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Joan Bruna, Stéphane Mallat, Emmanuel Bacry and J-F. Muzy

August 4, 2013

Contents

1 Introduction 2

2 Scattering Transform 3
2.1 Multifractal Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Wavelet Scattering Transform . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Self-Similar Processes 5
3.1 Scattering Self-Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Fractional Brownian Motions . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1 Introduction

Many observed phenomena, ranging from turbulent flows in fluid mechanics to net-
work traffic or stock prices, are by nature irregular, singular almost everywhere, with
long range dependence. Multifractal processes, introduced in [36] and formalized by
Mandelbrot [23] are a large class of mathematical models which have a some form of
self-similarity.

The Fourier power spectrum, which depends upon second order moments, is not suf-
ficient to characterize such multifractal processes, beyond Gaussian processes. Multiple
moments of wavelet coefficients appeared as a powerful technique to model non-Gaussian
properties, in particular to compute the so-called spectrum of singularities [12, 1, 4].
However, the calculation of high order or negative moments leads to statistical estima-
tors with high variance, which limits these type of techniques to long data sequences.

Wavelet scattering operators [22] provide new representations of stationary processes.
Scattering coefficients of order m are expected values of non-linear functionals of the
process obtained by iterating m times on complex wavelet transforms and modulus
non-linearities. First order scattering coefficients are first order moments of wavelet co-
efficients, whereas second order scattering coefficients depend upon high order moments
and specify non-gaussian behavior of stationary processes. A scattering representation
is computed with a non-expansive operator and can be estimated with a low variance
from a single process realization.

First and second order scattering coefficients provide state of the art classification
results over stationary image and audio random textures [15, 2, ?]. These textures
are realizations of complex non-Gaussian processes, including multifractal processes.
This paper partly explains the efficiency of these texture classification algorithms by
analyzing the properties of first and second order scattering coefficients of self-similar
and multifractal processes. It shows that a scattering transform provides an alternative
mathematical approach to characterize multifractal properties.

Section 2 introduces scattering representations for multifractal analysis. Section3
concentrates on self-similar processes with stationary increments, and particularly on
fractional Brownian motions and Lévy processes. Section 4 studies scattering represen-
tations of multifractal cascades with stochastic self-similarities. Scattering representa-
tions of random multiplicative cascades are studied in Section 4.2. The main theorem of
Section 4.4 computes a multifractal intermittency parameter from normalized second or-
der scattering coefficients. Scattering transforms of turbulent flows and of financial time
series are studied in Sections 5.1 and 5.2 respectively, showing that it reveals important
properties of these processes.

Notations: We denote {X(t)}t d
= {Y (t)}t the equality of all finite-dimensional distri-

butions. The dyadic scaling of X(t) is written LjX(t) = X(2−j). The auto-covariance
of stationary process X is denoted RX(τ) = Cov(X(t),X(t + τ)).

We denote B(j) ≃ F (j) , j → ∞ (resp j → −∞) if there exists C1, C2 > 0 and J ∈ Z

such that C1 ≤ B(j)
F (j) ≤ C2 for all j > J (resp for all j < J).
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2 Scattering Transform

A large body of work has been deveoted to the study of multifractal properties with
wavelet transform. Section 2.1 reviews the properties of wavelet tranform moments and
Section 2.2 introduce multiscale scattering transform, computed with iterated wavelet
transforms and modulus non-linearities.

2.1 Multifractal Wavelet Analysis

The distribution and scaling properties of multifractal processes have been thoroughly
studied [3, 33, 13] through the scaling properties of wavelet transform moments. This
section reviews the main properties of dyadic wavelet transforms for multifractal analysis.
We consider multifractal processes having stationary increments, which means that the
distribution of {X(t − τ)−X(τ)}t does not depend upon τ .

A wavelet ψ(t) is a function of zero average
∫
ψ(t) dt = 0, which decays |ψ(t)| =

O((1 + |t|2)−1). A dyadic wavelet transform is calculated by scaling this wavelet

∀j ∈ Z , ψj(t) = 2−jψ(2−jt) .

The wavelet tranform of a random process X(t) at a scale 2j is defined for all t ∈ R by

X ⋆ ψj(t) =

∫
X(u)ψj(t− u)du . (1)

Since
∫
ψ(t) dt = 0, if X has stationary increments then one can verify that X ⋆ψj(t) is

a stationary process [33]. The multiscale wavelet transform of X(t) is:

WX = {X ⋆ ψj}j∈Z . (2)

We consider dyadic complex wavelets ψ(t) which satisfy the Littlewood-Paley condi-
tion:

∀ω ∈ R
+ ,

∞∑

j=−∞

|ψ̂(2jω)|2 +
∞∑

j=−∞

|ψ̂(−2jω)|2 = 2 . (3)

If X is stationary and E(|X|2) < ∞, by computing each E(|X ⋆ ψj|2) as a function of
the power spectrum of X and inserting (3), one can prove that:

E(‖WX‖2) =
∑

j

E(|X ⋆ ψj|2) = E(|X|2)− |E(X)|2 . (4)

Multifractals have been studied by analyzing the scaling properties of wavelet mo-
ments, through exponent factors ζ(q) defined by:

E(|X ⋆ ψj(t)|q) ≃ 2jζ(q) .

Under appropriate assumptions, the function ζ(q) can be related to the singularity spec-
trum of X through a Legendre transform [12, 29]. A major numerical difficulty is to
reliably estimate moments for q ≥ 2 and q < 0 because of the large variance of estimators.
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2.2 Wavelet Scattering Transform

This section reviews the properties of scattering transform [22], computed by cascading
wavelet transforms and a modulus non-linearity. As opposed to the wavelet moment
approach, scattering coefficients are calculated by cascading contractive operators, which
avoids amplifying the process variability, and hence leads to lower variance estimators.
It have been shown to efficiently discriminate non-Gaussian audio processes [2, 14] and
image textures [15].

