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a b s t r a c t

Numerous signals arising from physiological and physical processes, in addition to being
non-stationary, are moreover a mixture of sustained oscillations and non-oscillatory
transients that are difficult to disentangle by linear methods. Examples of such signals
include speech, biomedical, and geophysical signals. Therefore, this paper describes a new
nonlinear signal analysis method based on signal resonance, rather than on frequency or
scale, as provided by the Fourier and wavelet transforms. This method expresses a signal
as the sum of a ‘high-resonance’ and a ‘low-resonance’ component—a high-resonance
component being a signal consisting of multiple simultaneous sustained oscillations; a
low-resonance component being a signal consisting of non-oscillatory transients of
unspecified shape and duration. The resonance-based signal decomposition algorithm
presented in this paper utilizes sparse signal representations, morphological component
analysis, and constant-Q (wavelet) transforms with adjustable Q-factor.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Frequency-based analysis and filtering are fundamental
tools in signal processing. However, frequency and time–
frequency analysis are not productively applied to all
signals indiscriminately; they are effective for signals that
are substantially oscillatory or periodic in nature. Signals
that are piecewise smooth, defined primarily by their
transients (singularities), are more fruitfully represented,
analyzed and processed in the time domain or wavelet
domain; for example, scan-lines of a photographic image,
recordings of eye movements, evoked response potentials,
neurological spike trains, etc.

However, many complex signals arising from physio-
logical and physical processes are not only non-stationary
but also exhibit amixture of oscillatory and non-oscillatory
transient behaviours. For example, speech, biomedical
(EEG, phonocardiograms, etc.), and geophysical signals
(ocean wave-height data, etc.) all possess both sustained
oscillatory behaviour and transients. EEG signals contain

rhythmic oscillations (alpha and beta waves, etc.) but they
also contain transients due to measurement artifacts and
non-rhythmic brain activity. Ocean wave-height data
measures the superposition of ocean waves that have
travelled many 100’s of miles [97], but weather events
through which the waves travel induce disruptions to the
oscillatory behaviour. Indeed, signals obtained by measur-
ing physiological and geophysical systems often consist of
sustained oscillations and transient phenomena that are
difficult to disentangle by linear methods.

In order to advance the representation, analysis, and
processing of complex non-stationary signals, we describe
a new nonlinear signal analysis method based not on
frequency or scale, as provided by the Fourier and wavelet
transforms, but on resonance. This method expresses a
signal as the sum of a ‘high-resonance’ and a ‘low-reso-
nance’ component. By a high-resonance component, we
mean a signal consisting of multiple simultaneous sus-
tained oscillations. In contrast, by a low-resonance com-
ponent, we mean a signal consisting of non-oscillatory
transients of unspecified shape and duration.

Aspects of this work have been presented in two earlier
conference papers [84,85].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

0165-1684/$ - see front matter & 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.sigpro.2010.10.018

$ This work is supported in part by NSF under grant CCF-1018020.
E-mail address: selesi@poly.edu

Signal Processing 91 (2011) 2793–2809

file://localhost/Users/patrickflandrin/Downloads/dx.doi.org/10.1016/j.sigpro.2010.10.018
file://localhost/Users/patrickflandrin/Downloads/www.elsevier.com/locate/sigpro
file://localhost/Users/patrickflandrin/Downloads/dx.doi.org/10.1016/j.sigpro.2010.10.018
mailto:selesi@poly.edu


2. Signal resonance

Fig. 1 illustrates the concept of signal resonance. Pulses
1 and 3 in Fig. 1 each consist of essentially a single cycle of a
sine wave. We classify both pulses as low-resonance
signals because they do not exhibit sustained oscillatory
behaviour. Note that these pulses are time-scaled versions
of one another. Time-scaling a pulse does not effect its
degree of resonance. Clearly, a low-resonance pulsemay be
either a high frequency signal (pulse 1) or a low frequency
signal (pulse 3). Low-resonance pulses are not restricted to
any single band of frequencies. Therefore, the low-reso-
nance component of a signal cannot be extracted from the
signal by frequency-based filtering.

We classify pulses 2 and 4 in Fig. 1 as high-resonance
signals because they exhibit sustained1 oscillations. Both
pulses consist of aboutfivecycles of a sinewavemultipliedby
a bell-shaped function (specifically, a Blackman window).

As above, bothpulses are time-scaledversionsof oneanother,
and theyhave the samedegreeof resonance. Likewise, ahigh-
resonance pulse may be either a high frequency signal
(pulse 2) or a low frequency signal (pulse 4), and therefore,
as above, the high-resonance component of a signal cannot be
extracted from the signal by frequency-based filtering.

2.1. Resonance-based signal decomposition

Resonance-based signal decomposition, aswepresent it,
should be able to (approximately) separate pulses 1 and 2
in Fig. 1, even when they overlap in time. To illustrate the
results of the resonance-based signal decomposition algo-
rithm (detailed below) we apply it to the synthetic test
signal in Fig. 2. The test signal consists of six pulses of three
frequencies and two levels of resonance. The goal is to
separate the test signal into a high- and a low-resonance
component. The computed high- and low-resonance com-
ponents, produced using the algorithm, are illustrated in
Fig. 2a. The algorithm also produces a residual signal to
allow for the presence of a stochastic (noise) component.
The test signal is equal to the sum of the three signals: the
high- and low-resonance components and the residual
signal. (The amplitude of the residual signal can be con-
trolled by parameters in the decomposition algorithm.)
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Fig. 1. The resonance of an isolated pulse can be quantified by its Q-factor, defined as the ratio of its center frequency to its bandwidth. Pulses 1 and 3,
essentially a single cycle in duration, are low-resonance pulses. Pulses 2 and 4, whose oscillations are more sustained, are high-resonance pulses. A low
Q-factor wavelet transform (for example, the classical dyadic wavelet transform) is suitable for the efficient representation of pulses 1 and 3. The efficient
representation of pulses 2 and 4 calls for a wavelet transform with higher Q-factor. (a) Signals. (b) Spectra.

1 We comment that pulses 2 and 4 in Fig. 1 are high-resonance signals
only in comparison with pulses 1 and 3. Depending on the type of signal
being analyzed, we may wish to classify all four pulses in Fig. 1 as low-
resonance pulses, and to classify as high-resonance only those pulses
having many more oscillations than any of these four pulses (say 20 or 50
cycles instead of 5).
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Note that linear time-invariant (LTI) filtering will be
unable to yield the separation illustrated in Fig. 2a because
the three frequencies present in the high-resonance com-
ponent are the same three frequencies present in the low-
resonance component. The pulses in the high-resonance
component differ from those in the low-resonance com-
ponents not in their frequency, but by the degree to which
their oscillations are sustained.

