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Abstract – Hilbert-Huang transform is a method that has been introduced recently to decompose
nonlinear, nonstationary time series into a sum of different modes, each one having a characteristic
frequency. Here we show the first successful application of this approach to homogeneous
turbulence time series. We associate each mode to dissipation, inertial range and integral scales.
We then generalize this approach in order to characterize the scaling intermittency of turbulence
in the inertial range, in an amplitude-frequency space. The new method is first validated using
fractional Brownian motion simulations. We then obtain a 2D amplitude-frequency representation
of the pdf of turbulent fluctuations with a scaling trend, and we show how multifractal exponents
can be retrieved using this approach. We also find that the log-Poisson distribution fits the velocity
amplitude pdf better than the lognormal distribution.

Copyright c© EPLA, 2008

Introduction. – In nature and in the real world, most
data are nonlinear, nonstationary and noisy, and general
data-driven methods to analyze such data, without a
priori assumptions basis, are demanded. About ten years
ago, such a method has been proposed to analyze nonlin-
ear and nonstationary time series: the Hilbert-Huang
transform (hereafter HHT) [1,2]. The first step of this
method is the Empirical Mode Decomposition (EMD),
which is used to decompose a time series into a sum of
different time series (modes), each one having a character-
istic frequency [3,4]. The modes are called Intrinsic Mode
Functions (IMFs) and satisfy the following two conditions:
i) the difference between the number of local extrema
and the number of zero-crossings must be zero or one;
ii) the running mean value of the envelope defined by
the local maxima and the envelope defined by the local
minima is zero. Each IMF has a characteristic scale which
is the mean distance between two successive maxima (or
minima). The procedure to decompose a signal into IMFs

(a)E-mail: francois.schmitt@univ-lille1.fr
(b)E-mail: zmlu@staff.shu.edu.cn

is the following:

1) The local extrema of the signal X(t) are identified.

2) The local maxima are connected together forming
an upper envelope emax(t), which is obtained by a
cubic spline interpolation. The same is done for local
minima, providing a lower envelope emin(t).

3) The mean is defined as m1(t) = (emax(t)+ emin(t))/2.

4) The mean is subtracted from the signal, providing the
local detail h1(t) =X(t)−m1(t).

5) The component h1(t) is then examined to check if
it satisfies the conditions to be an IMF. If yes, it is
considered as the first IMF and denoted C1(t) = h1(t).
It is subtracted from the original signal and the
first residual, r1(t) =X(t)−C1(t) is taken as the new
series in step 1). On the other hand, if h1(t) is not an
IMF, a procedure called “sifting process” is applied
as many times as needed to obtain an IMF. The
sifting process is the following: h1(t) is considered as
the new data; the local extrema are estimated, lower
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and upper envelopes are formed and their mean is
denoted m11(t). This mean is subtracted from h1(t),
providing h11(t) = h1(t)−m11(t). Then it is checked
again if h11(t) is an IMF. If not, the sifting process
is repeated, until the component h1k(t) satisfies the
IMF conditions. Then the first IMF is C1(t) = h1k(t)
and the residual r1(t) =X(t)−C1(t) is taken as the
new series in step 1).

The above sifting process should be stopped by a criterion
which is not discussed here: more details about the EMD
algorithm can be found in refs. [1,2,4–6].
After decomposition, the original signal X(t) is written

as a sum of IMF modes Ci(t) and a residual rn(t)

X(t) =
N∑

i=1

Ci(t)+ rn(t). (1)

EMD is associated with Hilbert Spectral Analysis
(HSA) [1,7,8], which is applied to each mode as a time
frequency analysis, in order to locally extract a frequency
and an amplitude. More precisely, each mode function
C(t) is associated with its Hilbert transform C̃

C̃(t) =
1

π

∫ +∞

−∞

C(τ)

t− τ
dτ (2)

and the combination of C(t) and C̃(t) gives the analytical
signal z =C + jC̃ =A(t)ejθ(t), where A(t) is an amplitude
time series and θ(t) is the phase of the mode oscillation [7].
Within such approach and neglecting the residual, the
original time series is rewritten as