The wavelet transform is calculated with a complex wavelet whose real and imaginary
parts are orthogonal, for exaple even and odds. One may choose analytic wavelets for
which ψ̂(ω) = 0 for ω < 0. For example, the analytic part of third order Battle-Lemaire
wavelets [21] and satisfies (3). First order scattering coefficients are first order wavelet
moments:

∀j1 ∈ Z , SX(j1) = E(|X ⋆ ψj1 |) .
Second order scattering coefficients are computed by calculating the wavelet transform
of each |X ⋆ ψj1 | and computing the expected values of its modulus:

∀(j1, j2) ∈ Z
2 , SX(j1, j2) = E(||X ⋆ ψj1 | ⋆ ψj2 |) .

Similarly, mth order scattering coefficients are calculated by applying m wavelet tran-
forms and modulus, which yields:

∀(j1, ..., jm) ∈ Z
m , SX(j1, ..., jm) = E(| |X ⋆ ψj1 | ⋆ ...| ⋆ ψjm |) . (5)

Observe that scattering coefficients are well defined as long as the process has a finite
first order moment E(|X|) <∞. One can indeed verify by induction on m that

|SX(j1, ..., jm)| ≤ E(|X|) ‖ψ‖m1 .

Scattering coefficients of order m are non-linear functions of X, which mostly depend
upon normalized moments of X up to the order 2m [22]. If X(t) is not stationary but has
stationary increments then X ⋆ ψj1(t) is stationary. It results that SX(j1, ..., jm) ∈ R

+

is well defined for all m ≥ 1 if E(|X(t)|) <∞.
In this paper we concentrate on first and second order scattering coefficients, which

carry important multifractal properties, and compute normalized second order scattering
coefficients defined by:

S̃X(j1, j2) =
SX(j1, j2)

SX(j1)
=

E(||X ⋆ ψj1 | ⋆ ψj2 |)
E(|X ⋆ ψj1 |)

.

The following proposition relates these coefficients to the ratio between first and second
order wavelet moments.

Proposition 2.1 If E(|X(t)|2 <∞ then for any j1 ∈ Z:

E(|X ⋆ ψj1 |2)
E(|X ⋆ ψj1 |)2

= 1 +
+∞∑

j2=−∞

|S̃X(j1, j2)|2 + e3(j1) (6)
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with

e3(j1) =

∞∑

j2,j3=−∞

E(|||X ⋆ ψj1 | ⋆ ψj2 | ⋆ ψj3 |2)
E(|X ⋆ ψj1 |)2

. (7)

Proof: Applying the mean-square energy conservation (4) to X ⋆ ψj proves that

E(|X ⋆ ψj |2) = |E(|X ⋆ ψj|)|2 +
+∞∑

j2=−∞

E(||X ⋆ ψj | ⋆ ψj2 |2) . (8)

Applying again (4) to ||X ⋆ ψj | ⋆ ψj2 | proves that

E(||X ⋆ ψj | ⋆ ψj2 |2) = E(||X ⋆ ψj| ⋆ ψj2 |)2 +
+∞∑

j3=−∞

E(|||X ⋆ ψj | ⋆ ψj2 | ⋆ ψj3 |2).

Inserting this equation in (8) proves (6). �
The amplitude of scattering coefficients S̃X(j1, j2) can be neglected for j1 > j2. The

decay of S̃X(j1, j2) for j2 − j1 ≤ 0 depends essentially on the wavelet properties as
opposed to the properties of X. Indeed |X ⋆ψj1 | inherits the regularity of |ψj1 |. If |ψ| is
Cp and ψ has p vanishing moments then S̃X(j1, j2) = E(||X ⋆ ψj1 | ⋆ ψj2 |)/E(|X ⋆ ψj1 |)
decreases typically like 2p(j2−j1). In the following, we thus concentrate on j2 > j1 where
normalized scattering coefficients reveal the properties of X.

For multifractals, the ratio between first and second order wavelet moments define
the intermittency factor ζ(2)− 2ζ(1):

E(|X ⋆ ψj|2)
E(|X ⋆ ψj|)2

≃ 2j(ζ(2)−2ζ(1)) . (9)

Corollary 2.2 For multifractals with stationary increments

+∞∑

j2=j+1

|S̃X(j, j2)|2 = O(2j(ζ(2)−2ζ(1))) . (10)

Monofractals are particular examples where ζ(q) = C q is linear. It results that∑+∞
j2=j+1 |S̃X(j, j2)|2 = O(1). Section 3 concentrates on self-similar monofractals. When

there is intermittency, the summation (17) does not provide a good estimation of ζ(2)−
2ζ(1) because the energy of higher order terms e3(j1) in (7) is not negligible and in fact
is dominating. For multifractal cascades, Section 4 proves that one can still compute this
factor by estimating higher order scattering coefficients from normalized second order
coefficients.

3 Self-Similar Processes

The properties of self-similar processes are analyzed with a scattering tranfsorm. Scat-
tering coefficients of fractional Brownian motions and Levy stable processes are studied
in more details.
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3.1 Scattering Self-Similarity

Self-similar processes of exponent H are stochastic processes X(t) that are invariant in
distribution under a scaling of space or time:

∀ s > 0 , {X(st)}t d
= {sHX(t)}t . (11)

We consider self-similar processes having stationary increments. Fractional Brownian
motions and α-stable Lévy processes are examples of Gaussian and non-Gaussian self-
similar processes with stationary increments.