Of course, LTI filtering can separate the test signal into
low, mid, and high frequencies. Using low-pass, band-pass,
and high-pass LTI filters, we obtain the frequency-based
decomposition of the test signal into frequency compo-
nents, as illustrated in Fig. 2b for comparison.

The frequency-based decomposition of a signal, as illu-
strated in Fig. 2b, depends partly on the characteristics of the
frequency-selective filters utilized: transition-band widths,
pass-band and stop-band deviations, phase response, etc.
Likewise, the resonance-based decomposition of a signal will
also depend on algorithm parameters.

2.2. Resonance-based signal decomposition must be nonlinear

Resonance-based signal decomposition and filtering, as
presented here, cannot be achieved by any linear filtering

scheme, as illustrated in Fig. 3. Each row in Fig. 3 illustrates
the (hypothetical and ideal) decomposition of a signal into
low- and high-resonance components. The first six signals
are low-resonance signals and therefore the low-resonance
components are the signals themselves (and the high-
resonance components are identically zero). The last signal
is a high-resonance signal and therefore the high-
resonance component is the signal itself (and the low-
resonance component is identically zero).

As illustrated in Fig. 3, neither the low- nor high-resonance
componentof a signal satisfies thesuperpositionproperty. The
high-resonance signal illustrated in the bottom left panel is
exactly the sum of the six low-resonance signals illustrated
above it. If the resonance-components of a signal were linear
functions of the signal, then the low- and high-resonance
components in the bottom row of Fig. 3 should be the sum of
the components above them. But that is not the case, and
therefore theproposed resonance-basedsignaldecomposition
is necessarily a nonlinear function of the signal under analysis.

2.3. Can resonance-based signal decomposition bewell defined?

Clearly, the separation of a signal into low- and high-
resonance components may be ill-defined. If we classify
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Fig. 2. Resonance- and frequency-based filtering. (a) Decomposition of a test signal into high- and low-resonance components. The high-resonance signal
component is sparsely represented using a high Q-factor RADWT. Similarly, the low-resonance signal component is sparsely represented using a low
Q-factor RADWT. (b) Decomposition of a test signal into low, mid, and high frequency components using LTI discrete-time filters. (a) Resonance-based
decomposition. (b) Frequency-based filtering.
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pulses 1 and 3 (consisting of roughly one cycle) in Fig. 1 as
low-resonance signals, and pulses 2 and 4 (consisting of
roughly five cycles) as high-resonance signals, then how
should we classify a pulse consisting of three cycles?
Likewise, if a signal consists of several such pulses of
indeterminate resonance, then how should its low- and
high-resonance components be defined?

It is not initially clear how the resonance of a generic
signal should be defined, let alone how a generic signal can
be separated into low- and high-resonance components. In
contrast, frequency-based filtering is straightforward to
define: a low-pass filter preserves (annihilates) sinusoids
oscillating with frequencies less than (greater than) the
filter’s cut-off frequency. The frequency response function
together with the linearity of the filter, fully determine the
input–output behaviour of the filter.

Consequently, it may appear that the concept of reso-
nance-based signal decomposition is vague, imprecise, and
ambiguous. However, such a decomposition can be well
defined, albeit indirectly, by formulating it as the solution
to an appropriately chosen optimization problem. (The
resonance-based decomposition illustrated in Fig. 2a was
computed via numerical minimization of the cost function
(1) below.) As such, the resonance-components of a signal
depend on the specific cost function, and the exact decom-
position can be adjusted by varying a set of parameters
defining the cost function.

The resonance-based signal decomposition we present
is therefore a nonlinear function of the signal, computed
numerically by an iterative optimization algorithm. In
contrast, frequency-based filtering can bewritten in closed
form using the convolution integral (or sum). Resonance-
based decomposition is necessarily nonlinear and numer-
ical, while frequency-based decomposition is linear and
analytic.

2.4. Quality-factor and constant-Q bases

While defining the resonance of a generic signal may be
problematic, the resonance of an isolated pulse can be
quantified by its quality-factor, or Q-factor, defined as the
ratio of its center frequency to its bandwidth; this quantity
is well known in filter design, control, and the physics of
dynamical systems.

TheQ-factor of a pulse reflects its degree of resonance as
illustrated in Fig. 1. The more oscillatory cycles comprising
a pulse, the higher is its Q-factor. The first two pulses
illustrated in Fig. 1 oscillate with the same frequency,
0.04 cycles/sample; but the second pulse exhibits oscilla-
tions that are more sustained and accordingly it has a
higher Q-factor (4-times higher). The second two pulses
illustrated in Fig. 1 each oscillate at a frequency of
0.02 cycles/sample and have the same Q-factors, respec-
tively, as the first two pulses. Note that the Q-factor of a
pulse, as illustrated in Fig. 1, essentially counts the number
of oscillations (cycles) the pulse consists of.

Themethod described below for computing the high- and
low-resonancecomponentsof asignal is basedon theefficient
representation of these two signal components using two
suitably designed bases. The efficient representation of the
high-resonance signal component calls for a basis ideally
comprised entirely high-resonance (highQ-factor) functions;
such a basis can be obtained from a single highQ-factor pulse
by translatingand time-scaling it. The functions in suchabasis
will all have the same Q-factor. Similarly, for the efficient
representation of the low-resonance signal component we
should utilize a basis comprised entirely of low-resonance
(lowQ-factor) functions;which can likewise be obtained from
a single low Q-factor pulse through translation and time-
scaling. We therefore need two ‘constant-Q’ bases—one
characterized by a high Q-factor, the other characterized by
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Fig. 3. Resonance-based signal decomposition must be nonlinear: the signal in the bottom left panel is the sum of the signals above it; however, the low-
resonance component of the sum is not the sumof the low-resonance components. The same is true for the high-resonance component. Neither the low- nor
high-resonance components satisfy the superposition property.
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a low Q-factor. Bases obtained from a single pulse through
translation and time-scaling arewell knownaswavelet bases,
the generating pulse being known as the ‘wavelet’.

The best known andmostwidely used constant-Q basis,
the dyadic wavelet basis [21], has a very low Q-factor.
Indeed, the effectiveness of the (dyadic) discrete wavelet
transform stems from its ability to provide relatively sparse
representations of piecewise smooth signals, that is, of low-
resonance signals. The dyadic wavelet transform is applied
much less frequently to oscillatory (high-resonance) sig-
nals such as speech and audio because it does not provide
particularly efficient representations of these signals.

The need for high Q-factor constant-Q transforms may
bequestioned; indeed, speech and audio signals are usually
analyzed and processed using constant-bandwidth trans-
forms (for example, the MPEG 2/4 AAC codec uses the
MDCT switching between 128 and 1024 frequency bands;
speech enhancement often utilizes the STFT). Although
constant-bandwidth analysis can be implemented with
high computational efficiency using the FFT, and although
it serves as a key component of numerous audio coders, it
does not provide the constant-Q analysis needed for
resonance-based signal decomposition.