X(t) =Re
N∑

i=1

Ai(t)ejθi(t), (3)

where Ai and θi are the amplitude and phase time series
of mode i and Re means real part [1,2]. For each mode,
the Hilbert spectrum is defined as the square ampli-
tude H(ω, t) =A2(ω, t), where ω=dθ/dt is the instan-
taneous frequency extracted using the phase information
θ(t) = tan−1 C̃(t)/C(t). H(ω, t) gives a local representa-
tion of energy in the time frequency domain. The Hilbert
marginal spectrum of the original time series is then writ-
ten as h(ω) =

∫
H(ω, t) dt and corresponds to an energy

density at frequency ω [1,2,8].
Since its introduction, this method has attracted a large

interest [9]. It was shown to be an efficient method to
separate a signal into a trend and small-scale fluctuations
on a dyadic bank [3–5]; it has also been applied to many
fields including physiology [10], geophysics [11], climate
studies [12], mechanical engineering [13] and acoustics [14],
to quote a few. These studies showed the applicability
of the so-called EMD-HSA approach on many different
time series. In this letter, we apply the EMD and HSA
approaches to fully developed turbulence time series. We
first show that the EMD method applies very nicely to
turbulent velocity time series, with an almost dyadic filter
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Fig. 1: Comparison of the Hilbert marginal energy spectrum
(solid line) and Fourier spectrum (dashed line, vertically
shifted). The slope of the reference line is −5/3. Both the
second-order Hilbert and Fourier spectra indicate the same
inertial subrange, 10< f (orω)< 1000Hz. The insert shows
the compensated spectra. The HHT spectra estimated using
two different algorithms are shown for comparison (dot-dashed
line for the Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) method and solid line for the more classical spline
method), indicating a stability of the spectrum with respect to
the algorithm used.

bank in the inertial range. We then show how the HSA
can be generalized to take into account intermittency. We
apply this to the turbulence time series, providing a first
characterization of the intermittency of turbulence in an
amplitude-frequency representation.

Application of EMD to turbulence time series. –
We consider here a database obtained from measurements
of nearly isotropic turbulence downstream an active grid
characterized by the Reynolds number Reλ = 720. The
sampling frequency is fs = 40 kHz [15]. The sampling time
is 30 s, and the total number of data points per channel
for each measurement is 1.2× 106. We consider data in the
streamwise direction at position x/M = 48, whereM is the
mesh size and x is the distance in the streamwise direction.
The mean velocity at this location is 10.8ms−1 and the
turbulence intensity is about 10%. For details about the
experiment and the data, see ref. [15].
Figure 1 shows the second-order Hilbert and Fourier

spectra of the longitudinal velocity. A Kolmogorov −5/3
spectrum is observed in range 10< f (or ω)< 1000Hz
for both spectra, indicating an inertial subrange over
2 decades. Two different HHT spectra estimated using
two different algorithms are shown in this figure: the very
similar shape of the spectra indicates a stability of the
spectrum with respect to the algorithm used. The scaling
which is obtained shows that Hilbert spectral analysis
can be used to recover Kolmogorov scaling in the inertial
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Fig. 2: (a) Mean frequency vs. mode number for the turbulent
velocity time series. There is an exponential decrease with a
slope very close to 1. This indicates that EMD acts as a filter
bank which is almost dyadic. (b) Fourier spectrum of each
mode (from 1 to 12) showing that they are narrow-banded.
The slope of the reference line is −5/3 corresponding to the
inertial-range Kolmogorov spectrum.

