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Abstract

Multifractal processes have recently been introduced as a new tool for
modeling the stylized facts in financial time series. In this paper, we ex-
tend it to a multivariate multifractal model with parsimonious settings.
Since there are restrictions when applying likelihood approaches due to the
extreme large state spaces, we implement its estimation via Generalized
Methods of Moment (GMM). Our Monte Carlo studies demonstrate con-
vincing performances of the GMM estimator; we also present its empirical
applications in terms of volatility forecasting and portfolio management.
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1 Introduction

Despite the rich literature that exists on volatility modeling, multifractal (MF)
processes have been recently introduced as an alterative formalisation, which
conceives volatility as a hierarchical, multiplicative process with heterogeneous
components. The essential new feature of MF models is their ability of gener-
ating different degrees of long-term dependence in various powers of returns -
a feature pervasively found in empirical financial data, cf. Lo (1991), Ding et
al (1993), Beran (1994), Lobato and Savin (1998), Zumbach (2004), Liu et. al
(2007), Lux and Morales-Arias (2010), etc.1 Research on multifractal models

1Though there are considerable numbers of long memory volatility models, such as
ARFIMA (Fractional Integrated Autoregressive Moving Average), and FIGARCH (Fractional
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originated from statistical physics (Mandelbrot, 1974), unfortunately, the mod-
els used in physics are of a combinatorial nature and suffer from non-stationarity
due to the limitation to a bounded interval and the non-convergence of moments
in the continuous-time limit. This major weakness was overcome by introducing
iterative versions of multifractal processes, cf. Calvet and Fisher (2001, 2004,
2006), Lux (2006, 2007).

So far, available multifractal models are mostly univariate ones. However,
for many important questions in empirical research, multivariate settings are
preferable, cf. Bollerslev (1990), Liesenfeld and Richard (2003). For instance,
it is now well accepted that financial volatilities move together over time across
assets and markets. This is particularly important when considering asset al-
location, risk measurement and management and portfolio strategies; since the
information on the source of long memory in the volatility process is quite silent,
the multivariate setting may provide additional insight into the factors respon-
sible for the long term dependence.

The rest of this paper is organized as follows: Section 2 introduces a parsimo-
nious multivariate multifractal model after a brief review of the univariate ones.
Section 3 implements its estimation via GMM approach, Monte Carlo studies
have been conducted to whose assess its applicability. Empirical applications
on volatility forecasting and portfolio management are presented in Section 4.
Concluding remarks are provided in Section 5. The appendix provides details
of the analytical moments calculation.

2 Multivariate multifractal models

Mandelbrot et al. (1997) first introduced the multifractal model of asset returns
(MMAR), translating the approach of energy flux cascade from the statistical
physics, where “cascades” are typically modeled by multiplicative operations on
probability measures, cf. Mandelbrot (1974) and Harte (2001). However, the
practical applicability of MMAR suffers from its combinatorial nature, i.e. the
non-causal nature of the time transformation and from its non-stationarity due
to the inherent restriction to a bounded interval.

2.1 Review of univariate multifractal models

These limitations have been overcome by the introduction of iterative versions
of the MF processes, one of the most prominent development is the Markov-
switching multifractal model (MSM), cf. Calvet and Fisher (2001, 2004) and
Lux (2008). In their approach, returns are modeled as:

rt = σ

(
k∏

i=1

M
(i)
t

)1/2

· ut (1)

Integrated General Autoregressive Conditional Heteroscedasticity) models, most of them are
only limited on the second moment.
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with ut drawn from a standard Normal distribution N(0, 1) and instanta-
neous volatility being determined by the product of k volatility components or
multipliers M

(1)
t , M

(2)
t ..., M

(k)
t , and a constant scale parameter σ. Volatility

components are renewed at time t with probability γi depending on its rank ‘i’
within the hierarchy of multipliers or remains unchanged with probability 1−γi.
The transition probabilities are specified as:

γi = 1− (1− γ1)(b
i−1), for i = 1, 2, . . . k, (2)

with parameters γ1 ∈ [0, 1] and b ∈ (1,∞).
This iterative version of the multifractal model preserves the hierarchical

structure of MMAR while dispensing with its restriction to a bounded interval.
While this model is asymptotically “well-behaved” (i.e. it shares all the conve-
nient properties of Markov-switching processes), it is still capable of capturing
some important properties of financial time series, namely, volatility clustering
and the power-law behaviour of the autocovariance function of absolute mo-
ments:

Cov(|rt|q, |rt+τ |q) ∝ τ2d(q)−1. (3)

Note, however, that the power-law behavior of the MSM model holds only
approximately in a preasymptotic range. Rather than displaying asymptotic
power-law behavior of autocovariance functions in the limit t → ∞ or diver-
gence of the spectral density at zero, the Markov-switching MF model is rather
characterized by only ‘apparent’ long memory with an approximately hyper-
bolic decline of the autocorrelation of absolute powers over a finite horizon and
exponential decline thereafter. In particular, approximately hyperbolic decline
as expressed in eq. (3) holds only over an interval 1 � τ � bk with b the param-
eter of the transition probabilities of eq. (2) and k the number of hierarchical
cascade levels.

2.2 Higher dimensional multifractal models

Let us consider an N -dimensional asset returns process evolving in discrete time
over the interval [0, T ] with equally spaced discrete time points t = 1, . . . , T , and
rt = (r1, . . . , rN )′:

rt = σ. ∗ [g(Mt)]1/2. ∗ ut, (4)

σ, ut are N×1 vectors, .∗ being element by element multiplication, ut follows
the multivariate standard Normal distribution which has the correlation matrix
being composed of unknown correlation parameters ρ:


1 ρ12 ρ13 · · ·

ρ12 1 ρ23 · · ·
ρ13 ρ23 1 · · ·
...

...
. . .
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σ is a vector of constant scale of parameters and can be viewed as uncondi-
tional standard deviation. g(Mt) is a N×1 vector of the products of multifractal
volatility components, i.e., g(Mt) = [g(M1,t), . . . , g(MN,t)]′:

g(Mq, t) =
j∏

i=1

M
(i)
q,t . ∗

k∏
l=j+1

M
(l)
q,t , (5)

M
(i)
1,t = M

(i)
2,t = . . .M

(i)
N,t, for 1 < i ≤ j,

q = 1, . . . , N . Eq. (5) means that each element of g(Mt) is the instantaneous
volatility of univariate multifractal processes; in addition, N time series share
a number of j joint cascades that govern the strength of their volatility cor-
relation. Consequently, the larger j, the higher the correlation between them.
After j joint multipliers, each series has additional independent multifractal
components. Instead of introducing additional correlation parameters for the
specification of new arrivals at hierarchy level i among different time series, our
assumption of joint cascade level simplifies the characterization of new arrivers
of volatility components across different assets. This simplification has been
demonstrated to be well performed in the bivariate case according to both its
simulation and empirical applications, cf. Liu and Lux (2010).

Furthermore, to constrain the space of parameters further, a restriction for
the specification of the transition probabilities is imposed:

γi = 2−(k−i), for i = 1, 2 . . . , j, . . . , k. (6)

Each volatility component is renewed at time t with probability of γi de-
pending on its rank within the hierarchy of multipliers and remains unchanged
with probability of 1−γi. Lux (2008) Liu and Lux (2010) report that transition
probabilities of form Eq. (6) possesses sufficient flexibility in the remaining pa-
rameters so that its empirical performance is relatively little hampered by fixing
these parameters.

We specify volatility components for all assets to be random draws from
either a binomial distribution or Lognormal distribution. For the binomial case
in which we assume two draws, i.e., m0 ∈ (0, 2) and alternative m1 = 2 −m0;
for the latter, we assume logM ∼ N(−λ, σ2

m), and normalize it by assigning
constraint E[M (i)

t ] = 1 for the sake of explosion.