Constant-Q frequency analysis has been of interest in
acoustics and signal processing for many years. This
interest is partly inspired by biology—the characteristics
of the human and othermammalian auditory systems have
been extensively studied; and it has been established that
the cochlea possesses a near constant-Q property. Speci-
fically, the cochlea can be modeled as a bank of highly
overlapping band-pass filters having constant Q-factors
above a species-dependent frequency. (The human cochlea
is approximately constant-Q over 500 Hz, and tends
towards constant bandwidth below that frequency.)
Several parametric models have been proposed for these
auditory filter banks, including the Gammatone and Gam-
machirp filter banks [44,50,98] which are designed to be
consistent with psychoacoustic measurements.

3. Methods

3.1. Rational-dilation wavelet transform (RADWT)

Thepursuit of easily invertible constant-Qdiscrete-time
transforms naturally leads to discrete wavelet transforms
(WTs) based on rational dilation factors [4,5,59] and to
perfect reconstruction filter banks based on rational sam-
pling factors [9,10,62,106]. However, critically sampled
filter banks based on rational sampling factors are sub-
stantially constrained and the filter bank design methods
used for the dyadic case cannot be used. Due to the
difficulty of the design problem, few solutions have been
proposed for the rational-dilation case.

Motivated by the need for high Q-factor constant-Q
(wavelet) transforms for the sparse representation of high-
resonance signals, we recently developed a new rational-
dilation wavelet transform [6] that is fully discrete, easily
invertible, energy preserving, approximately shift-invariant,
andwhich provides the user the ability to adjust theQ-factor.
The new wavelet transform can be used for high Q-factor
analysis or the same lowQ-factor analysis as thewidely used

dyadic wavelet transform. While the transform is not
critically sampled, it can be implemented with modest
redundancy (e.g., 3-times overcomplete, depending on para-
meters). Furthermore, the inverse filter bank is the mirror
image of the analysis filter bank, so that the transform is ‘self-
inverting’ (it implements a ‘tight’ frame rather than an
orthonormal basis), which facilitates its use for sparse signal
representation.

The rational-dilation wavelet transform (RADWT)
introduced in [6] is based on the filter bank (FB) illustrated
in Fig. 4.When the integers p, q, and s in Fig. 4 are chosen so
that the FB is overcomplete, we provide in [6] a set of filters
for this multirate filter bank achieving the perfect recon-
struction property, good time–frequency localization, and
high regularity. The Q-factor of the wavelet transform,
obtained when the FB is iterated on it low-pass branch,
depends on the parameters p, q, and s. Instead of being
based on integer dilations, the RADWT is based on a
rational dilation (q/p) between 1 and 2. Setting the dilation
factor close to 1, and s41, gives a WT with analysis/
synthesis functions (wavelets) having a high Q-factor.
Setting s=1, one obtains a WT with a low Q-factor like
the dyadic DWT. The non-uniform frequency decomposi-
tion and the associated wavelet are illustrated in Fig. 5 for
two cases: a low Q-factor and a high Q-factor transform.

3.2. Sparsity-based signal decomposition

We define high-resonance signals as those signals that
are efficiently (sparsely) represented by a high Q-factor
constant-Q transform (or ‘high-Q transform’) such as the
RADWT with appropriately chosen parameters p, q, and s
(as in Fig. 5b). This definition of a high-resonance compo-
nent is therefore relative to a specified constant-Q trans-
form. Similarly, we define low-resonance signals as those
signals efficiently represented by a lowQ-factor constant-Q
transform (or ‘low-Q transform’) such as the conventional
dyadic DWT or the RADWT (as in Fig. 5a). Note that a high-
resonance signal will not be efficiently represented with a
low-Q transform and likewise a low-resonance signal will
not be efficiently represented with a high-Q transform.
Therefore, the efficiency (sparsity) of a signal representation
with respect to low-Q and high-Q transforms can be employed
as a means by which to achieve resonance-based signal
decomposition.

The nonlinear separation of a signal into components
defined by distinct behaviours has been addressed in
several publications. For example, Refs. [2,3,101,102]
propose algorithms following ideas of Meyer [74] for the
decomposition of an image into oscillatory and bounded
variation components. A general framework for nonlinear
signal decomposition based on sparse representations has

Fig. 4. Analysis and synthesis filter banks for the implementation of the
rational-dilation wavelet transform (RADWT). The dilation factor is q/p
and the redundancy is ðs ð1"p=qÞÞ"1 assuming iteration of the filter bank
on its low-pass (upper) branch ad infinitum.
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been described in several papers [33,36,51,94,95]. In order
for this approach, called ‘morphological component ana-
lysis’ (MCA), to be successful, the respective transforms
must have a low coherence (the analysis/synthesis func-
tions of each transform should have low correlation with
the analysis/synthesis functions of the other transform),
a condition satisfied by low-Q and high-Q transforms;
see (2) below.

Given an observed signal x¼ x1þx2, with x,x1,x2 2 RN ,
the goal of MCA is to estimate/determine x1 and x2 indivi-
dually. Assuming that x1 and x2 can be sparsely represented
in bases (or frames) S1 and S2, respectively, they can be
estimated by minimizing the objective function,

Jðw1,w2Þ ¼ Jx"S1w1"S2w2J22þl1Jw1J1þl2Jw2J1 ð1Þ

with respect tow1 andw2. ThenMCA provides the estimates
x̂1 ¼ S1w1 and x̂2 ¼ S2w2.

The effectiveness of MCA for certain image processing
problems (image in-painting, interpolation, etc.) has been
well demonstrated, especially with the curvelet transform,
the 2DDCT, and 2Dwavelet transforms in the role of S1 and
S2 [33,37,35,95]. A variant of this approach is shown to be
effective for the separation of ventricular and atrial com-
ponents in an ECG signal in [27], where the respective
representations are adapted to ventricular and atrial
activity, respectively.

For resonance-based signal decomposition, we propose
to use low-Q and high-Q RADWTs in the role of S1 and S2.
Then x̂1 and x̂2 obtained by minimizing (1), will serve as
the extracted low- and high-resonance signal components.
For example, the resonance-based decomposition illu-
strated in Fig. 2 was obtained by minimizing (1) with
l1 ¼ l2 ¼ 0:2 where S1 and S2 are the two RADWTs illu-
strated in Fig. 5.

More general forms of MCA allow the sparsity measures
for x1 and x2 in (1) to be different from each other.
Furthermore, prior informationcanbeutilized in theobjective

function to further improve the achievable component separ-
ability [28]. Additionally, the data fidelity termneed not be an
‘2 norm, andother sparsity priors besides the ‘1"norm canbe
used, etc. We use the ‘1-norm here because it promotes
sparsity while being convex function.