subrange. The original velocity time series is divided into
73 nonoverlapping segments of 214 points each. After
decomposition, the original velocity series is decomposed
into several IMFs from 11 to 13 modes with one residual.
The time scale is increasing with the mode; each mode
has a different mean frequency, which is estimated by
considering the (energy weighted) mean frequency in
the Fourier power spectrum. The relation between mode
number k and mean frequency [1] is displayed in fig. 2(a).
The straight line in the log-linear plot which is obtained
suggests the following relation: f(k) = f0ρ−k, where f is
the mean frequency, f0 # 22000 is a constant and ρ=
1.9± 0.1 is very close to 2, the slight discrepancy from
2 may be an effect of intermittency. This result may also
slightly depend on the number of iterations of the sifting
process: in the present algorithm, the latter is variable
but some proposed algorithms contain a fixed maximum
number of iterations.
This indicates that EMD acts as a dyadic filter bank

in the frequency domain; an analogous property was
obtained previously using stochastic simulations of
Gaussian noise and fractional Gaussian noise (fGn) [3–5],
and it is interesting to note here that the same result
holds for fully developed turbulence time series, possessing
long-range correlations and intermittency [16].
We then interpret each mode according to its character-

istic time scale. When compared with the original Fourier
spectrum of the turbulent time series (see fig. 2(b)),
these modes can be termed as follows: the first mode,
which has the smallest time scale, corresponds to the
measurement noise; modes 2 and 3 are associated with
the dissipation range of turbulence. Mode 4 corresponds
to the Kolmogorov scale, which is the scale below which
dissipation becomes important; it is a transition scale
between inertial range and dissipation range. Modes
5 to 10 all belong to the inertial range corresponding
to the scale-invariant Richardson-Kolmogorov energy

cascade [16]; larger modes belong to the large forcing
scales. Figure 2(b) represents the Fourier power spectra of
each mode. It shows that each mode in the inertial range
is narrow-banded. This confirms that the EMD approach
can be used as a filter bank for turbulence time series. In
the next section, we focus on the intermittency properties.

Intermittency and multiscaling properties: Arbi-
trary order Hilbert spectral analysis. – Intermit-
tency and multiscaling properties have been found in
many fields, including turbulence [16], precipitations [17],
oceanography [18], biology [19], finance [20], etc. Multi-
scaling intermittency is often characterized using a struc-
ture function of order q > 0 as the statistical moment of
the fluctuations ∆Xτ = |X(t+ τ)−X(t)| (see ref. [16] for
reviews)

〈(∆Xτ )q〉 ∼Cqτ ζ(q), (4)

where Cq is a constant and ζ(q) is a scale-invariant
moment function; it is also a cumulant generating func-
tion, which is nonlinear and concave and fully character-
izes the scale-invariant properties of intermittency.
We present here a new method to extract an analogous

intermittency function using the EMD-HSA methodology.
The Hilbert spectrum H(ω, t) represents the original
signal at the local level. This can be used to define the
joint probability density function (pdf) p(ω,A) of the
frequency [ωi] and amplitude [Ai], which are extracted
from all modes i= 1 . . . N together. The Hilbert marginal
spectrum is then rewritten as

h(ω) =

∫ ∞

0
p(ω,A)A2 dA. (5)

This definition corresponds to a second statistical
moment. We then naturally generalize eq. (5) into
arbitrary moments:

Lq(ω) =
∫ ∞

0
p(ω,A)Aq dA, (6)

where q! 0 and h(ω) =L2(ω) [21]. In the inertial range,
we assume the following scaling relation:

Lq(ω)∼ ω−ξ(q), (7)

where ξ(q) is the corresponding scaling exponent function
in the amplitude-frequency space. Equation (6) provides a
new way to estimate the scaling exponents, where, accord-
ing to dimensional analysis, ξ(q)− 1 can be compared to
ζ(q).
We first validate the new method by using fractional

Brownian motion time series (fBm). They are character-
ized by the Hurst number 0"H " 1, and it is well known
that ζ(q) = qH, hence we expect ξ(q) = 1+ qH. We simu-
late 500 segments of length 212 data points each, using a
wavelet-based algorithm [22], with different H values from
0.2 to 0.8. The Hilbert transform is numerically estimated
by using a FFT-based method [23]. The scale invariance
is perfectly respected as expected, this is not shown here,
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Fig. 4: Representation of the joint pdf p(ω,A) (in log scale) of
turbulent fluctuations in an amplitude-frequency space. The
scaling range 10<ω < 1000Hz for frequencies is shown as
vertical dash-dotted lines. The dashed line shows the skeleton
As(ω) of the joint pdf, which is the amplitude for which the
conditional pdf p(A|ω) is maximum.