3 GMM Estimation

Although the multifractal model is a rather new tool in volatility modelling,
various approaches have already been explored to estimate its parameters. The
parameters of the combinatorial MMAR have been estimated via an adaptation
of the scaling estimator and Legendre transformation approach from statistical
physics although this approach has been shown to yield unreliable results, cf.
Lux (2004). A broad range of more rigorous estimation methods have been
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developed for iterative MF processes. Calvet and Fisher (2001, 2004) propose
maximum likelihood (ML), whose applicability is, however, confined to the case
of discretely distributed multipliers, in addition, it imposes an upper bound
computational limit of the cascade level, i.e., it is not feasible to implement
when k > 5 (bivariate model) using personal computers. Calvet, et. al (2006)
have introduced a simulation based ML to estimate the parameters of a bivari-
ate extension of the MSM model. Lux (2008) proposes a Generalized Method
of Moments approach, which can be applied not only to discrete but also to
continuous distributions of the volatility components.

In this paper, we adopt the GMM (Generalized Method of Moments) ap-
proach by Hansen (1982) with analytical solutions of a set of appropriate mo-
ment conditions. In the GMM approach, the vector of parameter estimates of
the model, say β, can be obtained as:

β̂ = arg min
β∈Θ

M̄(β)′WM̄(β) (7)

Θ is the parameter space, M̄(β) is the vector of differences between sample
moments and analytical moments, and W a positive definite weighting matrix,
which controls the over-identification when applying GMM. Implementing (7),
one typically starts with the identity matrix, then the inverse of the covariance
matrix obtained from the first round estimation is used as the weighting ma-
trix in the next step, and the procedure will continue until the estimates and
weighting matrices converge. Under suitable conditions, β̂ is consistent and
asymptotically converges to T 1/2(β̂ − β0) ∼ N(0,Ξ) with covariance matrix Ξ.
As is well-known, β̂T is consistent and asymptotically Normal if suitable ‘regu-
larity conditions’ are fulfilled (sets of which are detailed, for example, in Harris
and Mátyás (1999)). β̂T then converges to

T 1/2(β̂T − β0) ∼ N(0,Ξ), (8)

with covariance matrix Ξ = (F̄ ′
T V̄ −1

T F̄T )−1 in which β0 is the true parameter
vector, V̂T = TvarM̄T (β) is the covariance matrix of the moment conditions,
F̂T (β) = ∂M̄T (β)

∂β is the matrix of first derivatives of the moment conditions, and

V̄T and F̄T are the constant limiting matrices to which V̂T and F̂T converge.
The applicability of GMM for multifractal models has been discussed by Lux

(2008). In order to account for the proximity to long memory characterizing
multifractal models, it is recommended to use logarithmic differences of abso-
lute returns together with the pertinent analytical moment conditions, i.e. to

5



transform the observed data rt into τth differences of the log observations:

Xt,τ = ln |rt| − ln |rt−τ |

=

(
σ1 + 0.5

k∑
i=1

ε
(i)
t + 0.5

n∑
h=k+1

ε
(h)
t + ln|ut|

)
−
(

σ1 + 0.5
k∑

i=1

ε
(i)
t−τ+

0.5
n∑

h=k+1

ε
(h)
t−τ + ln|ut−τ |

)

= 0.5
k∑

i=1

(ε(i)
t − ε

(i)
t−τ ) + 0.5

n∑
h=k+1

(ε(h)
t − ε

(h)
t−τ ) + (ln|ut| − ln|ut−τ |)

(9)

with ε
(i)
t = ln

(
M

(i)
t

)
. The variable resulted in Eq. (9) has nonzero autoco-

variance over a limited number of time lags. In order to exploit the temporal
scaling properties of multifractal processes, we select moment conditions for the
covariances of different orders over various time lags τ . More precisely, the
moment conditions that we consider include two categories: the first set of con-
ditions is obtained by considering some order of log-squared observations, and
the second set of moment conditions is derived from the absolute observations.
In particular, we select moment conditions for the powers of Xt,τ i.e. moments
of the raw observations and square observations:

Cov[Xt+τ,τ , Xt,τ ]; Cov[X2
t+τ,τ , X2

t,τ ];

Cov[Xt+τ,τ , X−
t,τ ]; Cov[X2

t+τ,τ , (X−
t,τ )2];

X−
t,τ stands for the time series other than Xt,τ , We recognize the transfor-

mation in Eq. (9) excluding the scale parameters σ, while estimating the scale
parameters can be pursued by adding additional moment conditions, i.e., the
second moment of empirical data by considering each observation’s contribution
to the standard deviation of the sample returns.

Similar to Andersen and Sorensen (1996), we proceed by conducting Monte
Carlo experiments to explore the performance of the GMM estimation regard-
ing to the bivariate cases. Moment conditions for the bivariate binomial and
Lognormal models can be found in the Appendix. We start with the bivariate
binomial model with number of cascade level k = 12, we fixed correlation pa-
rameter ρ = 0.5; scale parameter (unconditional variance) σ1 = σ2 = 1, and
choose multipliers from m0 = 1.2 to 1.5 by 0.1 increment with sample sizes
N1 = 2000, N2 = 5000, and N3 = 10000. Table 1 shows the statistical result
of our GMM estimator for the case of joint multipliers j = 6: for the binomial
distribution parameter m̂0, not only the bias but also the finite sample stan-
dard deviation and root mean squared error show quite encouraging behavior,
even in the smaller sample sizes N = 2000 and N = 5000, the average bias
of the Monte Carlo estimates is moderate throughout and practically zero for
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the larger sample sizes N = 10000. It is also interesting to note that our esti-
mates are in harmony with T

1
2 consistency. All these results can be viewed as

a positive signal of the log transformation in practice.
Then, we turn to the MF model with volatility components being continuous

distributed, i.e., −logM ∼ N(λ, σ2
m). Unlike the binomial model, multifractal

processes with continuous distribution of volatility components imply an infinite
dimension of the transitional matrix, and the exact form of likelihood function
can not be identified explicitly. Therefore, the maximum likelihood approach is
not applicable to the Lognormal case.2 GMM provides a solution for estimating
multifractal processes with continuous state spaces. Moment conditions for the
Lognormal model are given in Appendix B. Note that the admissible parameter
space for the location parameter λ is λ ∈ [0, 1) where in the borderline case
λ = 0 the volatility process collapses to a constant (as m0 = 1 in binomial
model).

In our Monte Carlo studies of the bivariate Lognormal model reported in
Table 2, we cover parameter values of λ = 0.10 to λ = 0.40 with the increment
of 0.1, and use same numbers of joint multiplier cascade levels and the sample
sizes as in the binomial case.3 As can be seen, results are not too different
from those obtained with the binomial model: biases are moderate and close
to zero again; SD and RMSE are moderate and decreasing with increasing in
the sub-sample sizes from 2000 to 10000, somewhat in contrast to the binomial
case, we notice a some slight deterioration of efficiency with smaller sample size
when increasing λ, which might be due to increasing λ leading to increasing σ2

m

by their dependence; by recalling that we the normalization with E[M (i)
t ] = 1,

it implies exp(−λ + 0.5σ2
m) = 1 and leads to σ2

m = 2λ.
When studying higher dimensional multifractal models, for instance tri-

variate case (when modeling 3 assets), maximum likelihood approach only ap-
plies when the number of cascade levels k < 3 (binomial model), which certainly
does not meet the empirical demands. In contrast, GMM provides a more con-
venient way to implement estimation of much higher dimensional MF processes
because it allows us to treat each pair of time series as a bivariate case, and select
the moment conditions of each bivairate time series. We have also conducted
Monte carlo studies for tri-variate ML processes. Analogously to the bivariate
models, we select moments conditions for a collections of 3 pairs of bivariate
data. Table 3 provides the performance our GMM estimator of the trivariate
binomial multifractal model with k = 12, j = 4, and initial parameters used
for simulations are m0 = 1.3, σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.3, ρ23 = 0.5,
ρ13 = 0.7. Table 4 report the Monte Carlo studies for trivariate Lognormal
model with the same design initial parameters (except with λ = 0.2) as in the
Table 3 of the binomial model. We observe again very positive performance
similar to the Monte Carlo studies for the bivariate model. 4

2Theoretically, simulation based maximum likelihood could be applicable, however there
are very few applications in the existing literature so far.