3.2.1. Convexity and the ‘1-norm
Casting resonance-based signal decomposition as a convex

optimization problem as in (1) facilitates the computation of
the resonance components. Here, we use the ‘1-norm in (1)
because it makes the objective function convex. Although an
‘p-normwith0rpo1 in (1)promotessparsity in thesolution
more aggressively than the ‘1-norm, the objective function J
will not be convex and the solution will therefore be more
difficult toobtain—wecangenerallyfindasolution that isonly
locally optimal, and it will depend on the particular optimiza-
tion algorithm utilized, and on the way it is initialized.

3.2.2. Coherence and the RADWT
In order for morphological component analysis to be

successful at decomposing a signal x into components x1
andx2, it is important that the twoutilized transforms,S1 and
S2, have a low mutual coherence. That is, the synthesis
functions (columns) of transform S1 should have minimal
correlation with the synthesis functions (columns) of trans-
form S2. Although some pairwise correlations can be zero
(some columns of S1 can be orthogonal to some columns of
S2), it is impossible that they all have zero correlation.

WhenMCA is performed using twowavelet transforms,
characterized bywaveletsc1ðtÞ andc2ðtÞ, respectively, it is
therefore necessary that the translations and dilations of
c1ðtÞ and c2ðtÞ have a small inner product for all dilations
and translations. Denote the maximum inner product as
rmaxðQ1,Q2Þ where Qi is the Q-factor of wavelet ciðtÞ.
We assume thatQ24Q1 in the following. To evaluate these
inner products, consider a simplified case where the
wavelets ciðtÞ are ideal band-pass functions with Fourier
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Fig. 5. Rational-dilation wavelet transforms (RADWT): frequency responses and wavelet. (a) Low Q-factor RADWT using p=2, q=3, s=1. The wavelet is
approximately the Mexican hat function. (b) High Q-factor RADWT using p=5, q=6, s=2. The dilation factor is 1.2, much closer to 1 than the dyadic wavelet
transform. The RADWTs in both (a) and (b) have the same redundancy: they are both 3-times overcomplete.
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transforms given by

Ciðf Þ :¼
ffiffiffiffiffiffiffiffiffiffi
Qi=fi

p
, fi"fi=ð2QiÞo fo fiþ fi=ð2QiÞ

0 otherwise

(

as illustrated in Fig. 6. The band-pass functions (single-
sided in Fig. 6 for convenience) are normalized to have unit
energy,

R
jCiðf Þj2df ¼ 1. In this case the inner products can

be defined in the frequency domain,

rðf1,f2Þ :¼
Z

C1ðf ÞC2ðf Þ df ,

and the maximum inner product can be written as

rmaxðQ1,Q2Þ :¼ max
f1 ,f2

rðf1,f2Þ:

The inner product, rðf1,f2Þ, is given explicitly in the
equation on the top of the next page. The maximum value

of rðf1,f2Þ occurs when f2= f1(2+1/Q1)/(2+1/Q2) and is
given by

rmaxðQ1,Q2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1þ1=2
Q2þ1=2

s

, Q24Q1: ð2Þ

Eq. (2) shows how themaximum inner product depends
on the Q-factors of the twowavelet transforms. For MCA to
be successful, rmax should be substantially less than 1. If Q2

is only slightly greater than Q1 then the maximum inner
product between the two wavelet transforms is near 1 and
the result ofMCAmay be poor (both components x̂1 and x̂2

may be similar to x). On the other hand, ifQ1=1 andQ2=5.5,

then rmax ¼ 0:5. Further increasing Q2, further decreases
rmax. Therefore, in order to ensure the reliability and
accuracy of resonance-based signal decomposition using
MCA with low-Q and high-Q RADWTs, it is advantageous
that the two RADWTs be chosen so as to minimize their
coherence; that is, the high-Q RADWT should be designed
so that its Q-factor is sufficiently greater than the Q-factor
of the low-Q RADWT. However, if this Q-factor is too high,
then it may not be well matched to the oscillatory
behaviour expected in the high-resonance component,
and accordingly the high-Q RADWT may not provide an
efficient representation, thereby degrading the results of
MCA. The two Q-factors should be chosen so as to (i)
roughly reflect the expected behaviour of the two compo-
nents, yet on the other hand, so as to (ii)minimizermax. The
two Q-factors should therefore depend to some degree on
the signal under analysis:

For the RADWT described in [6], we do not have a
formula for rmax. However, it can be computed numeri-
cally. Table 1 reports rmax for several specific cases. As
reflected in the table, increasing the higher Q-factor causes
a decrease in rmax.

3.3. Split augmented Lagrangian shrinkage algorithm
(SALSA)

The proposed framework for resonance-based signal
decomposition requires the minimization of the objective
function (1). Although this function is convex, its mini-
mization can be difficult due to (i) the non-differentiability
of the ‘1-normand (ii) the large numberof variables (if each
of the two transforms are 3-times overcomplete, then the

Table 1
The coherence, rmax, between the low-Q RADWT with parameters p1=2,
q1=3, s1=1, (Q-factor=1) and the high-Q RADWT with parameters p2, q2,
s2, for several higher-Q RADWTs (Q-factor given in table).

p2 q2 s2 Q2 rmax

5 6 2 3 0.723
6 7 3 5 0.582
7 8 3 5 0.573
8 9 3 5 0.572
9 10 3 5 0.581
11 12 4 7 0.484
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Fig. 6. For reliable resonance-based decomposition, the inner product
between the low-Q and high-Q wavelets should be small for all dilations
and translations. The computation of the maximum inner product is
simplified by assuming the wavelets are ideal band-pass functions and
expressing the inner product in the frequency domain.
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number of unknowns is 6-times the length of the signal x).
Due to the important role of sparsity-promoting objective
functions such as (1) in the formulation of recent signal
processingmethods (including ‘compressive sensing’ [29]),
several algorithms have recently been proposed to mini-
mize this type of objective function. An important early
algorithm is the iterated soft-thresholding algorithm(ISTA)
developed in [22,40] (this algorithmappeared earlier in the
optimization literature, as noted in [18]). However, ISTA
converges slowly for some problems and faster algorithms
have since been developed, for example [7,8,17,32,39,
42,105]. A survey of the literature related to the minimiza-
tion of convex functions arising in signal processing,
includingminimizationproblemswith constraints, is given
in [18]. In particular, FISTA [7] has a quadratic rate of
convergence instead of the linear rate of ISTA; yet it is
almost as simple an algorithm as ISTA. We have found
SALSA particularly effective for resonance-based decom-
position (and likely for MCA in general), as it solves a
sequence of ‘2-norm regularized problems which for MCA
can be solved easily (provided the two transforms are tight
frames, as they are here.)