If X is self-similar, then applying (11) with a change of variable u′ = 2−ju in (1)
proves that

∀j ∈ Z , {X ⋆ ψj(t)}t d
= 2jH {X ⋆ ψ(2−jt)}t .

Because of the stationarity, the moments do not depend on t and for all q ∈ Z

E(|X ⋆ ψj |q) = 2jHq E{|X ⋆ ψ|q} so ζ(q) = qH . (12)

The self-similarity thus implies a scaling of wavelet coefficients moments, up to a mul-
tiplicative factor which depends upon the distribution of the process. The following
proposition proves that normalized second order scattering coefficients can be written
as a univariate function which characterizes important fractal properties.

Proposition 3.1 If X is a self-similar process with stationary increments then for all
j1 ∈ Z

SX(j1) = 2j1H E(|X ⋆ ψ|), (13)

and for all (j1, j2) ∈ Z
2

S̃X(j1, j2) = SX̃(j2 − j1) with X̃(t) =
|X ⋆ ψ(t)|
E(|X ⋆ ψ|) . (14)

Proof: Since ψj1 = 2−j1Lj1ψ, a change of variables yields Lj1 |X ⋆ψ| = |Lj1X ⋆ψj1 | ,
and hence

|X ⋆ ψj1 | = Lj1 |L−j1X ⋆ ψ| d
= 2j1H Lj1 |X ⋆ ψ| . (15)

If Y (t) is stationary then E(LjY (t)) = E(Y (t)), which proves (13).
By cascading (15) we get

∀ (j1, j2) , ||X ⋆ ψj1 | ⋆ ψj2 |
d
= 2j1H Lj1 ||X ⋆ ψ| ⋆ ψj2−j1 | , (16)

so SX(j1, j2) = 2j1H E(||X ⋆ ψ| ⋆ ψj2−j1 |) . Together with (13) it proves (14). �.
Property (14) proves that if X is self-similar then a normalized scattering coefficient

S̃X(j1, j2) is a function of j2 − j1. With an abuse of notation, we shall thus write
S̃X(j1, j2) = S̃X(j2 − j1), and S̃X(j) = SX̃(j) with X̃ = |X ⋆ ψ|/E(|X ⋆ ψ|). Since
2ζ(1)− ζ(2) = 0 if E(|X ⋆ ψ|2) <∞ then Corollary 2.2 implies that

+∞∑

j=1

|S̃X(j)|2 <∞ . (17)

6



0 2 4 6 8 10 12

x 10
5

−800

−600

−400

−200

0

200

400

(a)

1.5 2 2.5 3 3.5 4 4.5

x 10
4

20

30

40

50

(b)

0 5 10 15 20
10

−1

10
0

10
1

10
2

(c)

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

(d)

−5 0 5 10 15 20
10

−5

10
−2

10
0

 

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(e)

0 5 10 15
10

−0.6

10
−0.4

10
−0.2

10
0

 

 
1
2
3
4
5
6
7
8
9
10
11
12

(f)

Figure 1: Left column: (a) Realization of Brownian motion X(t) with H = 1/2, (c)
log SX(j1) as a function of j1, (e) log S̃X(j1, j2) as a function of j2−j1 for several values
of j1. Right column: (b) Realization of a Poisson process Y (t). (d) logSY (j1) as a
function of j1 and (f) log S̃Y (j1, j2) as a function of j2 − j1 for several values of j1.
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Figure 1 shows the first and second order scattering coefficients of two processes
with stationary increments. Figure1(a,c,e) shows a realization of a Brownian Motion X,
its first and normalized second order scattering coefficients. As shown by Proposition
3.1 the normalized second order coefficients satisfy S̃X(j1, j2) = S̃X(j2 − j1). The
wavelet used in computations is a Battle-Lemarie spline wavelet of degree 3. Since |ψ|
is Cp with p = 3 and ψ has p + 1 vanishing moments, S̃X(j) = O(2pj) for j ≤ 0, as
verified in figure 1(e). It reveals no information on X. For j ≥ 0, one can observe that
S̃X(j) ∼ 2−j/2. Next section proves this decay in the more general context of fractional
Brownian motions. Figure 1(b,d,e) gives a realization of Y (t) =

∫ t
0 dP (u), where dP

is a Poisson point process. The processes X(t) and Y (t) have stationary increments
with same power spectrum, but their second order scattering coefficients behave very
differently. Since Y (t) is not self-similar S̃Y (j1, j2) depends upon both j1 and j2 as
opposed to j2 − j1.

First order scattering coefficients SX(j1) = E(|X ⋆ψj1 |) are wavelet coefficients first
order moments. Their decay as j1 increases depend upon the global regularity of X.
This regularity may be modified with a fractional derivative or a fractional integration.
Let f̂(ω) be the Fourier transform of f ∈ L2(Rd). For α ∈ R, we define Dαf as a
function or tempered distribution whose Fourier transform is

D̂αf(ω) = (iω)αf̂(ω) .

For α > 0 it is a fractional derivative and for α < 0 it is a fractional integration.