3We have also repeated experiments with respect to different joint multipliers j, which
provides us similar results for both binomial and Lognormal cases.

4We have also studied with various combinations of parameters, and we obtained similar
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All in all, the performance from both the binomial and Lognormal Monte
Carlo simulation and estimation shows that GMM approach workes quite well
for higher dimensional multifractal processes both in the discrete and in the
continuous state space.

4 Empirical applications

In this section, we present the performance of our new parsimonious multivari-
ate MSM model by reporting the empirical results of volatility forecasts and
portfolio management.

We consider daily data for two stock exchange indices: the Dow Jones com-
posite 65 average index and the NIKKEI 225 average index (DOW/NIK, 6th

January 1970 - 30th December 2010), two foreign exchange rates, the U.S. Dol-
lar to British Pound, and German Mark to British Pound (US/DM , 1st March
1973 - 31st December 2010); and a bond portfolio of U.S. 1-year and 2-year
treasury constant maturity bond rates (TB1/TB2, 1st June 1976 - 31st De-
cember 2010), where the first symbol inside the parentheses gives the acronym
for the corresponding time series, followed by the starting and ending dates for
the sample at hand. Asset return are calculated as the log differences of prices
rt = 100× (log(pt)− log(pt−1)), with pt denoting daily price observations.5

We separate each time series into two subsets (in-sample data used for esti-
mation, out-of-sample data for forecast assessment). For the in-sample periods
we use for DOW/NIK: 6th January 1970 - 31st August 1992; US/DM : 1st

March 1973 - 30th April 1994; and TB1/TB2: 1st June 1976 - 31st May 1996.
The remaining out-of-sample subsets are for the DOW/NIK: 4th September
1992 - 30th December 2010; US/DM : 1st May 1994 - 31st December 2010 and
TB1/TB2: 1st June 1996 - 31st December 2010.

We use the number of cascades k = 8 for DOW/NIK, k = 10 for US/DM
and k = 8 for TB1/TB2 as Liu (2008). Table 5 reports the in sample empirical
GMM estimates for DOW/NIK for different choices of joint cascade levels j
ranging from 1 to 7; Table 6 provide the empirical estimates for US/DM with
j ranging from 1 to 9; Table 7 provide the empirical estimates for TB1/TB2
with j ranging from 1 to 7. To specify an optimal choice of joint cascade
levels, we proceed by matching the simulated long memory GPH parameter
estimates (Geweke and Porter-Hudak(1983)) and empirical GPH estimates, cf.
Liu and Lux (2010). for the detailed heuristic model selection scheme. For
the DOW/NIK portfolio the preferred model according to the heuristic model
selection scheme detailed in Liu and Lux (2010) is j = 2, while it is j = 3 for
US/DM and j = 5 for TB1/TB2 respectively.

results, we skip these tables to save spaces.
5The U.S. one and two-year treasury constant maturity rates have been converted to equiv-

alent bond prices before calculating returns.
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4.1 Volatility Forecast

Unlike the volatility forecast implied from maximum likelihood approach for
MF models (that is, based on the exact identifying the elements of transition
matrix, the conditional probabilities can be used to obtain the multi-step fore-
casts according to Bayes rule), in this section, we assess the applicability of
our multivariate MF by its volatility forecast computed on the base of GMM
parameter estimates. We construct the best linear forecast with the auxiliary
of the generalized Durbin-Levinson algorithm. As outlined in Brockwell and
Davis (1991). Assuming Xt = {Xt1, . . . , Xtm} being an m-variate stationary
time series with mean zero and covariance function given by the m×m matrix
Γ(·), the best linear forecasts are obtained

X̂n+1 = Θn1Xn + · · ·ΘnnX1 (10)

where the m×m matrix Θn1, . . . ,Θnn are any solution of

n∑
j=1

ΘnjΓ(i− j) = Γ(i), i = 1, . . . , n. (11)

The coefficients of Θn1, . . . ,Θnn can be computed recursively using the mul-
tivariate version of generalized Durbin-Levinson algorithm, see Brockwell and
Davis (1991 chapter 14) for details.

We first report the performance of volatility forecast by using simulation
data, we adopt the traditional criteria of relative mean squared error (RMSE)
and relative mean absolute error (RMAE), i.e., mean squared error and mean
absolute error divided by the pertinent MSE and MAE of the naive predictor us-
ing historical volatility (the sample mean of squared returns over the in-sample
period). Before applying empirical data, we first assess its applicability by using
simulated ones. We have conducted 400 simulations and estimations with each
simulation of 10000 realizations, first 5000 observations are used for estimation,
the remaining 5000 observations used for out of sample forecast assessment. The
first two columns of Table 8 report the RMSE and RMAE for simulated data
from the bivariate MF model with the forecast horizons are 1, 5, 10, 20, 50, 100
days, and we observe the very successful results that all forecasts based on the
multivariate MF model outperforms the ones based on naive predictor, partic-
ularly at short-time horizons.

We also present the volatility forecast based on the univariate MF model
which is given in Table 9 for comparison reason. For the results from bivariate
MF model, the upper two panels of Table 10 report the RMSE and RMAE
of the out of sample forecasts regarding to our empirical data at various hori-
zons of 1, 5, 10, 20, 50, 100 days. We find results based on the bivariate model
give better forecasts than ones from the univariate model, indeed, multivariate
models provide more information (e.g. correlation parameters etc.) used for
voaltility forecasting, Table 10 report the successful out of sample forecasts of
equal-weighted portfolio (EW) according their RMSE and RMAE.
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4.2 Optimal Portfolio Choice

In mean-variance analysis, the maximum expected return strategy leads to a
portfolio allocation on the efficient frontier. Consider an investor who has
a one-step ahead horizon and constructs a dynamically rebalanced portfolio
that maximizes the conditional expected return subject to achieving a tar-
get conditional volatility. Computing the time-varying weights of this port-
folio requires one-step ahead forecasts of the conditional mean and the condi-
tional variance-covariance matrix. Let rt+1 denote the N × 1 vector of risky
asset returns, µt+1|t = Et[rt+1] is the conditional expectation of rt+1, and
Σt+1|t = Et[(rt+1−µt+1|t)(rt+1−µt+1|t)] is the conditional variance-covariance
matrix of rt+1. At each period t, the investor solves the following utility (U(·))
maximization problem:

max
wt

{E[U(Wt+1)] = µp,t+1 −
c

2
σ2

p,t+1} (12)

with

µp,t+1 = w
′

tµt+1|t + (1− w
′

t)rf ; andσ2
p,t+1 = w

′

tΣt+1|twt, (13)

where wt is a vector of portfolio weights, c the coefficient of the absolute risk
aversion, and rf the riskless return. Thus, the optimal portfolio weight is given:

wt =
1
c
Σ−1

t+1|t(µp,t+1 − rf ) (14)

One commonly used performance measure is the Sharpe ratio SR. We com-
pute and compare the ex post Sharpe ratios SR = (µp − rf )/σp. However,
it does not take into account time-varying conditional volatility because the
sample standard deviation (SD) overestimates the conditional risk when follow-
ing dynamic strategies. Consequently, the realized Sharpe ratio underestimates
the performance of dynamic strategies. In addition, the Sharpe ratio cannot
quantify the economic gains of the dynamic strategies over the buy-and-hold
strategies. One alternative performance measure that is directly related to the
Sharpe ratio, but also quantifies the outperformance is the M2 measure devel-
oped by Modigliani and Modigliani (1997).6 The M2 measure is the abnormal
return that the dynamic strategy would have earned if it had the same risk as
the benchmark. It is defined as

M2 =
σb

σp
(µp − rf )(µb − rf ) (15)

σb and µb are the benchmark portfolio mean and standard deviation re-
spectively, as in the subsection of vlatility forecast, we use the naive predic-
tor of historical volatility (the sample mean of squared returns over the in-
sample period). M2 in Eq. (15) is also directly related to the Sharpe ratio

6Graham and Harvey (1997) introduced a similar measure called GH2, which includes
the correlation between the risk-free asset and other assets. As the risk-free rate we use is
constant, the two measures GH2 and the M2 actually are identical in our study.
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as M2 = σb(SRp − SRb), i.e. a measure of the difference of Sharpe ratios of
portfolio and benchmark.