The split augmented Lagrangian shrinkage algorithm
(SALSA), developed in [41,1], is based on casting the mini-
mization problem

min
w

f1ðwÞþ f2ðwÞ ð3Þ

as

min
u,w

f1ðuÞþ f2ðwÞ ð4Þ

such that u¼w

which is minimized by the alternating split augmented
Lagrangian algorithm:

uðkþ1Þ ¼ argmin
u

f1ðuÞþm Ju"wðkÞ"dðkÞJ22, ð5Þ

wðkþ1Þ ¼ argmin
w

f2ðwÞþm Juðkþ1Þ"w"dðkÞJ22, ð6Þ

dðkþ1Þ ¼ dðkÞ"uðkþ1Þ þwðkþ1Þ, ð7Þ

where k is the iteration index and m is a user-specified
scalar parameter. Each iteration calls for the solution of an
‘2-regularized inverse problem, which is often itself a
challenge for large-scale problems. However, for reso-
nance-based signal decomposition as we formulate it,
the relevant ‘2 problem can be solved easily, as described
in the following.

In order to specialize SALSA to the MCA problem (1),
define

f1ðuÞ ¼ Jx"HuJ22, f2ðwÞ ¼ l1Jw1J1þl2Jw2J1,

and

H¼ ½S1 S2', u¼
u1

u2

" #

, w¼
w1

w2

" #

:

Then (5)–(7) gives the iterative algorithm:

uðkþ1Þ ¼ argmin
u

Jx"HuJ22þmJu"wðkÞ"dðkÞJ22, ð8Þ

wðkþ1Þ ¼ argmin
w

l1Jw1J1þl2Jw2J1þmJuðkþ1Þ"w"dðkÞJ22, ð9Þ

dðkþ1Þ ¼ dðkÞ"uðkþ1Þ þwðkþ1Þ, ð10Þ

where k is the index of iteration. The parameter m needs to
be selected by the user; see [41] for details. We have used
m¼ 0:5l in the MCA experiments below.

Note that (8) is an ‘2 problem and therefore the
minimization in (8) can be expressed straightforwardly:

uðkþ1Þ ¼ ðHtHþmIÞ"1ðHtxþmðwðkÞ þdðkÞÞÞ:

Using S1S
t
1 ¼ I and S2S

t
2 ¼ I (because the RADWT is a tight

frame) and the matrix inverse lemma, we can write

ðHtHþmIÞ"1 ¼
1
m I"

1
mðmþ2Þ

St1
St2

" #
½S1 S2':

Also, note that (9) is an ‘1-norm regularized denoising
problem and therefore the minimization in (9) is given by
soft-thresholding.Therefore, SALSAfor theMCAproblem(1) is

bðkÞ
i ¼ Stixþm ðwðkÞ

i þdðkÞ
i Þ, i¼ 1,2, ð11Þ

cðkÞ ¼ S1b
ðkÞ
1 þS2b

ðkÞ
2 , ð12Þ

uðkþ1Þ
i ¼

1
mbðkÞ

i "
1

mðmþ2Þ
Stic

ðkÞ, i¼ 1,2, ð13Þ

wðkþ1Þ
i ¼ soft uðkþ1Þ

i "dðkÞ
i ,

li
2m

" #
, i¼ 1,2, ð14Þ

dðkþ1Þ
i ¼ dðkÞ

i "uðkþ1Þ
i þwðkþ1Þ

i , i¼ 1,2, ð15Þ

where softðx,TÞ is the soft-threshold rule with threshold T,
softðx,TÞ ¼ xmaxð0,1"T=jxjÞ.

To illustrate the convergence of ISTA and SALSA, we
apply 100 iterations of each algorithm to minimize the
objective function Jðw1,w2Þ in (1) where x is the test signal
illustrated in Fig. 2a, and where the two transforms are the
RADWTs illustrated in Figs. 5a and b. The decay of the
objective function (1) is illustrated in Fig. 7 for both ISTA
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Fig. 7. Reduction of objective function during the first 100 iterations.
SALSA converges faster than ISTA.
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and SALSA. The signal decomposition obtained with 100
iterations of SALSA is illustrated in Fig. 2a. The signal
decomposition obtainedwith of 100 iterations of ISTA (not-
shown) is inferior because ISTA requires many more
iterations to converge than SALSA.

4. Example: resonance-selective nonlinear
band-pass filtering

In the study of multi-resonance component signals, the
analysis of the frequency (oscillatory) content of a signal is
sometimes of primary interest; for example, the extraction
of alpha rhythms from EEG signals, sinusoidal modeling of
speech signals, and spectral analysis of ocean wave-height
data. We note that the extraction of alpha rhythms from
EEG signals is generally and most simply performed by
conventional LTI filtering using a band-pass filter designed
to pass 8–12 Hz. However, transients in the EEG signal,
which are not considered part of the alpha rhythm, can
manifest themselves in the filtered signal as oscillations in
the 8–12 Hz band. Therefore, even if no alpha rhythm is
present in the EEG signal of interest, the filtered signal may
exhibit alpha oscillations. This behaviour has become a
point of discussion in the evaluation of methods for
investigating the neural mechanism for the generation of
certain evoked response potentials (ERPs) in EEG signals
[82,108,109].

To illustrate the applicability of resonance-based signal
decomposition, we demonstrate that it offers a potential
alleviation of this phenomenon, namely the appearance of
oscillations at frequency f in a band-pass filtered signal
when there are no sustained oscillations at this frequency
in the signal being filtered, as illustrated in Figs. 8 and 9.
Fig. 8a illustrates a discrete-time test signal consisting of a

sinusoidal pulse oscillatingwith frequency 0.1 cycles/sample
and a biphasic transient pulse. The two band-pass filters,
illustrated in Fig. 8b, are tuned to 0.07 and 0.1 cycles/
sample, respectively. The test signal is filtered with each of
the two filters to obtain two output signals, illustrated in
Fig. 8c and d. Note that the output signal produced by ‘Filter
1’ exhibits oscillations at a frequency of 0.07 cycles/sample
even though the test signal contains no sustained oscilla-
tions at that frequency. Of course, this phenomenon is a
basic fact of LTI filtering, yet it can nevertheless impede the
interpretation of band-pass filtered signals as noted in
[108] and may lead one to the conclusion that the test
signal contains more (and stronger) oscillations at this
frequency than it actually does.