Proposition 3.2 If X is a self-similar process with stationary increments then for all
α ∈ R and all j1 ∈ Z

SDαX(j1) = 2j1(H−α)E(|X ⋆ Dαψ|) , (18)

and for all (j1, j2) ∈ Z
2

S̃DαX(j1, j2) = SX̃α(j2 − j1) with X̃α =
|X ⋆Dαψ|

E(|X ⋆ Dαψ|) . (19)

Proof: Observe that LjD
α = 2−αj1DαLj1 and since ψj1 = 2−j1Lj1ψ we get

|DαX ⋆ ψj1 | = 2−αj1 |X ⋆ Lj1Dαψ| = 2−αj1Lj1 |L−j1X ⋆Dαψ| . (20)

Since {L−j1X(t)} d
= 2j1H{X(t)}t, taking the expected value proves (18).

The proof of (19) follows the same argument as the proof of (14), with the identity
(20). �.

If α > 0 and ψ is in the Sobolev space Hα then Dαψ ∈ L2(Rd) is a wavelet which
resembles to ψ. This is also true if α < 0 and ψ has α + 1 vanishing moments. It
then results that X and DαX have nearly the same normalized second order scattering
coefficients. Fractional Brownian motions give a simple illustration of this property.
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3.2 Fractional Brownian Motions

We compute the normalized scattering representation of Fractional Brownian Motions,
which are the only self-similar Gaussian processes.

A fractional Brownian motion of Hurst exponent 0 < H < 1 is defined as a zero
mean Gaussian process {X(t)}, satisfying

∀ t, s > 0 ,E(X(t)X(s)) =
1

2

(
t2H + s2H − |t− s|2H

)
E(X(1)2) .

It is self-similar and satisfies

∀ s > 0 , {X(st)}t d
= sH{X(t)}t .

Proposition 3.1 proves in (13) that

SX(j1) = 2Hj1E(|X ⋆ ψ|) .

This is verified by Figure 2(a) which displays log2 SX(j1) for several fractional brownian
motions with H = 0.2, 0.4, 0.6, 0.8. It increases linearly as a function of j1, with a slope
H.

Figure 2(b) display second order coefficients log2 S̃(j1, j2) as a function of j2 − j1.
As opposed to first order coefficients, they nearly do not depend upon H, and all curves
superimpose. Proposition 3.1 shows that scattering coefficients S̃X(j1, j2) = S̃X(j2−j1)
only depend on j2 − j1. They have a fast exponential decay to zero when j2 − j1 ≤ 0
decreases, which mostly does not depend on X but on the wavelet regularity and its
vanishing moments. We shall thus concentrate on the properties of scattering coefficients
for j2 ≥ j1 on the rest of the paper.

Modulo a proper initialization at t = 0, if X is a fractional Brownian motion of
exponent H then DαX is a fractional Brownian motion of exponent H − α. We thus
expect from (19) in Proposition 3.2 that log2 S̃X(j2 − j1) nearly does not depend upon
H when j2 − j1 > 0. One can observe that log2 S̃X(j) has a slope of −1/2 when j
increases, which is proved by the following theorem. It does not depend upon H and it
is in fact a characteristic of wide-band Gaussian processes. We suppose that ψ is a C1

analytic function, with at least two vanishing moments and that ψ and its derivative is
O((1 + |u|2)−1).

Theorem 3.3 Let X(t) be a Fractional Brownian Motion with Hurst exponent 0 < H <
1. There exists a constant C > 0 such that

lim
j→∞

2j/2S̃X(j) = C . (21)

Proof: Proposition 3.1 proves in (14) that S̃X(j1, j2) = S̃X(j2 − j1), with S̃X(j) =
E(|X̃ ⋆ψj |) and X̃(t) = |X⋆ψ(t)|/E(|X ⋆ ψ|). Let B(t) be a Brownian motion and dB(t)
be the Wiener measure. The two processes X ⋆ ψ(t) and DH−1dB ⋆ ψ(t) are Gaussian
stationary processes having same power spectrum so

{|X ⋆ ψ(t)|}t d
= {|DH−1dB ⋆ ψ(t)|}t d

= {|dB ⋆ DH−1ψ(t)|}t .
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Figure 2: (a) Realization of a FBM with H = 0.2, (b) Realization of a FBM with
H = 0.8 (c) log2 SX(j1) as a function of j1 for fractional Brownians of exponents H =
0.2, 0.4, 0.6, 0.8. (d) log2 S̃X(j1, j2) = log2 SX̃(j2 − j1) as a function of j2 − j1 for the
same processes.

It results that

S̃X(j) =
E(||dB ⋆ DH−1ψ| ⋆ ψj |)

E(|X ⋆ ψ|) (22)

Since ψ has two vanishing moments and is C1 with all derivatives which are O((1 +
|u|3)−1), one can verify that |DH−1ψ(u)| = O((1+ |u|2)−1). It results that |dB⋆DH−1ψ|
is stationary process whose autocorrelation has some decay. As the scale 2j increases, the
convolution with ψj performs a progressively wider averaging. By applying a central-
limit theorem for dependant random variables, the following lemma applied to ϕ =
DH−1ψ proves that 2j/1|dB ⋆ DH−1ψ| ⋆ ψj converges to a Gaussian processes and that
its first moment converges to a constant when j goes to ∞. The theorem result (21)
stating that 2j/2S̃X(j) converges to a constant is thus derived from (22).