The third column of Table 8 reports the M2 for simulated data from the
bivariate MF model with the forecast horizons are 1, 5, 10, 20, 50, 100 days. The
lower panel of Table 10 report the out of sample forecasts of M2 regarding to
our empirical data at various time horizons. As can be seen, M2 forecasts from
the bivariate MF model are very positive (in particular for the equal-weighted
portfolios), except with the failure of U.S one-year treasury rate.

5 Concluding remarks

In this paper we have developed a parsimonious multivariate multifractal model
extending the univariate Markov-switching multifractal model. Since there are
limitations of maximum likelihood (ML) approach due to its high dimensional
structure with extreme large state spaces, we implement its estimation via al-
ternative Generalized Method Moment (GMM). The moments conditions have
been employed through the log transformation of observations. Our Monte
Carlo experiments indicate the successful performance of our GMM estimator,
i.e., it does not pose computational restrictions on the choice of the number of
cascade levels with GMM, compared to a maximum of about 5 cascade levels in
ML estimation (bivariate case); GMM also applies the multifractal models with
continuous distributed volatility components; Furthermore, empirically speak-
ing, GMM is much faster compared to the very time-consuming ML approaches.
In the last part of this paper, we applied the model to volatility forecast and
portfolio management with empirical financial time series of stock exchange in-
dices, foreign exchange rates and U.S Bond maturity rates. We demonstrate
the applicability of the multivariate multifractal model.
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Appendix: Moment Conditions

Recall the model from Section 3. Let ε
(·)
t = ln(|M (·)

t |), and we compute the first
log difference:

Xt,1 = ln(|r1,t|)− ln(|r1,t−1|)

=
1
2

k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)
+

1
2

n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)
+ (ln|u2,t| − ln|u1,t−1|)

Yt,1 = ln(|r2,t|)− ln(|r2,t−1|)

=
1
2

k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)
+

1
2

n∑
h=k+1

(
ε
(h)
t − ε

(h)
t−1

)
+ (ln|u2,t| − ln|u2,t−1|)

A Binomial case

cov(Xt,1, Yt,1)

= E [(Xt,1 − E[Xt,1]) · (Yt,1 − E[Yt,1])] = E[Xt,1 · Yt,1]

= E

{[
1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1) + (ln|u1,t| − ln|u1,t−1|)

]
·[

1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1) + (ln|u2,t| − ln|u2,t−1|)

]}

= 1
4E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]
− 2E[ut]2 + 2E[ln|u1,t| · ln|u2,t|].

(A1)

We firstly consider E[(ε(i)
t − ε

(i)
t−1)

2], the only one non-zero contribution is
[ln(m0) − ln(2 − m0)]2, and it occurs when new draws take place in cascade
level i between t and t− 1, whose probability by definition is 1

2
1

2k−i . Summing
up we get:

cov(Xt,1, Yt,1) = 0.25 · [ln(m0)− ln(2−m0)]2 ·
k∑

i=1

1
2

1
2k−i − 2E[ut]2

+2E[ln|u1,t| · ln|u2,t|].
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cov(Xt+1,1, Yt,1)

= E

{[
1
2

k∑
i=1

(ε(i)
t+1 − ε

(i)
t ) + 1

2

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t ) + (ln|u1,t+1| − ln|u1,t|)

]
·[

1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1) + (ln|u2,t| − ln|u2,t−1|)

]}

= 1
4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

)
·

k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
+ E[ut]2 − E[ln|u1,t| · ln|u2,t|].

(A2)

For (ε(i)
t+1 − ε

(i)
t )(ε(i)

t − ε
(i)
t−1), the non-zero value only occurs in case of two

changes of the multiplier from time t + 1 to time t − 1, the probability of this
occurrence is ( 1

2
1

2k−i )2. So, we have the result:

cov[Xt+1,1, Yt,1]

= 0.25 · [2ln(m0) · ln(2−m0)− (ln(m0))2 − (ln(2−m0))2] ·
k∑

i=1

( 1
2

1
2k−i )2

+E[ut]2 − E[ln|u1,t| · ln|u2,t|].

Then, we look at the moment condition for one single time series:

cov[Xt+1,1, Xt,1]

= E

{[
1
2

k∑
i=1

(ε(i)
t+1 − ε

(i)
t ) + 1

2

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t ) + (ln|u1,t+1| − ln|u1,t|)

]
·[

1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1) + (ln|u1,t| − ln|u1,t−1|)

]}

= 1
4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

)
·

k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
+ 1

4E

[
n∑

l=k+1

(
ε
(l)
t+1 − ε

(l)
t

)
·

n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)]

+E [ln|ut|]2 − E
[
ln|ut|2

]
.

(A3)

The first component is identical to the one of the case of cov[Xt+1,1, Yt,1],
and the second component can be derived in the same way. Adding together we
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arrive at:

cov[Xt+1,1, Xt,1]

= 0.25 ·
[
2ln(m0) · ln(2−m0)− (ln(m0))2 − (ln(2−m0))2

]
·

k∑
i=1

( 1
2

1
2k−i )2

+0.25 ·
[
2ln(m0) · ln(2−m0)− (ln(m0))2 − (ln(2−m0))2

]
·

n∑
i=k+1

( 1
2

1
2n−i )2

+E[ln|ut|]2 − E[ln|ut|2].
(A4)

By our assumption of both time series having the same number of cascade
levels, the moments for the two individual time series are identical for the same
length of time lags.

Then, let’s turn to the squared observations:

E[X2
t,1 · Y 2

t,1]

= E


[

1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1) + (ln|u1,t| − ln|u1,t−1|)

]2

·

[
1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1) + (ln|u2,t| − ln|u2,t−1|)

]2


= 1
16E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)4
]

+ 1
16E

( n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2(
n∑

h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2


+ 1
4

2E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 2E

( n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2
 ·

(
2E[ln|ut|2]− 2E[ln|ut|]2

)
+2E[(ln|u1,t|)2 · (ln|u2,t|)2]− 8E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|]

+4E[ln|u1,t| · (ln|u2,t|]2 + 2E[(ln|ut|)2]2.