see ref. [21] for more detail on validations of the method
with fBm simulation. We then represent the correspond-
ing scaling exponents ξ(q) for various values of q from
0 to 6, for four values of H (H = 0.2, 0.4, 0.6 and 0.8) in
fig. 3. The perfect straight lines of equation 1+ qH confirm
the usefulness of the new method to estimate ξ(q).
We then consider turbulence intermittency properties

using this approach. The EMD-HSA methodological
framework provides a way to represent turbulent fluc-
tuations in an amplitude-frequency space: the joint pdf
p(ω,A) is shown in fig. 4. The inertial subrange for
frequencies is shown as vertical dash-dotted lines. This
figure is the first 2D amplitude-frequency representation

−1 0 1 2 3 4 5
−3

−2

−1

0

log10(ω)

lo
g 1

0(
A

s
(ω

))

0.38

(a)

−1 0 1 2 3 4 5
−10

−8

−6

−4

−2

log10(ω)

lo
g 1

0(
p m

ax
(ω

))

0.63

(b)

Fig. 5: The skeleton of the joint pdf. (a) As(ω) in log-log plot.
A power law behaviour is observed in the inertial subrange
with scaling exponent 0.38, which is close to the Kolmogorov
value 1/3. (b) pmax(ω) in log-log plot. A power law behaviour
is observed in the inertial subrange with scaling exponent 0.63.
The vertical lines show the corresponding inertial subrange
10<ω < 1000Hz.

of the pdf of turbulent fluctuations; it can be seen
graphically that the amplitudes decrease with increasing
frequencies, with a scaling trend. We show in the same
graph the skeleton As(ω) of the joint pdf which corre-
sponds to the amplitude for which the conditional pdf
p(A|ω) is maximum:

As(ω) =A0; p(A0, ω) =max
A
{p(A|ω)}. (8)

We then reproduce the skeleton in fig. 5 in two differ-
ent views: (a) As(ω) in log-log plot; (b) skeleton pdf
pmax(ω) = p(As(ω), ω) =maxA{p(A|ω)} in log-log plot. It
is interesting to note that a power law behaviour is found
for both representations,

As(ω)∼ ω−β1 , pmax(ω)∼ ω−β2 , (9)

where β1 # 0.38, and β2 # 0.63. Dimensional analysis
provides the nonintermittent Kolmogorov value β1 = 1/3
and β2 = 2/3. The difference with these theoretical values
may be an effect of intermittency. We note that the
value β1 = 0.38 is comparable with the estimation of
ζ(1) = 0.37 given by ref. [24]. We plot in fig. 6 the rescaled
pdf p1(A, ω) = ωβ2p(A/ωβ1 , ω), for various fixed values
of ω. In case of monoscaling, these pdfs should superpose
perfectly; here the plot is scattered, but nevertheless we
note that the lack of superposition of these rescaled pdfs
is a signature of intermittency. Moments of this pdf are
less noisy as will be visible below. For comparison, we
plot the normal distribution (dashed line), lognormal
distribution (solid line) and log-Poisson distribution
(dashed-dotted line) in the same figure. It seems that
the log-Poisson distribution provides a better fit to the
pdf than the lognormal distribution. We also characterize
intermittency in the frequency space by considering
marginal moments Lq(ω). Figure 7 shows Lq(ω), the
Hilbert spectral analysis of velocity intermittency, using
different orders of moments (0, 1, 3, 4, 5 and 6). The
moment of order 0 is the marginal pdf of the instanta-
neous frequency, see eq. (6). It is interesting to note that
this pdf is extremely “wild”, having a behaviour close
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Fig. 7: Representation of Lq(ω), the Hilbert spectral analysis
of velocity intermittency, using different orders of moments
(0, 1, 3, 4, 5 and 6). Power laws are observed on the range 10<
ω < 1000Hz for all spectra. The value of the scaling exponent
ξ(q) is shown in each figure.

to L0(ω)∼ ω−1, corresponding to a “sporadic” process
whose probability density is not normalizable (