The band-pass filters in Fig. 8 can be understood to
perform frequency analysis of the signal as a whole,
whereas we wish to apply frequency analysis only to the
‘part’ of the signal on which it is appropriate to apply
frequency analysis—namely, the part of the signal consist-
ing of sustained oscillations. Resonance-based signal
decomposition offers an opportunity to achieve such
resonance-selective frequency-based filtering. Specifically,
we can apply resonance-based decomposition to the test
signal and subsequently filter the high-resonance (oscilla-
tory) component with conventional LTI band-pass filters.
Applying resonance-based decomposition to the test signal
in Fig. 8a yields the high- and low-resonance components
illustrated in Fig. 9a and b. Filtering the high-resonance
component in Fig. 9a with each of the two band-pass filters
in Fig. 8b produces the two output signals illustrated in
Fig. 9c and d. Observe that the oscillations in the output of
‘Filter 1’ are substantially attenuated as compared with
that of Fig. 8c. This output signal, being near zero, reflects
the fact that the test signal does not contain sustained
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Fig. 8. LTI band-pass filtering. The test signal (a) consists of a sinusoidal pulse of frequency 0.1 cycles/sample and a transient. Band-pass filters 1 and 2 in
(b) are tuned to the frequencies 0.07 and 0.10 cycles/second, respectively. The output signals, obtained by filtering the test signal with each of the two band-
pass filters, are shown in (c) and (d). The output of band-pass filter 1, illustrated in (c), contains oscillations due to the transient in the test signal. Moreover,
the transient oscillations in (c) have a frequency of 0.07 Hz even though the test signal (a) contains no sustained oscillatory behaviour at this frequency.
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oscillations at the frequency 0.07 cycles/sample. Similarly,
the output of ‘Filter 2’ in Fig. 9d maintains the shape of the
sinusoidal pulse more accurately as compared with the
output illustrated in Fig. 8d.

This example illustrates the potential of resonance-
based decomposition method to overcome the limitations
of frequency-selective linear filters. By separating the
signal into high- and low-resonance components (which
requires nonlinear processing) and subsequently perform-
ing conventional LTI frequency-selective filters, we can
utilize conventional band-pass filters, while reducing the
ringing artifacts due to transients in the signal of interest. In
this way, we can achieve nonlinear band-pass filtering that
is robust (insensitive) to transients. Furthermore, the
method uses a very generic model to separate transients
and oscillatory behaviour—no template is required for the
shape of the transient; the separation is based only on
sparsity in low-Q and high-Q transforms.

Note that the resonance-based decomposition in Fig. 9
is not perfect; largely because the transient pulse is not
itself in the low-Q basis. The resonance decomposition in
Fig. 9 was obtained using the low-Q and high-Q RADWTs
illustrated in Fig. 5. From Table 1, rmax ¼ 0:72. The result
can be improved by using a higher Q-factor for the high-Q
RADWT or a more aggressively sparsity promoting (non-
convex) regularizer in (1).

5. Example: resonance-based decomposition of a
speech signal

To further illustrate how resonance-based signal decom-
position can aid the analysis of non-stationary signals,
consider the speech signal illustrated in Fig. 10. Fig. 10
illustrates a 150 ms segment of a speech signal (‘‘I’m’’ spoken
by an adult male) in which a vowel-consonant transition is

visible. The high- and low-resonance components obtained
by minimizing (1) are illustrated in Fig. 10b and c. The high-
resonance component captures the sustained oscillations
in the speech signal while the low-resonance component
captures a sequence of isolated impulses corresponding to
the glottal pulses produced by the vibration of the vocal folds
during voiced speech. Therefore, although the original speech
signal in Fig. 10a is largely oscillatory, it is not a purely high-
resonance signal in the sense of our definition: its resonance-
decomposition yields a non-negligible low-resonance com-
ponent. The decomposition was obtained using the high-Q
RADWTwith parameters: p=8, q=9, s=3, with 38 levels; and
using the low-Q RADWT with parameters: p=2, q=3, s=1,
with 12 levels (as illustrated in Fig. 5a). From Table 1,
rmax ¼ 0:57.

Note that neither the low- nor high-resonance compo-
nents shown inFig. 10are concentrated ina specific frequency
band. Indeed, the high-resonance component consists of low-
and high-frequency oscillations; and the low-resonance
component consists of a set of impulses and therefore has a
broad frequency-spectrum. The frequency spectra of the
original speech signal and the resonance components, com-
puted using the middle 50 ms (50–100 ms) of the speech
waveform, illustrated in Fig. 11, show that the energy of each
resonance component is widely distributed in frequency and
that their frequency-spectra overlap.

The low-resonance component illustrated in Fig. 10
resembles the excitation signal in source-filter model based
LPC or the cepstrum, etc. [80]. However, resonance-based
decomposition uses no such source-filter model; requires no
estimation of the pitch period; nor requires that the pitch
period be approximately constant over several pitch periods.
The decomposition does not depend on any speech model,
implicit or explicit; its only model is the sparsity of the
resonance components in high-Q and low-Q transforms.
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Fig. 9. Resonance-based decomposition and band-pass filtering. When resonance-based analysis method is applied to the test signal in Fig. 8a, it yields the
high- and low-resonance components illustrated in (a) and (b). The output signals, obtained by filtering the high-resonance component (a) with each of the
two band-pass filters shown in Fig. 8b, are illustrated in (c) and (d). The transient oscillations in (c) are substantially reduced compared to Fig. 8c.
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Therefore, although it does not yield a generative model for
speech as does a source-filter model, resonance-based
decomposition is not adversely affected by rapidly variations
in the pitch period to which some other techniques are
sensitive.

We also note that the high-resonance component
appears more amenable to sinusoidal modeling [73] than
does the original speech signal. Sinusoidal modeling, a
method for representing speech as a sum of time-varying
sinusoids, is useful in speech coding and manipulation
(pitch scaling, voicemorphing, etc.). However, impulses are
not efficiently represented as a sum of sinusoids and their
presence degrades the effectiveness of sinusoidal model-
ing. Because the high-resonance component is largely free
of impulses and transients, sinusoidal modeling can be
expected to be especially effective when applied to it.

To make a preliminary quantification of the compres-
sibility or predictability of the high-resonance component
in comparison with the original speech signal, we applied
AR modeling to both signals using the methods and model
orders listed in Table 2. In each case, the prediction error
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Fig. 11. Frequency spectra of the speech signal in Fig. 10 and of the
extracted high- and low-resonance components. The spectra are com-
puted using the 50 ms segment from 0.05 to 0.10 s. The energy of each
resonance component is widely distributed in frequency and their
frequency-spectra overlap. (a) Original speech, (b) high-resonance com-
ponent and (c) low-resonance component.
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Table 2
Comparison of prediction error for AR modeling. The table lists ehr=eorig
where eorig is the prediction error (s) for the original speech signal, and ehr
is likewise the prediction error for the high-resonance component,
illustrated in Fig. 10. The model order is denoted by p. Each method is
labeled by its Matlab function name.