By examining each component in the expression above combining with the
calculations of the previous moments, it is not difficult to find the solution:
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E[X2
t,1 · Y 2

t,1]

= [ln (m0)− ln (2−m0)]
4 · 1

16

k∑
i=1

1
2

1
2k−i + [ln (m0)− ln (2−m0)]

4 · 1
16

n∑
i=k+1

1
2

1
2n−i

n∑
i=k+1

1
2

1
2n−i

+2 [ln (m0)− ln (2−m0)]
4 · 1

16

k∑
i=1

1
2

1
2k−i

n∑
i=k+1

1
2

1
2n−i

+
(
E[ln|ut|2]− E[ln|ut|]2

)
· [ln (m0)− ln (2−m0)]

2 ·

(
k∑

i=1

1
2

1
2k−i +

n∑
i=k+1

1
2

1
2n−i

)

+2E[(ln|u1,t|)2 · (ln|u2,t|)2]− 8E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|]

+4E[ln|u1,t| · ln|u2,t|]2 + 2E[(ln|ut|)2]2.
(A5)

E[X2
t+1,1 · Y 2

t,1]

= E


[

1
2

k∑
i=1

(ε(i)
t+1 − ε

(i)
t ) + 1

2

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t ) + (ln|u1,t+1| − ln|u1,t|)

]2

·

[
1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1) + (ln|u2,t| − ln|u2,t−1|)

]2


= 1
16E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2( k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 1
16E

( n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2(
n∑

h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t+1 − ε

(i)
t )
)2
(

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2


+ 1
4

2E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 2E

( n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2
 ·

(
2E[ln|ut|2]− 2E[ln|ut|]2

)
+E[(ln|u1,t|)2 · (ln|u2,t|)2]− 4E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|] + 4E[ln|u1,t| · ln|u2,t|]E[ln|ut|]2

+3E[ln|ut|2]2 − 4E[ln|ut|2]E[ln|ut|]2.
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Until now, the only unfamiliar component is the first term:

E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]
, there are three different forms

to be considered:

(1)
(
ε
(i)
t+1 − ε

(i)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

, which have non-zero value only if ε
(i)
t+1 6=

ε
(i)
t 6= ε

(i)
t−1. and this possibility is (1

2
1

2k−i )2, combining with the non-zero
expectation value,

we have
(

k∑
i=1

( 1
2

1
2k−i )2

)
· [ln (m0)− ln (2−m0)]

4
.

(2)
(
ε
(j)
t+1 − ε

(j)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

, which are non-zero for i 6= j, ε
(j)
t+1 6= ε

(j)
t

and ε
(i)
t 6= ε

(i)
t−1, the probability of its occurrence is

k∑
i=1

(
1

2k−i

k∑
j=1,j 6=i

1
2k−j

)
.

Putting together these two possible forms we get

[ln (m0)− ln (2−m0)]
4 ·

(
k∑

i=1

1
2

1
2k−i

k∑
j=1

1
2

1
2k−j

)
.

(3) Form
(
ε
(j)
t+1 − ε

(j)
t

)(
ε
(i)
t+1 − ε

(i)
t

)(
ε
(j)
t − ε

(j)
t−1

)(
ε
(i)
t − ε

(i)
t−1

)
, which for i 6=

j and ε
(n)
t+1 6= ε

(n)
t 6= ε

(n)
t−1, n = i, j are non-zero, and which implies

2

{
k∑

i=1

(
( 1
2k−i )2

k∑
j=1,j 6=i

( 1
2k−j )2

)}
· [ln (m0)− ln (2−m0)]

4.

Then we have the solution for the first component in the above moment
condition:

E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

= [ln (m0)− ln (2−m0)]
4

[
k∑

i=1

1
2

1
2k−i

k∑
j=1

1
2

1
2k−j + 2

k∑
i=1

( 1
2

1
2k−i )2

k∑
j=1,j 6=i

( 1
2

1
2k−j )2

]

The other components can be solved by recalling previous calculations. All
in all, we finally arrive at:
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E[X2
t+1,1 · Y 2

t,1]

= [ln (m0)− ln (2−m0)]
4 · 1

16

[
k∑

i=1

1
2

1
2k−i

k∑
j=1

1
2

1
2k−j + 2

k∑
i=1

( 1
2

1
2k−i )2

k∑
j=1,j 6=i

( 1
2

1
2k−j )2

]
+ [ln (m0)− ln (2−m0)]

4 · 1
16

n∑
i=k+1

1
2

1
2n−i

n∑
i=k+1

1
2

1
2n−i

+ 1
8 [ln (m0)− ln (2−m0)]

4
k∑

i=1

1
2

1
2k−i

n∑
i=k+1

1
2

1
2n−i

+
(
E[ln|ut|2]− E[ln|ut|]2

)
· [ln (m0)− ln (2−m0)]

2 ·

(
k∑

i=1

1
2

1
2k−i +

n∑
i=k+1

1
2

1
2n−i

)

+E[(ln|u1,t|)2 · (ln|u2,t|)2]− 4E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|] + 4E[ln|u1,t| · ln|u2,t|]E[ln|ut|]2

+3E[ln|ut|2]2 − 4E[ln|ut|2]E[ln|ut|]2.
(A6)

E[X2
t+1,1 ·X2

t,1]

= E


[

1
2

k∑
i=1

(ε(i)
t+1 − ε

(i)
t ) + 1

2

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t ) + (ln|u1,t+1| − ln|u1,t|)

]2

·

[
1
2

k∑
i=1

(ε(i)
t − ε

(i)
t−1) + 1

2

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1) + (ln|u1,t| − ln|u1,t−1|)

]2


= 1
16E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 1
16E

( n∑
l=k+1

(ε(i)
t+1 − ε

(i)
t )

)2

·

(
n∑

l=k+1

(ε(i)
t − ε

(i)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t+1 − ε

(i)
t )
)2
(

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2
+ 1

16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2


+ 1
4

2E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2
]

+ 2E

( n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2
 ·

(
2E[ln|ut|2]− 2E[ln|ut|]2

)
+ 1

16 · 4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

) k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
E

[
n∑

l=k+1

(
ε
(l)
t+1 − ε

(l)
t

) n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)]
+ 1

4 · 4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

) k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
·
(
E[ln|ut|]2 − E[ln|ut|2]

)
+ 1

4 · 4E

[
n∑

l=k+1

(
ε
(l)
t+1 − ε

(l)
t

) n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)]
·
(
E[ln|ut|]2 − E[ln|ut|2]

)
+3E[ln|ut|2]2 + E[ln|ut|4]− 4E[ln|ut|3]E[ln|ut|].
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(A7)

The first and second term are the same as the first one in the case E[X2
t+1,1, Y

2
t,1],

and the rest are our familiars. Adding together, we have the result:

E[X2
t+1,1 ·X2

t,1]

= [ln (m0)− ln (2−m0)]
4 · 1

16

[
k∑

i=1

1
2

1
2k−i

k∑
j=1

1
2

1
2k−j + 2

k∑
i=1

( 1
2

1
2k−i )2

k∑
j=1,j 6=i

( 1
2

1
2k−j )2

]

+ [ln (m0)− ln (2−m0)]
4 · 1

16

[
n∑

i=k+1

1
2

1
2k−i

n∑
j=k+1

1
2

1
2k−j + 2

n∑
i=k+1

( 1
2

1
2k−i )2

n∑
j=k+1,j 6=i

( 1
2

1
2k−j )2

]
+ [ln (m0)− ln (2−m0)]

4 · 1
8

k∑
i=1

1
2

1
2k−i

n∑
i=k+1

1
2

1
2n−i

+
(
E[ln|ut|2]− E[ln|ut|]2

)
· [ln (m0)− ln (2−m0)]

2 ·

(
k∑

i=1

1
2

1
2k−i +

n∑
i=k+1

1
2

1
2n−i

)

+0.25
[
2ln (m0) ln (2−m0)− (ln (m0))

2 − (ln (2−m0))
2
]2( k∑

i=1

(
1
2

1
2k−i

)2 n∑
i=k+1

(
1
2

1
2n−i

)2)
+2
[
2ln (m0) ln (2−m0)− (ln (m0))

2 − (ln (2−m0))
2
]
·(

k∑
i=1

(
1
2

1
2k−i

)2 +
n∑

i=k+1

(
1
2

1
2n−i

)2) · (E[ln|ut|]2 − E[ln|ut|2]
)

+3E[ln|ut|2]2 + E[ln|ut|4]− 4E[ln|ut|3]E[ln|ut|].
(A8)
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B Lognormal case

cov(Xt,1, Yt,1) = E[(Xt,1 − E[Xt,1]) · (Yt,1 − E[Yt,1] = E[Xt,1 · Yt,1]

= 1
4E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 2E[ln|u1,t| · ln|u2,t|]− 2E[ut]2

= 0.5σ2
ε

k∑
i=1

1
2k−i + 2E[ln|u1,t| · ln|u2,t|]− 2E[ut]2.