Lemma 3.4 If ϕ(u) = O((1 + |u|2)−1) then

2j/2|dB ⋆ ϕ| ⋆ ψj(t)
l−→

j→∞
N (0, σ2Id) , (23)
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with σ2 = ‖ψ‖22
∫
RY (τ)dτ and

lim
j→∞

E(|2j/2|dB ⋆ ϕ| ⋆ ψj |) = σ

√
π

2
. (24)

�

Fractional Brownian motions have moments that scale linearly ζ(q) = qH and hence
ζ(2) − 2ζ(1) = 0. Since S̃X(j) ∼ 2−j/2 for j ≥ 1, as expected from Corollary 2.2,∑

j S̃X(j)2 < ∞. Numerically we compute
∑

j S̃X(j)2 ≈ 0.22. If ψ is analytic, then
|X ⋆ ψj|(t) is a Rayleigh random variable for all j. In this case,

1.273 . . . =
4

π
=

E(|X ⋆ ψ|2)
E(|X ⋆ ψ|)2 ≈ 1 +

∑

j≥1

S̃(j)2 ≈ 1.22 ,

which means that the energy of higher order terms e3 in (7) is small compared to the
lower order terms.

3.3 α-stable Lévy Processes

In this section, we compute numerically the scattering coefficients of α-stable Lévy pro-
cesses and give qualitative arguments explaining their behavior.

The Lévy-Khintchine formula [19] characterizes infinitely divisible distributions from
their characteristic exponents. Self-similar Lévy processes have stationary increments
with heavy tailed distributions. Their realizations contain rare, large, events which
critically influence their moments. In particular, an α-stable Lévy process X(t) only has
moments of order strictly smaller than α.

If α > 1 then X(t) has stationary increments and E(|X(t)|) < ∞. Its scattering
coefficients are thus well defined. If α < 2 then the second order moments are infinite
so one can not analyze these processes with second order moments. An α-stable Lévy
processes satisfies the self-similarity relation

{X(st)}t d
= sα

−1{X(t)}t , (25)

so Propositon 3.1 proves that

SX(j1) = 2j1α
−1

E(|X ⋆ ψ|) . (26)

This is verified in Figure 3 which shows that log2 SX(j1) has a slope of α−1 as a function
of j1. First order coefficients thus do not differentiate a Lévy stable processes from
fractional Brownian motions of Hurst exponent H = α−1.

The self-similarity implies that normalized second order coefficients satisfy S̃X(j1, j2) =
S̃X(j2 − j1). However, they have a very different behavior than second order scattering
coefficients of fractional Brownian motion. Figure 3 shows that log S̃X(j) has a slope of
α−1 − 1 and hence that

∀j ≥ 1 , S̃X(j) ≃ 2j(α
−1−1) . (27)
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Figure 3: (a): Realization of a Lévy process with α = 1.1, (b): Realization of a Lévy
process with α = 1.5, (c) log SXα(j1) as a function of j1 for α-stable Lévy processes
with α = 1.1, 1.2, 1.3. The slopes are α−1. (d) log S̃Xα(j2 − j1) as a function of j2 − j1
number of realizations. The slopes are α−1 − 1.

This property can be explained as follows. Proposition 3.2 proves in (14) that

S̃X(j) =
E(||X ⋆ ψ(t)| ⋆ ψj |)

E(|X ⋆ ψ|) . (28)

The stationary process |X ⋆ ψ(t)| computes the amplitude of local variations of the
process X. It is dominated by a sparse sum of large amplitude bumps of the form
a |ψ(t − u)|, where a and u are the random amplitudes and positions of rare jumps in
dX(t), distributed according to the Lévy measure. It results that

E(||X ⋆ ψ| ⋆ ψj |) ≃ E(|dX ⋆ |ψ| ⋆ ψj |). (29)

If 2j ≫ 1 then |ψ| ⋆ ψj ≈ ‖ψ‖1 ψj , and E(|dX ⋆ ψj |) ≃ 2j(α
−1−1) because the Lévy jump

process dX(t) satisfies the self-similarity property

{dX(st)}t d
= sα

−1−1{dX(t)}t .

12



Inserting (29) in (28) gives the scaling property (27).
For α = 2, the Lévy process X is a Brownian motion and we recover that S̃X(j) ≃

2−j/2 as proved in Theorem 3.3. For α < 2 the scaling law is different because its
value essentially depends upon the rare jumps of large amplitudes, which do not exist in
Brownian motions. Observe that

∑+∞
j=1 S̃X(j)2 <∞ although E(|X ⋆ψj |2) = ∞, which

shows that the variance blow-up is due to the higher order term e3(j) in (6).

4 Scattering of Multifractal Cascades

We study the scattering representation of multifractal processes which satisfy stochastic
scale invariance property. Section 4.2 studies the particularly important case of log-
infinitely divisible multiplicative processes. Section 4.4 shows under general conditions
that one can compute a measure of intermittency from normalized scattering coefficients.

4.1 Stochastic Self-Similar Processes

We consider processes with stationary increments which satisfy the following stochastic
self-similarity:

∀ 1 ≥ s > 0 , {X(st)}t≤2J
d
= As · {X(t)}t≤2J , (30)

where As is a log-infinitely divisible random variable independent of X(t) and the so-
called integral scale 2J is chosen (for simplicity) as a power of 2. The Multifractal
Random Measures (MRM) introduced by [30, 6] are important examples of such pro-
cesses. Let us point out that MRM’s can be seen as stationary increments versions of
the multiplicative cascades initially introduced by Yaglom [36] and Mandelbrot [23, 24],
and further studied by Kahane and Peyriere [16]. Strictly speaking, these multiplicative
cascades do not satisfy (30). However they do satisfy an extremely similar equation
when sampled on a dyadic-grid, and consequently, all the results that we obtained on
MRM’s are easily generalized to multiplicative cascades. For the sake of conciseness, we
did not include them here.