Method ehr=eorig

p=6 p=7 p=8 p=9 p=10

burg 0.147 0.119 0.082 0.070 0.047
arcov 0.146 0.119 0.082 0.070 0.047
armcov 0.147 0.119 0.082 0.070 0.047
aryule 0.401 0.387 0.417 0.416 0.421
lpc 0.401 0.387 0.417 0.416 0.421
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(standard deviation, s) was computed, denoted as eorig and
ehr for the original speech signal and high-resonance
component, respectively. It was found that ehr is substan-
tially less than eorig. Table 2 lists the ratio, ehr=eorig, for each
method and model order. For example, using the Burg AR
method with model order p=6, the prediction error of the
high-resonance component is 14.7% that of the original
speech signal. The values in Table 2 suggest that the high-
resonance component is substantially more predictable
than the original speech signal, at least when an AR model
is used for the prediction. Fig. 12 illustrates the estimated
power spectral density using the Burg method with p=6;
the formants are more clearly defined for the high-reso-
nance component, as expected from the signal waveforms
in Fig. 10. Therefore, the high-resonance component may
facilitate formant tracking with fine temporal resolution.

As suggested by itsmore distinctive peaks in Fig. 12, the
high-resonance component can accentuate the speech
formants, the relative spacing of which characterize dis-
tinct vowels, etc. Meanwhile, the low-resonant component
can accentuate the harmonics,which characterize the pitch
of the speaker. In this case, coding only the high-resonance
component may serve as a method for more efficient
speech coding. Given that the speech waveform carries
both the identity of the speaker and the spokenmessage, it
has been postulated that ‘who’ and ‘what’ are conveyed by
the auditory system to the cortex along separate sensory
pathways [64]. Resonance-based decompositionmay simi-
larly provide a separation along these lines.

A principal tool for the analysis of speech is the spectro-
gram; according to Pitton et al., ‘‘Practically every aspect of
speech communication has greatly benefited from time–
frequency (TF) analysis’’ [77]. However, the pursuit of
alternatives to the spectrogramhas led to the development
of a variety of adaptive nonlinear time–frequency distribu-
tions with improved resolution properties [16,45,47,48,
88]. For certain signals (multicomponent AM/FMsignals, or
more generally, ‘high-resonance’ signals) these powerful
TF techniques reveal the signal’s time-varying frequency
characteristics that cannot be seen from the time-domain
waveform itself. However, for other signals, the informa-
tion of interest is more easily ascertained from the time-
domain waveform (for example, inter-pulse intervals of a
neural spike sequence, or more generally, ‘low-resonance’
signals). For signals consisting of a mixture of simultaneous
high- and low-resonance components, existing time–

frequency analysis techniques might be more effectively
applied to thehigh-resonance component than to the original
signal.

6. Further remarks

Parameter selection.As theminimization of the objective
function in (1) depends on the parameters l1 and l2, the
resulting decomposition can be tuned by varying these
parameters. The relative values of l1 and l2 influence the
energy of the two components: for example, with l1 fixed,
increasing l2 will decrease the energy of x̂2 and increase
the energy of x̂1. The values of li also influence the energy
of the residual: increasing both l1 and l2 will decrease the
energy of both components and increase the energy of the
residual. For the examples in this paper, the parameters
were manually selected by visually inspecting the induced
components. An appropriate balance between l1 and l2
must be struck. Automatic selection of the parameters li
could be performed using hyper-parameter estimation
procedures, as described in [15] for example. For image
decomposition into texture and structure components,
Ref. [3] describes a method for parameter selection based
on the assumption that these two components are not
correlated; a similar approach may be useful here.

The selection of the Q-factors of the two constant-Q
transforms also influences the result. It appears reasonable
to use Q ( 1 for the low-Q transform (like the dyadic
wavelet transform) in order to obtain a sparse representa-
tion of the non-oscillatory component; and that the high
Q-factor should be set depending on the oscillatory beha-
viour of signal in question. However, the decomposition
result does not appear to be as sensitive to the Q-factors as
it is to the li.

Additionally, the parameters li and Qi could be selected
based on optimizing appropriate performance measure-
ments, along the lines of [103] for example.

Whynot an ‘2-normpenalty? If the ‘2-norm is used in the
penalty term of (1),

Jðw1,w2Þ ¼ Jx"S1w1"S2w2J22þl1Jw1J22þl2Jw2J22, ð16Þ

then, using S1S
t
1 ¼ S2S

t
2 ¼ I, the minimizing w1 and w2 can

be found in closed form,

w1 ¼
l1

l1þl2þl1l2
St1x,
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Fig. 12. AR spectral estimation using the Burg method with model order p=6, for the speech signal and its high-resonance component, shown in Fig. 10.
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w2 ¼
l2

l1þl2þl1l2
St2x,

and the estimated components, x̂1 ¼ S1w1 and x̂2 ¼ S2w2,
are given by

x̂1 ¼
l1

l1þl2þl1l2
x,

x̂2 ¼
l2

l1þl2þl1l2
x:

That is, both x̂1 and x̂2 are simply scaled versions of x.
Although the objective function (16) admits a closed form
minimizer, it doesnot lead to anydecompositionwhatsoever.

More than two resonance components. The same approach
can be used with more than two resonance components,
although we have not explored it here. The main issue is that
the use of more transforms will generally reduce the inco-
herence between the transforms which diminishes the like-
lihood of obtaining distinct components. However, if a
constant-Q transform with sufficiently high Q-factor is used
to define a third resonance component, then the incoherence
will bemaintained and the performance ofMCA should not be
compromised. Specifically,Q3 shouldbechosensufficient large
so that rmaxðQ2,Q3ÞrrmaxðQ1,Q2Þ. Assuming ideal band-pass
wavelets, (2) can be used to calculate the minimum Q3.

MCA using constant-Q and constant-BW transforms. For the
separation of oscillatory and transient signals using sparse
signal representations, it is quite natural to utilize a short-
timeFourier transform(or similar constant-bandwidth trans-
form, like the MDCT) and a wavelet transform (with low-Q,
like the dyadic WT). This approach is presented in
[23,24,75,96] which illustrate excellent separation results.
However, depending on the parameters (window length,

etc.), a constant bandwidth and a constant Q-factor decom-
position may have analysis functions with similar frequency
support, as illustrated in Fig. 13. (The pass-bands between0.1
and 0.2 have significant overlap, as indicated in the figure.) In
this case, the two transforms will have a high coherence
because the maximum inner product between analysis
functions of the two transforms will be close to unity, which
can degrade the achievable component separation, depend-
ing on the signal being analyzed.

On the other hand, as noted above, two constant-Q
transformswithmarkedly differentQ-factorswill have low
coherence because no analysis functions from the two
decompositions will have similar frequency support. Like-
wise, two constant-bandwidth transforms with markedly
different bandwidths will also have low coherence and are
therefore also suitable for MCA-based signal decomposi-
tion. This calls for short and long windows for the two
constant-BW transforms, respectively. This approach is
presented in [25,38,57].