(B1)

Because the non-zero outcomes occur when ε
(i)
t 6= ε

(i)
t−1, which implies:

E
[
(ε(i)

t − ε
(i)
t−1)

2
]

= 2(E[(ε(i)
t )2]− E[ε(i)

t ]2) = 2σ2
ε

cov(Xt+1,1, Yt,1) = 1
4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

)
·

k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
+ E[ut]2 − E[ln|u1,t| · ln|u2,t|]

= −0.25σ2
ε

k∑
i=1

(
1

2k−i

)2 + E[ut]2 − E[ln|u1,t| · ln|u2,t|].

(B2)

Because the non-zero outcomes occur when ε
(i)
t+1 6= ε

(i)
t 6= ε

(i)
t−1, which im-

plies:

E
[
(ε(i)

t+1 − ε
(i)
t ) · (ε(i)

t − ε
(i)
t−1)

]
= E[ε(i)

t ]2 − E[(ε(i)
t )2] = −σ2

ε

cov(Xt+1,1, Xt,1)

= 1
4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

)
·

k∑
i=1

(
ε
(i)
t+1 − ε

(i)
t

)]
+ 1

4E

[
n∑

l=k+1

(
ε
(l)
t+1 − ε

(l)
t

)
·

n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)]

+E [ln|ut|]2 − E
[
ln|ut|2

]
= −0.25σ2

ε

[
k∑

i=1

(
1

2k−i

)2 n∑
i=k+1

(
1

2n−i

)2]+ E [ln|ut|]2 − E
[
ln|ut|2

]
.

(B3)
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E[X2
t,1 · Y 2

t,1]

= 1
16E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)4
]

+ 1
16E

( n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2(
n∑

h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2


+ 1
4

2E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 2E

( n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2
 ·

(
2E[ln|ut|2]− 2E[ln|ut|]2

)
+2E[(ln|u1,t|)2 · (ln|u2,t|)2]− 8E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|]

+4E[ln|u1,t| · (ln|u2,t|]2 + 2E[(ln|ut|)2]2

= 0.75σ4
ε

k∑
i=1

1
2k−i + 0.25σ4

ε

n∑
l=k+1

1
2n−l

n∑
h=k+1

1
2n−h

+0.25σ4
ε

k∑
i=1

1
2k−i

n∑
h=k+1

1
2n−h + 0.25σ4

ε

k∑
i=1

1
2k−i

n∑
l=k+1

1
2n−l

+2σ2
ε

(
E[ln|ut|2]− E[ln|ut|]2

)
·

(
k∑

i=1

1
2k−i +

n∑
l=k+1

1
2n−l

)

+2E[(ln|u1,t|)2 · (ln|u2,t|)2]− 8E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|]

+4E[ln|u1,t| · (ln|u2,t|]2 + 2E[(ln|ut|)2]2.

(B4)

For the first term E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)4
]
, let’s begin with E

[(
ε
(i)
t − ε

(i)
t−1

)4
]
,

the non-zero value implies:

E

[(
ε
(i)
t − ε

(i)
t−1

)4
]

= 2E[ε(i)
t ]4 + 6E[(ε(i)

t )2]2 − 8E[(ε(i)
t )3]E[ε(i)

t ] = 12σ4
ε .

This occurs with probability 2
1

k−i . Then we have the solution:

E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)4
 = 12σ4

ε ·
k∑

i=1

1
2k−i

.
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E[X2
t+1,1 · Y 2

t,1]

= 1
16E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 1
16E

( n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2(
n∑

h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t+1 − ε

(i)
t )
)2
(

n∑
h=k+1

(ε(h)
t − ε

(h)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2


+ 1
4

2E

[(
k∑

i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 2E

( n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2
 ·

(
2E[ln|ut|2]− 2E[ln|ut|]2

)
+E[(ln|u1,t|)2 · (ln|u2,t|)2]− 4E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|] + 4E[ln|u1,t| · (ln|u2,t|]E[ln|ut|]2

+3E[ln|ut|2]2 − 4E[ln|ut|2]E[ln|ut|]2.

For the first term E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]
, there are

three different possible forms:

(1)
(
ε
(i)
t+1 − ε

(i)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

, has non-zero value only if ε
(i)
t+1 6= ε

(i)
t 6= ε

(i)
t−1.

then E

[(
ε
(i)
t+1 − ε

(i)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2
]

= E[ε4
t ] + 3E[ε2

t ]
2 − 4E[ε3

t ]E[εt] =

6σ4
ε . (E[ε3

t ] = 3λσ2
ε +λ3 and E[ε4

t ] = 3σ4
ε +6λ2σ2

ε +λ4,) and the probability

of this occurance is ( 1
2k−i )2. Putting together we get

[
k∑

i=1

(
1

2k−i

)2] · 6σ4
ε

(2)
(
ε
(j)
t+1 − ε

(j)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2

, does not equal zero for i 6= j, ε
(j)
t+1 6= ε

(j)
t

and ε
(i)
t 6= ε

(i)
t−1. since E

[(
ε
(j)
t+1 − ε

(j)
t

)2 (
ε
(i)
t − ε

(i)
t−1

)2
]

= 4E[(ε(i)
t )2]2 −

8E[(ε(i)
t )2]E[ε(i)

t ]2 + 4E[ε(i)
t ]4 = 4σ4

ε , together with the probability, this
overall contribution yields:[

k∑
i=1

(
1

2k−i

k∑
j=1,j 6=i

1
2k−j

)]
· 4σ4

ε
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(3)
(
ε
(j)
t+1 − ε

(j)
t

)(
ε
(i)
t+1 − ε

(i)
t

)(
ε
(j)
t − ε

(j)
t−1

)(
ε
(i)
t − ε

(i)
t−1

)
, which for i 6= j and

ε
(n)
t+1 6= ε

(n)
t 6= ε

(n)
t−1, n = i, j are non-zero, since(

ε
(j)
t+1 − ε

(j)
t

)(
ε
(i)
t+1 − ε

(i)
t

)(
ε
(j)
t − ε

(j)
t−1

)(
ε
(i)
t − ε

(i)
t−1

)
= 4σ4

ε , we obtain a

contribution 2

[
k∑

i=1

(
1

2k−i

)2 k∑
j=1,j 6=i

(
1

2k−j

)2] · σ4
ε .

