization.
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7 Conclusions

We have presented modeling and algorithmic aspects of NMF with the
Itakura-Saito divergence. On the modeling side, the following three features
of IS-NMF have been demonstrated in this letter:! IS-NMF is underlaid by a statistical model of superimposed gaussian

components.! This model is relevant to the representation of audio signals.! This model can accommodate regularization constraints through
Bayesian approaches.

On the algorithmic side, we have proposed a novel type of NMF algo-
rithm, IS-NMF/EM, derived from SAGE, a variant of the EM algorithm.
The convergence of this algorithm to a stationary point of the cost func-
tion DI S(V | WH) is guaranteed by EM. This new algorithm was compared
to an existing algorithm, IS-NMF/MU, whose convergence has not been
proved, though it has been observed in practice. This letter also reports an
experimental comparative study of the standard EUC-NMF and KL-NMF
algorithms, together with the two described IS-NMF algorithms, applied to
a given data set (a short piano sequence), with various random initializa-
tions and model orders. Such a furnished experimental study was, to our
best knowledge, not yet available. This letter also reports a proof of concept
of the use of IS-NMF for audio restoration, with an actual example. Finally,
we believe we have shed light on the statistical implications of NMF with
all of three cost functions.

We have shown how smoothness constraints on W and H can easily be
handled in a Bayesian setting with IS-NMF. As such, we have shown how
Markov chains’ prior structures can improve both the auditory quality of the
component reconstructions and the interpretability of the basis elements.
The Bayesian setting opens doors to even more elaborate prior structures
that can better fit the specificities of data. For music signals, we believe
that two promising lines of research lay in (1) the use of switching state
models for the rows of H that explicitly model the possibility for hkn to be
strictly zero with a certain prior probability (and time persistency could be
favored by modeling the state sequence with a discrete Markov chain) and
(2) the use of models that explicitly take into account the pitched structure
of some of the columns of W and where the fundamental frequency could
act as a model parameter. These models fit into the problem of object-based
representation of sound, an active area of research in the music information
retrieval and auditory scene analysis communities.

In section 4 we compared the factorization results of a short piano power
spectrogram, obtained from three cost functions, given a common algorith-
mic structure: standard multiplicative updates. The experiments illustrate
the slow convergence of this type of algorithm, which has has already been
pointed out in other work (Cichocki, Amari et al., 2006; Berry et al., 2007;
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Lin, 2007). If the proposed IS-NMF/EM does not improve on this issue, its
strength is, however, to offer enough flexibility to accommodate Bayesian
approaches. We believe we have made our point that the IS cost is well
suited to the factorization of audio power spectrograms (i.e., independent
of the type of algorithm used); future work will address the development
of faster IS-NMF algorithms. Following developments for other cost func-
tions, we intend to investigate projected gradient techniques (Lin, 2007),
exponentiated gradient descent and generalizations (Cichocki, Amari et al.,
2006), quasi-Newton second-order methods (Zdunek & Cichocki, 2007),
and multilayered approaches (Cichocki & Zdunek , 2006).

Key issues that still need to be resolved in NMF concern identifiability
and order selection. A related issue is the investigation into the presence
of local minima in cost functions and ways to avoid them. In that matter,
Markov chain Monte Carlo (MCMC) sampling techniques could be used
as a diagnostic tool to better understand the topography of the criteria to
minimize. While it is not clear whether these techniques can be applied to
EUC-NMF or KL-NMF, they can readily be applied to IS-NMF, using its un-
derlying gaussian composite structure the same way that IS-NMF/EM does.
As to the avoidance of local minima, techniques inherited from simulated
annealing could be applied with IS-NMF in either MCMC or EM inference.

Regarding order selection, usual criteria such as the Bayesian informa-
tion criterion or Akaike’s criterion (see, e.g., Stoica & Selén, 2004) cannot be
directly applied to IS-NMF because the number of parameters (F K + K N)
is not constant with regard to the number of observations N. This feature
breaks the validity of the assumptions in which these criteria have been
designed. As such, a final promising line of research concerns the design
of methods characterizing p(V | W) instead of p(V | W, H), treating H as
a latent variable, as in independent component analysis (MacKay, 1996;
Lewicki & Sejnowski, 2000). Besides allowing for model order selection,
such approaches should lead to more reliable estimation of the basis W.

Appendix A: Standard Distributions

Proper complex gaussian Nc(x|µ,  ) = |π  |−1 exp −(x − µ)H  −1(x − µ)
Poisson P(x|λ) = exp(−λ) λx

x!
Gamma G(u | α, β) = βα

-(α) uα−1 exp(−β u), u ≥ 0
Inverse-gamma IG(u | α, β) = βα

-(α) u−(α+1) exp(− β
u ), u ≥ 0

The inverse-gamma distribution is the distribution of 1/X when X is gamma
distributed.

Appendix B: Derivations of the SAGE Algorithm

In this appendix, we detail the derivations leading to algorithm 2. The
functions involved in the definition of QML

k (  k |  ′), given by equation 3.2,
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can be derived as follows. For the hidden data minus log likelihood,

− log p(Ck |  k) = −
N∑

n=1

F∑

f =1

logNc(ck, f n | 0, hkn w f k) (B.1)

c=
N∑

n=1

F∑

f =1

log
(
w f k hkn

)
+ |ck, f n|2

w f k hkn
. (B.2)

Then the hidden-data posterior is obtained through Wiener filtering, yield-
ing

p(Ck | X,  ) =
N∏

n=1

F∏

f =1

Nc
(
ck, f n | µ

post
k, f n, λ

post
k, f n

)
, (B.3)

with µ
post
k, f n and λ

post
k, f n given by equations 3.3 and 3.4. The E-step is performed

by taking the expectation of equation B.2 with regard to the hidden-data
posterior, leading to

QML
k (  k |  ′) c=

N∑

n=1

F∑

f =1

log
(
w f k hkn

)
+

∣∣µpost
k, f n

′∣∣2 + λ
post
k, f n

′

w f k hkn
(B.4)

c=
N∑

n=1

F∑

f =1

dIS
(∣∣µpost

k, f n
′∣∣2 + λ

post
k, f n

′ ∣∣ w f k hkn
)
. (B.5)

The M-step thus amounts to minimizing DI S(V′
k | wk hk) with regard to

wk ≥ 0 and hk ≥ 0, as stated in section 3.2.
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