7. Related work and concepts

Related decompositions: The problem of decomposing a
given signal into oscillatory and non-oscillatory components
has received a fair amount of attention, especially for speech
and audio processing; however, previous approaches, not
beingbasedonsignal resonance, aredifferent fromthemethod
presented here. Speech andmusical sounds are oftenmodeled
as consisting of three components: a quasi-sinusoidal (oscil-
latory) component, a component consisting of temporal
transients, anda stochastic (noise-like) component. For speech
and audio processing (pitch- or time-scaling, morphing,
enhancement, de-reverberation, coding, synthesis of speech
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Fig. 13. A constant-bandwidth and a constant-Q decomposition may have analysis functions with similar frequency support.
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and other sounds) it is often useful that these three compo-
nents, each of which are psycho-acoustically significant, be
modeled separately. Early work on this topic decomposed
sounds using a ‘deterministic+stochastic’ model [87], a
‘sine+noise’ model [86], or a ‘harmonic+noise’ model [66].
Subsequent work decomposed sounds using a ‘sine+transient
+noise’ model [67,68,100] where a transient (deterministic,
non-oscillatory) component is introduced. Related works
consider a ‘periodic+aperiodic’ model [19,107] and pitch-
synchronous models [34,78]. These multi-component models
follow, elaborate and enhance, in a sense, sinusoidalmodeling
of speech [73,80]. Although thesemethods decompose signals
into oscillatory, non-oscillatory, and residual components, as
does the proposed method, they estimate and extract the
oscillatory component using constant-bandwidth transforms
rather than constant-Q transforms, and hence they do not
perform resonance-based signal decomposition.

More recent methods for decomposing signals into
oscillatory and transient components are based on sparse
signal representations [24,25,38,75] as is the method
described here; however, these methods are again not
based on signal resonance as they use constant-bandwidth
transforms as one or both of the two transforms. Thedyadic
(lowQ-factor)wavelet transformand themodified discrete
cosine transform (MDCT) are used in [24,75], while over-
complete modulated complex lapped transform (MCLT)
dictionaries are utilized in [25]. Note that the MDCT and
MCLT are constant-bandwidth, rather than constant-Q,
transforms. A Bayesian approach is described in [38] and
is illustrated using an MDCT basis with a long window for
the tonal component and anMDCTwith a shortwindow for
the transient component. Along these lines, the use of
MDCT and wavelet transforms for speech enhancement
was discussed in [96]. Ref. [23] develops a new algorithm:
the molecular matching pursuit algorithm. An example of
tonal/transient separation in audio is also given in [57]
which introduces the time–frequency jigsaw puzzle.

Another class of methods utilizes low Q-factor wavelet
transforms for the detection, estimation and characteriza-
tion of transients in various (often noisy) signals [20,79];
however, these methods differ from resonance-based
signal decomposition in that they do not explicitly account
for, or model, the presence of a highly oscillatory (high-
resonance) component. These methods (for example,
[20,79]) utilize wavelet transforms having low Q-factors
(the dyadic wavelet, etc.) due to the ability of such wavelet
transforms to efficiently represent the transient (low-
resonance) component of a signal. Along these lines, a
novel approach to transient separation is the time-scale
method introduced in [13] which exploits the multi-scale
characterization of transients.

The decomposition of a signal into a set of pulses of
various time–frequency characteristics using matching pur-
suits [72] and related algorithms has been effective in a
number of applications; however, these methods also differ
from the proposedmethod in that they usually utilize sets, or
dictionaries, of functions that are farmore overcomplete than
the constant-Q transforms utilized here, and the use of these
techniques for resonance-based signal analysis has not been
explored. The approximation of EEG signals by Gabor func-
tions using matching pursuits (MP) has been applied to the

analysis of sleep EEG [71], evoked potentials [90], epileptic
activities, and several other research and clinical problems in
EEG signal analysis [30,31], as well as to the estimation of
otoacoustic emissions [58].

Empirical mode decomposition: Empirical mode decom-
position (EMD) is another nonlinear signal decomposition
[46,55]. One goal of EMD is to extract AM/FM components
from a multicomponent signal. EMD decomposes a signal
into components, called ‘intrinsic mode functions’ (IMFs),
which are approximatelyAM/FM functions.While EMDcan
yield similar results as signal-resonance decomposition for
certain signals, the objectives and algorithms of the two
approaches are quite different.

Constant-Q transforms and non-uniform frequency decom-
position: The biological prevalence of constant-Q analysis led
to the study of constant-Q transforms for signal processing
starting in the 1970s [49,53,76,110] and continuing until the
present. In fact, the continuous wavelet transform was
effectively described in [110]. The calculation and use of
constant-Q transforms for the analysis of musical notes is
described in [11,12]. However, continuous-time integral
transforms are highly overcomplete and not always easily
inverted [43], yet some solutions are presented in
[54,56,69,70]. More recent papers have drawn on the theory
of perfect-reconstruction critically sampled filter banks to
designdiscrete-time transformswithnon-uniform frequency
analysis. These transforms, mostly based onwavelet-packets
[104] and therefore easily invertible, have been applied to
audio coding [91,93], speech enhancement [14,81,89], and
speech quality evaluation [60]. Wavelet-packet transforms
have been designed to approximate the critical-bands of the
human auditory system [61]; however, they cannot achieve
the constant-Qpropertyexactly [65]. Asmentioned inSection
3.1, earlier discrete-time rational-dilation filter banks and
wavelet transforms have been presented in [9,10,62,106].
Other approaches to the design of approximately constant-Q
filter banks are described in [26,52,83,92,99]; some of these
methods use frequency warping or multiple voices and have
approximate perfect reconstruction.

8. Conclusion

Signal ‘resonance’, being an attribute distinct and inde-
pendent to that of frequency, provides a dimension comple-
mentary to frequency for the analysis of signals. While
frequency components are straightforwardly defined and
canbeobtainedby linearfiltering, resonance components are
more difficult to define and procedures to obtain resonance
components are necessarily nonlinear. Related decomposi-
tions (‘sines + transients + noise’, etc.) have been proposed
for speech and audio processing, but are based partly are
wholly on constant-bandwidth transforms and therefore do
not provide a resonance-based decomposition.

This paper describes an algorithm for resonance-based
decomposition that relies on techniques for sparse signal
representations and onmorphological component analysis
(MCA). The algorithm uses a rational-dilation wavelet
transform (RADWT) for the sparse representation of each
resonance component. The RADWT is a self-inverting fully
discrete transform which is important for the SALSA
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algorithm as described. We expect that other (near) con-
stant-Q transforms may be used in place of the RADWT.

Wenote that for real signals therewill rarely be a totally
unambiguous distinction between the low and high reso-
nance components; consequently it is expected that some
low-resonance behaviour appears in the high-resonance
component and vice versa. Additional modeling, for exam-
ple by ‘structured-sparsity’ or context modeling of the two
components (e.g. [23,63]), may improve the separation
capability of the approach.
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