Combining those three cases, we have the result:

E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

= 6σ4
ε ·

k∑
i=1

( 1
2k−i )2 + 4σ4

ε ·
k∑

i=1

1
2k−i

k∑
j=1,j 6=i

1
2k−j + 2σ4

ε ·
k∑

i=1

( 1
2k−i )2

k∑
j=1,j 6=i

( 1
2k−j )2

E[X2
t+1,1 · Y 2

t,1]

= 1
16

[
6σ4

ε ·
k∑

i=1

( 1
2k−i )2 + 4σ4

ε ·
k∑

i=1

1
2k−i

k∑
j=1,j 6=i

1
2k−j + 2σ4

ε ·
k∑

i=1

( 1
2k−i )2

k∑
j=1,j 6=i

( 1
2k−j )2

]
+0.25σ4

ε

n∑
l=k+1

1
2n−l

n∑
h=k+1

1
2n−h

+0.25σ4
ε

k∑
i=1

1
2k−i

n∑
h=k+1

1
2n−h + 0.25σ4

ε

k∑
i=1

1
2k−i

n∑
l=k+1

1
2n−l

+2σ2
ε ·
(
E[ln|ut|2]− E[ln|ut|]2

)
·

(
k∑

i=1

1
2k−i +

n∑
i=k+1

1
2n−i

)

+E[(ln|u1,t|)2 · (ln|u2,t|)2]− 4E[(ln|u1,t|)2 · ln|u2,t|] · E[ln|ut|] + 4E[ln|u1,t| · (ln|u2,t|]E[ln|ut|]2

+3E[ln|ut|2]2 − 4E[ln|ut|2]E[ln|ut|]2

(B5)
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E[X2
t+1,1 ·X2

t,1]

= 1
16E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2

·
(

k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
]

+ 1
16E

( n∑
l=k+1

(ε(i)
t+1 − ε

(i)
t )

)2

·

(
n∑

l=k+1

(ε(i)
t − ε

(i)
t−1)

)2


+ 1
16E

( k∑
i=1

(ε(i)
t+1 − ε

(i)
t )
)2
(

n∑
l=k+1

(ε(l)
t − ε

(l)
t−1)

)2
+ 1

16E

( k∑
i=1

(ε(i)
t − ε

(i)
t−1)

)2
(

n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2


+ 1
4

2E

[(
k∑

i=1

(ε(i)
t+1 − ε

(i)
t )
)2
]

+ 2E

( n∑
l=k+1

(ε(l)
t+1 − ε

(l)
t )

)2
 ·

(
2E[ln|ut|2]− 2E[ln|ut|]2

)
+4 · 1

16E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

) k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
E

[
n∑

l=k+1

(
ε
(l)
t+1 − ε

(l)
t

) n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)]
+4 · 1

4E

[
k∑

i=1

(
ε
(i)
t+1 − ε

(i)
t

) k∑
i=1

(
ε
(i)
t − ε

(i)
t−1

)]
·
(
E[ln|ut|]2 − E[ln|ut|2]

)
+4 · 1

4E

[
n∑

l=k+1

(
ε
(l)
t+1 − ε

(l)
t

) n∑
l=k+1

(
ε
(l)
t − ε

(l)
t−1

)]
·
(
E[ln|ut|]2 − E[ln|ut|2]

)
+3E[ln|ut|2]2 + E[ln|ut|4]− 4E[ln|ut|3]E[ln|ut|]

= 1
16

[
6σ4

ε ·
k∑

i=1

( 1
2k−i )2 + 4σ4

ε ·
k∑

i=1

1
2k−i

k∑
j=1,j 6=i

1
2k−j + 2σ4

ε ·
k∑

i=1

( 1
2k−i )2

k∑
j=1,j 6=i

( 1
2k−j )2

]

+ 1
16

[
6σ4

ε ·
n∑

l=k+1

( 1
2n−l )2 + 4σ4

ε ·
n∑

l=k+1

1
2n−l

n∑
j=k+1,j 6=i

1
2n−j + 2σ4

ε ·
n∑

l=k+1

( 1
2n−l )2

n∑
j=k+1,j 6=i

( 1
2n−j )2

]
+0.25σ4

ε

k∑
i=1

1
2k−i

n∑
l=k+1

1
2n−l + 0.25σ4

ε

n∑
l=k+1

1
2n−l

k∑
i=1

1
2k−i

+2σ2
ε

(
k∑

i=1

1
2k−i +

n∑
i=k+1

1
2n−i

)
·
(
E[ln|ut|2]− E[ln|ut|]2

)
+0.25σ4

ε

k∑
i=1

(
1

2k−i

)2 · n∑
i=k+1

(
1

2n−i

)2
−σ2

ε ·

(
k∑

i=1

(
1

2k−i

)2 +
n∑

i=k+1

(
1

2n−i

)2) · (E[ln|ut|]2 − E[ln|ut|2]
)

+3E[ln|ut|2]2 + E[ln|ut|4]− 4E[ln|ut|3]E[ln|ut|].
(B6)

Because the first term is identical with the first one of case E[X2
t+1,1, Y

2
t,1].
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Table 3: GMM estimation for the trivariate multifractal (binomial) model

θ̂ Sub-sample Size Bias SD RMSE
N1 0.097 0.128 0.161

m̂0 N2 0.042 0.075 0.086
N3 -0.019 0.056 0.059
N1 0.011 0.078 0.079

σ̂1 N2 -0.001 0.055 0.055
N3 -0.001 0.038 0.038
N1 0.000 0.084 0.084

σ̂2 N2 0.000 0.055 0.055
N3 -0.004 0.039 0.039
N1 0.002 0.086 0.086

σ̂3 N2 -0.003 0.052 0.052
N3 0.002 0.040 0.040
N1 0.011 0.133 0.133

ρ̂12 N2 0.000 0.102 0.102
N3 -0.009 0.085 0.085
N1 0.014 0.124 0.124

ρ̂23 N2 0.017 0.109 0.110
N3 -0.021 0.098 0.100
N1 -0.006 0.089 0.089

ρ̂13 N2 0.011 0.073 0.074
N3 0.009 0.056 0.057

Note: Simulations are based on the trivariate binomial multifractal process with k = 12, j = 4,
and initial value m0 = 1.3, σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.3, ρ23 = 0.5, ρ13 = 0.7. Sample
lengths are N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000.
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Table 4: GMM estimation for the trivariate multifractal (Lognormal) model

θ̂ Sub-sample Size Bias SD RMSE
N1 -0.057 0.051 0.068

λ̂ N2 0.012 0.031 0.033
N3 0.003 0.021 0.021
N1 0.056 0.295 0.300

σ̂1 N2 -0.029 0.210 0.211
N3 -0.027 0.154 0.156
N1 -0.068 0.277 0.285

σ̂2 N2 -0.033 0.213 0.215
N3 -0.008 0.158 0.158
N1 -0.055 0.283 0.288

σ̂3 N2 -0.034 0.200 0.203
N3 -0.011 0.177 0.177
N1 0.014 0.142 0.142

ρ̂12 N2 -0.018 0.101 0.102
N3 -0.029 0.073 0.078
N1 0.020 0.088 0.088

ρ̂23 N2 -0.013 0.056 0.058
N3 -0.016 0.040 0.043
N1 0.009 0.048 0.048

ρ̂13 N2 0.016 0.027 0.031
N3 -0.019 0.021 0.029

Note: Simulations are based on the trivariate Lognormal multifractal process with k = 12,
j = 4, and initial value λ = 0.2, σ1 = 1, σ2 = 1, σ3 = 1, ρ12 = 0.3, ρ23 = 0.5, ρ13 = 0.7.
Sample lengths are N1 = 2, 000, N2 = 5, 000 and N3 = 10, 000.
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Table 5: GMM estimates of bivariate MF model (Dow/Nik) model

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

Binomial model

m̂0 1.224 1.210 1.292 1.281 1.274 1.268 1.267 1.260 1.261
(0.024) (0.023) (0.022) (0.022) (0.023) (0.023) (0.023) (0.021) (0.022)

σ̂1 1.032 1.110 1.105 1.106 1.101 1.110 1.109 1.107 1.107
(0.014) (0.010) (0.019) (0.019) (0.018) (0.014) (0.016) (0.015) (0.012)

σ̂2 1.007 0.981 0.980 1.044 1.003 1.002 0.982 0.986 0.998
(0.015) (0.016) (0.014) (0.013) (0.019) (0.020) (0.021) (0.024) (0.025)

ρ̂ 0.217 0.212 0.201 0.202 0.205 0.198 0.202 0.196 0.207
(0.013) (0.012) (0.012) (0.011) (0.015) (0.013) (0.013) (0.010) (0.010)

Lognormal model

λ̂ 0.053 0.058 0.058 0.056 0.058 0.058 0.057 0.055 0.056
(0.015) (0.016) (0.015) (0.014) (0.015) (0.015) (0.015) (0.017) (0.016)