∫
p(ω) dω

diverges). This result is only obtained when all modes
are considered together; such pdf is not found for the
frequency pdf of an individual mode. This property seems
to be rather general: we observed such pdf for moment
of order zero using several other time series: for example
surf-zone turbulence data, fBm [21], river flow discharge
data. Hence it does not seem to be linked to turbulence
itself, but to be a main property of the HSA method,
which still needs to be studied further. We observe
the power laws in range 10<ω < 1000Hz for all order
moments. The values of the scaling exponents ξ(q) are
shown in each picture. This provides a way to estimate
scaling exponents ξ(q) for every order of moment q! 0 on
a continuous range of scales in the frequency space.
Next, we compare scaling exponents ξ(q)− 1 esti-

mated by our new approach with the classical structure
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with the classical ζ(q) obtained from structure functions
analysis with the ESS method (dashed line) and K41 q/3 (solid
line). The insert shows the departure from the K41 law.

functions scaling exponent function ζ(q) estimated using
the extended self-similarity (ESS) method [25] in fig. 8.
It can be seen that ξ(q)− 1 is nonlinear and is close to
ζ(q), but the departure from the K41 law shows that the
curvature is not the same: ξ(q) seems less concave than
ζ(q).
Here, we provide some comments on some issues of the

EMD method. The main drawback of the EMD method
is a lack of solid theoretical ground, since it is almost
empirical [9]. It has been found experimentally that the
method, especially for the HSA, is statistically stable
with different stopping criteria [6]. Recently, Flandrin
et al. have obtained new theoretical results on the EMD
method [5,26,27]. However, more theoretical work is still
needed to fully understand this method.

Conclusion. – We have applied here an empirical
mode decomposition to analyze a high-Reynolds-number
turbulent experimental time series. After decomposition,
the original velocity time series is separated into several
intrinsic modes. We showed that this method acts as
an almost dyadic filter bank in the frequency domain,
confirming previous results that have been obtained on
Gaussian noise or fractional Gaussian noise. Comparing
the Fourier spectrum of each mode, and the associated
characteristic scale, we can interpret each mode according
to the range to which it belongs. The first mode contains
the smallest scale and the measurement noise; two modes
are associated to dissipation scales, and many modes
are associated to the inertial subrange corresponding to
the turbulent energy cascade. The last modes correspond
to the large scales associated to the coherent structures
(energy-containing structures).
We have obtained a first 2D representation of the

joint pdf p(ω,A). We observed a interesting power law
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behaviour with scaling exponent β1 # 0.38 for the loca-
tion of the joint pdf skeleton points. We also observed a
power law behaviour with scaling exponent β2 # 0.63 for
the skeleton pdf pmax(ω). It is also found that the log-
Poisson distribution provides a better fit to the velocity
pdf than the lognormal distribution. Then the intermit-
tency information in multiscaling (multifractal) turbulent
processes was extracted using the HSA framework. The
scaling exponents in amplitude-frequency space (ξ(q)− 1)
are close to the ones in real space ζ(q), despite the quite
different approaches used in both cases.
We have here extended the EMD-HSA approach in a

quite natural way in order to consider intermittency. This
provides a new time frequency analysis for multifractal
time series, that is likely to be applicable to other fields
within the multifractal framework.
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la décomposition modale empirique et l’analyse spectrale
de Hilbert, submitted to Trait. Signal (2008).

[22] Abry P. and Sellan F., Appl. Comput. Harmon. Anal.,
3 (1996) 377.

[23] Marple J. L., IEEE Trans. Signal Process., 47 (1999)
2600.

[24] van de Water W. and Herwijer J. A., J. Fluid Mech.,
387 (1999) 3.

[25] Benzi R., Ciliberto S., Tripiccione R., Baudet C.,
Massaioli F. and Succi S., Phys. Rev. E, 48 (1993) 29.

[26] Rilling G. and Flandrin P., IEEE ICASSP 2006, 3
(2006) 444.

[27] Rilling G. and Flandrin P., IEEE Trans. Signal
Process., 56 (2008) 85.

40010-p6