In this section and the following ones, we consider a wavelet ψ of compact support
equal to [−1/2, 1/2]. Since X has stationary increments and satisfies (30), with a change
of variables we verify that

∀j ≤ J , {X ⋆ ψj(t)}t d
= A2j {X ⋆ ψ(2−jt)}t ,

and hence for all q ∈ Z and j ≤ J

E(|X ⋆ ψj |q) = E(|A2j |q)E{|X ⋆ ψ|q} ≃ Cq2
jζ(q) , (31)

where ζ(q) is a priori a non-linear function of q. Since the self-similarity is upper bounded
by an integral scale, the convexity of moments [12] implies that ζ(q) is a concave function
of q. Similarly to Proposition 3.1, the following proposition shows that normalized
scattering coefficients capture stochastic self-similarity with a univariate function.
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Proposition 4.1 If X is randomly self-similar in the sense of (30) with stationary
increments then for all j1 ≤ J

SX(j1) = E(|A2j1 |)E(|X ⋆ ψ|). (32)

If 2j1 + 2j2 ≤ J then

S̃X(j1, j2) = SX̃(j2 − j1) with X̃(t) =
|X ⋆ ψ(t)|
E(|X ⋆ ψ|) . (33)

Proof: Property (13) is particular case of (31) for q = 1. If 2j1 + 2j2 ≤ J , with the
same derivations as for (16), we derive from (30) that

||X ⋆ ψj1 | ⋆ ψj2 |
d
= A2j1 Lj1 ||X ⋆ ψ| ⋆ ψj2−j1 | , (34)

so SX(j1, j2) = E(A2j1 )E(||X ⋆ ψ| ⋆ ψj2−j1 |) . Together with (32) it proves (33). �.
Figure 4 shows the normalized scattering of a multiplicative cascade process described

in Section 4.2, with an integral scale 2J = 217. As proved in (33), if j1 < j2 < J then
S̃X(j1, j2) only depends on j2 − j1. This stops to be valid when 2j2 reaches the integral
scale 2J .

Propositions 3.1 and 4.1 show that normalized scattering coefficients can be used
to detect the presence of self-similarity, both deterministic and stochastic, since in that
case necessarily S̃X(j1, j2) = S̃X(j2 − j1). This necessary condition is an alternative to
the scaling of the q-order moments, E(|X ⋆ ψj |q) ≃ Cq2

jζ(q), which is difficult to verify
empirically for q ≥ 2 or q < 0.

Multifractals typically become decorrelated beyond their integral scale. For j2 > J ,
the decorrelation at large scales induces a normalized second order scattering which
converges to that of the Gaussian white noise, with an asymptotic behavior C2−j/2 as
seen in Section 3.2. Consequently, the resulting normalized second order scattering is

S̃XJ(j1, j2) ≈





S̃X(j2 − j1) if j1 < J and j2 < J

C 2(J−j2)/2 if j1 < J and j2 ≥ J

C 2(j1−j2)/2 if J ≤ j1 < j2

. (35)

4.2 Log-infinitely divisible Multifractal Random Processes

Multiplicative cascades as introduced by Mandelbrot in [23, 24] are built as an iterative
process starting at scale 2J with the Lebesgue measure on the interval [0, 2J ]. The
iteration consists in cutting this interval at the middle point and multiplying the mass on
each interval by a log-infinitely divisible variable (iid versions are used on each interval).
One then gets a random measure ”living” at scale 2J−1 (i.e., it is uniform on intervals
of length 2J−1 : [0, 2J−1] and [2J−1, 2J ]). The iteration is then applied recursively on
each sub-interval. At the nth iteration, one gets a random measure living at scale 2J−n

(i.e., which is uniform on each interval of the form [k2J−n, (k + 1)2J−n]). The object
of interest is the weak limit (n → +∞) of this random measure. At a given point t it
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Figure 4: Second order scattering for an MRM random cascade with λ2 = 0.04. We plot
the curves S̃j(l) = S̃dX(j, j+ l) as a function of l, and different colors stand for different
values of j.

can be written as an infinite product
∏+∞

n=1Wn where Wn are iid log-infinitely divisible
variables.

Multifractal Random Measures can be seen as stationary increments versions of these
multiplicative cascades. It is basically obtained by infinitely decomposing each iteration
step, i.e., no longer going directly from scale s = 2J−n to scale s = 2J−n−1 but going
from an arbitrary scale s to a scale rs where r is infinitely close to 1. Thus, they are built
using an infinitely divisible random noise dP distributed in the half-plane (t, s) (s > 0).
Using the previous notations, the noise around (t, s) can be seen as the equivalent of

the infinitely divisible variable logWlog s(t). More precisely, if ω2J

l (t) =
∫
A2J

l
(t)
dP where

A2J

l (t) is the cone in the (t, s) half-plane pointing to point (0, s) and truncated for s < l,
the MRM is defined as the weak limit

dM(t) = lim
l→0

eω
2J

l
(t)dt. (36)

For a rigorous definition of ω2J

l and of MRM, we refer the reader to [6]. One can prove
that dM is a stochastic self-similar process in the sense of (30) with As a log-infinitely
divisible variable. It is multifractal in the sense that (31) holds for some non-linear
function ζ(q) which is uniquely defined by infinitely divisible law chosen for dP .

Let us point out that the self-similarity properties of dM are mainly direct conse-
quences of the following self-similarity properties of ω2J

l

• A ”global” self-similarity property which is true for all T and all s > 0 :

{ωsT
sl (st)}t

law
= {ωT

l (t)}t. (37)
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• The stochastic self-similarity property which is true for all T and s < 1 :

{ωT
sl(su)}u<T

law
= {Ωs + ωT

l (u)}u<T (38)

where Ωs is an infinitely divisible random variable independent of ωT
l (u) such that

E(eqΩs) = e−(q−ζ(q)) ln(s).