σ̂1 0.972 0.971 0.970 0.994 0.982 0.978 0.972 0.997 1.004
(0.027) (0.025) (0.025) (0.026) (0.026) (0.026) (0.026) (0.027) (0.028)

σ̂2 0.997 1.013 0.984 0.976 0.977 0.996 0.986 0.975 0.974
(0.017) (0.018) (0.017) (0.017) (0.017) (0.020) (0.019) (0.025) (0.023)

ρ̂ 0.199 0.194 0.191 0.194 0.202 0.211 0.204 0.197 0.198
(0.018) (0.020) (0.018) (0.017) (0.016) (0.018) (0.018) (0.017) (0.017)

Note: Each column corresponds to the empirical estimate with different joint numbers of
cascade level j (k = 10); d̂ is the mean of 100 simulated GPH estimators, and numbers in
parenthesis are standard errors.
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Table 7: GMM estimates of bivariate MF model TB2/TB1 model

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

Binomial model

m̂0 1.725 1.725 1.726 1.728 1.727 1.753 1.740 1.732 1.724
(0.025) (0.020) (0.024) (0.020) (0.028) (0.023) (0.023) (0.027) (0.030)

σ̂1 0.117 0.121 0.121 0.112 0.112 0.111 0.125 0.122 0.121
(0.019) (0.015) (0.017) (0.010) (0.013) (0.014) (0.012) (0.019) (0.017)

σ̂2 0.204 0.206 0.206 0.213 0.203 0.212 0.208 0.206 0.206
(0.021) (0.016) (0.022) ( 0.024) (0.023) (0.021) (0.026) (0.024) (0.025)

ρ̂ 0.820 0.821 0.820 0.819 0.816 0.818 0.818 0.821 0.822
(0.031) (0.031) (0.032) (0.031) (0.031) (0.031) (0.031 (0.030) (0.030))

Lognormal model

λ̂ 0.426 0.417 0.418 0.379 0.389 0.395 0.420 0.411 0.412
(0.023) (0.021) (0.022) (0.022) (0.024) (0.025) (0.030) (0.028) (0.028)

σ̂1 0.144 0.126 0.123 0.121 0.124 0.120 0.119 0.119 0.129
(0.034) (0.031) (0.031) (0.031) (0.030) (0.031) (0.029) (0.033) (0.034)

σ̂2 0.222 0.219 0.214 0.207 0.204 0.207 0.201 0.217 0.221
(0.034) (0.030) (0.027) (0.024) (0.024) (0.022) (0.020) (0.021) (0.021)

ρ̂ 0.918 0.917 0.912 0.906 0.893 0.871 0.901 0.881 0.895
(0.021) (0.021) (0.020) (0.018) (0.022) (0.024) (0.030) (0.027) (0.026)

Note: Each column corresponds to the empirical estimate with different joint numbers of
cascade level j (k = 10); d̂ is the mean of 100 simulated GPH estimators, and numbers in
parenthesis are standard errors.
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Table 8: Best linear forecast for simulated data

RMSE AMSE M2
asset1 asset2 EW asset1 asset2 EW asset1 asset2 EW

1 0.852 0.852 0.827 0.792 0.790 0.763 8.447 8.344 10.866
5 0.886 0.889 0.875 0.832 0.829 0.811 8.189 8.103 11.799
10 0.903 0.905 0.888 0.855 0.851 0.823 8.042 7.967 11.496
20 0.918 0.921 0.903 0.880 0.875 0.850 7.901 7.840 11.179
50 0.937 0.941 0.919 0.914 0.910 0.886 7.780 7.721 10.801
100 0.953 0.955 0.931 0.937 0.933 0.910 7.730 7.680 10.530

Note: This table shows the RMSE and RMAE for simulated data from the bivariate MF
model (binomial case with parameters k = 12, j = 6, ρ = 0.5, σ1 = 1, σ2 = 1), 400
simulations and estimations have be conducted, with each simulation of 10000 realizations,
first 5000 observations are used for estimation, the remaining 5000 observations used for out
of sample forecast assessment. The forecast horizons are 1, 5, 10, 20, 50, 100 days. EW denotes
equal-weighted portfolio.

Table 9: Univariate MF model volatility forecast

DOW NIK US DM TB1 TB2

RMSE 1 1.000 0.789 0.883 0.924 0.857 0.784
5 1.000 0.847 0.903 0.942 0.872 0.815
10 1.001 0.888 0.920 0.937 0.902 0.845
20 1.001 0.941 0.949 0.963 0.914 0.851
50 1.001 0.972 0.978 0.989 0.950 0.873
100 1.001 0.980 0.990 0.995 0.965 0.926

DOW NIK US DM TB1 TB2

AMSE 1 0.989 1.055 0.927 0.865 0.934 0.699
5 0.989 1.045 0.925 0.870 0.968 0.720
10 0.989 1.047 0.930 0.875 1.030 0.806
20 0.989 1.054 0.942 0.891 1.052 0.844
50 0.989 1.036 0.955 0.911 1.071 0.876
100 0.989 1.022 0.970 0.924 1.109 0.912

Note: This table shows the volatility forecast by using the univariate MF model. Stocks are
Dow Jones composite 65 average index (DOW) and NIKKEI 225 stock average index (NIK);
FXs are foreign exchange rate of U.S. Dollar (US) and German Mark (DM) to British Pound;
Bonds are the U.S. 1-year and 2-year treasury constant maturity rate (TB1, TB2 respectively).
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Table 10: Bivariate MF model volatility forecast

DOW NIK EW US DM EW TB1 TB2 EW

RMSE 1 0.809 0.754 0.791 0.889 0.909 0.889 0.685 0.793 0.687
5 0.831 0.819 0.839 0.898 0.915 0.913 0.693 0.815 0.694
10 0.863 0.852 0.860 0.914 0.927 0.921 0.712 0.835 0.701
20 0.902 0.916 0.925 0.941 0.949 0.955 0.781 0.863 0.719
50 0.975 0.955 0.968 0.970 0.973 0.986 0.832 0.894 0.733
100 0.994 0.970 0.973 0.983 0.999 0.996 0.908 0.929 0.756

DOW NIK EW US DM EW TB1 TB2 EW

AMSE 1 0.903 0.904 1.057 0.869 0.868 0.864 0.716 0.618 0.766
5 0.906 0.926 1.068 0.875 0.874 0.871 0.754 0.669 0.792
10 0.919 0.964 1.079 0.882 0.896 0.872 0.787 0.711 0.835
20 0.934 0.997 1.092 0.892 0.912 0.884 0.811 0.766 0.878
50 0.963 1.031 1.095 0.908 0.927 0.902 0.851 0.838 0.896
100 0.980 1.045 1.096 0.922 0.944 0.912 0.924 0.896 0.938

DOW NIK EW US DM EW TB1 TB2 EW

M2 1 13.192 1.939 12.039 27.122 33.825 38.171 -53.057 40.812 60.736
5 12.942 1.994 12.553 26.892 32.911 39.426 -73.449 37.702 59.274
10 12.809 2.034 12.589 26.616 32.116 39.484 -84.713 35.307 55.060
20 12.685 2.084 12.657 26.239 31.065 39.687 -96.659 32.254 50.128
50 12.674 2.138 12.762 25.496 29.123 40.012 -106.658 25.778 43.374
100 12.710 2.172 12.680 24.847 27.549 39.718 -119.272 21.876 38.018

Note: This table shows
Stocks are Dow Jones composite 65 average index (DOW) and NIKKEI 225 stock average
index (NIK); FXs are foreign exchange rate of U.S. Dollar (US) and German Mark (DM) to
British Pound; Bonds are the U.S. 1-year and 2-year treasury constant maturity rate (TB1,
TB2 respectively). EW denotes equal-weighted portfolio.
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