Some more precise results that we will be used in the following are gathered in Ap-
pendix C.

Let us first state the expression for the first order scattering coefficient of the random
process dM(t)

Proposition 4.2 (First order scattering of an MRM) The wavelet transform of the
dM(t) process writes, for all t ∈ [0, T − 1],

dM ⋆ ψj
law
= eΩ2j−J ǫ(t2−j) (39)

where Ωs is the log-infinitely random variable defined in Eq. (38) and ǫ(t) is a station-
ary random process independent of Ω2j−J The expression for the first order scattering
coefficient follows

SdM(j) = E(|dM ⋆ ψj |) = K, (40)

where K = E(|ǫ(t)|).

Proof: Let dMl = eω
2J

l
(t)dt. From (37), one has:

dMl ⋆ ψj
law
= 2−j

∫
e
ω2j

2j−J l
(u2j−J )

ψ(2−j(u− t))du ,

and thus, by setting s = 2j−J , from Eq. (38) and (37):

dMl ⋆ ψj
law
= 2−jeΩs

∫
ψ(2−j(u− t))eω

2j

l
(u)du

law
= 2−jeΩs

∫
ψ(2−j(u− t))e

ω1
l2−j (2

−ju)
du

law
= eΩs

∫
ψ(u− t)e

ω1
l2−j (u)du .

Taking the limit l → 0 at fixed j ends the proof for (39) with

ǫ(t) = lim
l→0

∫
ψ(u− t)eω

1
l
(u)du. (41)

Let us remark that, since we supposed that ψ is compact support of size 1, the process
ǫ(t) is a 1-dependent process, i.e., ∀τ > 1, ǫ(t+ τ) is independent from {ǫ(t′)}t′≤t. (40)
is a direct consequence of (39) and of the fact that E(eΩs) = 1. �

The normalized second order scattering coefficient is given by the following theorem :
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Theorem 4.3 Let us suppose that ζ(2) > 1. Then the normalized second order scatter-
ing S̃dM(j1, j2) depends only on j1 − j2 and there exists a constant K̃ such that, in the
limit j1 → −∞ (j2 fix)

lim
j1→−∞

SdM(j1, j2) = K̃. (42)

Proof: As for the first order, using first (37) and then (38) with s = 2j2−J we obtain :

|ψj2 ⋆ |ψj1 ⋆ dMl||(t) law
= |ψj2 ⋆ |ψj1 ⋆ dMl||(0)
law
= 2−j2eΩ2j2−J

∣∣∣∣
∫
ψ(−u2−j2)2−j1

∣∣∣∣
∫
ψ(
u− v

2j1
)eω

2j2
l

(v)dv

∣∣∣∣ du
∣∣∣∣

Making the changes of variables u′ = u2−j2 and v′ = v2−j1 and using (37), leads to

|ψj2 ⋆ |ψj1 ⋆ dMl||(t) law
= eΩ2j2−J

∣∣∣∣
∫
ψ(−u)

∣∣∣∣
∫
ψ(2j2−j1u− v)e

ω2j2−j1

2−j1 l
(v)
dv

∣∣∣∣ du
∣∣∣∣

Since j2 is fixed, with no loss of generality, in the following we can set j2 = 0. Using
(37), one gets

|ψ ⋆ |ψj1 ⋆ dMl(0)|| law
= eΩ2−J

∣∣∣∣
∫
ψ(−u)

∣∣∣ψj1 ⋆ e
ω1
l (u)

∣∣∣ du
∣∣∣∣ (43)

We are now using the Lemma C.2 proved in Appendix C with α = 1−2ν
1+F (2) (ν < 1/2).

We get :
E(|ηj1 |) = O(2j1ν), (44)

and

ψj1 ⋆ e
ω1
l (u) = 2−j1e

ω1

2j1α
(u)

∫
ψ(
u− v

2j1
)eω̃

2j1α

l
(v)dv + ηj1,l(u)

law
= e

ω1

2j1α
(u)

∫
ψ(u2−j1 − v)e

ω̃1

l2−j1α
(v2j1(1−α))

dv + ηj1,l(u)

BUGBUG
law
= eΩ2j1(1−α) e

ω1

2j1α
(u)

∫
ψ(u2−j1 − v)e

ω̃1

l2−j1 (v)dv + ηj1,l(u)

→
l→0

eΩ2j1(1−α) e
ω1

2j1α
(u)
ǫ̃(2−j1u) + ηj1(u)

where ǫ̃(t) = liml→0

∫
ψ(t− v)e

ω̃1

l2−j1 (v)dv is a 1-dependent noise. If follows that :

lim
l→0

ψ⋆|ψj1 ⋆dMl(0)| law= eΩ2−J eΩ2j1(1−α)

∫
ψ(−u)eω

1

2j1α
(u)|ǫ̃(2−j1u)|du+

∫
ψ(−u)ηj1(u)du

Let K̃ = E(|ǫ̃(t)|) and let us define the centered process : ǭ(t) = |ǫ̃(t)| − K̃.
Thus we can write

lim
l→0

ψ ⋆ |ψj1 ⋆ dMl|(0) law
= eΩ2−J (I + II + III), (45)
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where

I = K̃eΩ2j1(1−α)

∫
ψ(−u)eω

1

2j1α
(u)
du (46)

II = eΩ2j1(1−α)

∫
ψ(−u)eω

1

2j1α ǭ(2−j1u)du (47)

III =

∫
ψ(−u)ηj1(u)du (48)

Then,
SdM(j1, 0) = E(|I + II + III|)

Since
∫
ψ(u)e

ω1

2j1αdu converges in law, when j1 → −∞, towards ǫ(t), (where ǫ(t) is an
independent copy of the process defined in (41)), we have, in the limit j1 → −∞:

E(|I|) → KK̃ (49)

Thus
|SdM(j1, 0)− K̃K| ≤ |E(|I + II|)− E(|I|)| + E(|III|)

From the Lemma, we know that limj1→−∞E(|III|) = 0. Moreover

|E(|I + II|)− E(|I|)| ≤ E(|II|) ≤
√
E(|II2|).

From the expression of II and the fact that ǭ is a 1-dependent process, we have:

E(|II|2) ≤ ||ψ||2∞
∫ 1

0

∫ 1

0
E
(
e
ω1

2j1α
(u)+ω1

2j1α
(v)

)
E
(
ǭ(2−j1u)ǭ(2−j1v)

)
dudv (50)

≤ ||ψ||∞E(ǭ2)2j1E(e
2ω1

2j1α ) (51)

which goes to 0 when j1 → −∞. Thus SdM(j1, 0) converges to K̃K which proves (42).
�

Figure 5 displays the first and second order scattering of log-Normal MRM cascades
for different value of the intermittency λ2 = ζ ′′(0) , confirming the results predicted
by both Proposition 4.2 and Theorem 4.3 : first order coefficients are constants (= K)
and normalized second order coefficients S̃dM(j) converge towards a constant (= K̃) as
j → ∞.

Another important example of a stochastic self-similar process can be simply obtained
from a MRM dM and a Brownian motion B(t) by composing them : Y (t) = B(M(t)).
It is quite straightforward to prove that Y (t) is stochastically self-similar and satisfies
31. It is referred to as the Multifractal Random Walk and has been initially introduced
in [6]. The proofs are extremely similar to the ones for the MRM. We just state here
the equivalent of Proposition 4.2 and Theorem 4.3 without the proofs.
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Figure 5: (a) Realization X of an MRM multifractal cascade with λ2 = 0.04, (b)
Realization of MRM with λ2 = 0.1, (c) First order scattering log2 S̃dM(j) for λ2 =
0.04, 0.07, 0.1. (b) Normalized second order scattering log2 S̃dM(j).

Theorem 4.4 Let Y a MRW associated to the function ζ(q). There exists a constant
K ′ such that

SdY (j) = E(|dY ⋆ ψj |) = 2j
1−ζ(2)

2 K ′. (52)

Let us suppose that ζ(2) > 1. Then, there exists a constant K̃ ′ such that the normalized
second order scattering S̃dY (j1, j2) satisfies

S̃dY (j1, j2) = K̃ ′ +O
(
2j1ν

)
, ∀ ν < 1/2. (53)

4.3 From Scattering To Intermittency

This section shows that normalized scattering coefficients can be used to compute the
intermittency of multifractal random cascades, measured with ζ(2)− 2ζ(1).

The intermittency is an important aspect of a multifractal process, describing how the
distribution of its increments changes with the scale, and is measured from the curvature
of ζ(q). If X is a multifractal process with integral scale 2J , Proposition 2.1 relates the
intermittency, measured as 2ζ(1)− ζ(2), with renormalized scattering coefficients:

2j(ζ(2)−2ζ(1)) ≃ E(|X ⋆ ψj|2)
E(|X ⋆ ψj|)2

= 1 +
+∞∑

j2=−∞

|S̃X(j, j2)|2 + e3(j) , (54)

with

e3(j) =
1

SX(j)2

∑

j′,j′′

E( | | |X ⋆ ψj | ⋆ ψj′ | ⋆ ψj′′ |2) .
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If X is an intermittent multifractal process, and since ζ(q) is a concave function [13],
ζ(2) − 2ζ(1) < 0 and hence (54) grows exponentially as j → −∞. If X becomes
decorrelated beyond its integral scale 2J , S̃X(j, j2) ≃ 2(J−j2)/2 for j2 > J , as seen in
(35), and S̃X(j, j2) ≃ 2(j2−j)p for j2 ≤ j if |ψ| ∈ Cp, and hence their contribution
in the sum (54) does not affect the exponential growth. On the other hand, since
|S̃X(j)| ≤ ‖ψ‖1 , ∀j, it results that this exponential growth must necessarily come from
the term e3(j).

In order to measure the intermittency, one must account for this term, which in
general depends upon high order scattering coefficients. However, the following theo-
rem, proved in Appendix B, shows that when X is a multiplicative cascade, one can
characterize the intermittence, measured as ζ(2) − 2ζ(1), using normalized scattering
coefficients.

Theorem 4.5 Let X(t) be a log-infinitely divisible Multiplicative cascade with stationary
increments, satisfying (30) with an integral scale 2J and E(|X ⋆ ψj |q) = Cq2

jζ(q). If
2ζ(1)− ζ(2) > 0, then ρ = 22ζ(1)−ζ(2) is the only root in R

+ of the equation

∑

j

S̃X(j)2L(j)xj = 1 , (55)

where L(j) =
C2

1
C2

E(||X ⋆ ψ−j| ⋆ ψ|2)E(||X ⋆ ψ−j| ⋆ ψ|)−2 satisfies

lim
j→∞

L(j) = 1 . (56)

This theorem proves that the intermittency factor 2ζ(1) − ζ(2) can be computed
from normalized scattering coefficients S̃X(k) and the ratios L(k), which converge to
1 as k → ∞. These ratios correspond to the correction that needs to be applied to
scattering coefficients, which are first order moments, in order to measure second order
moments. As opposed to the increments X ⋆ψj , where the gap between first and second
order moments widens and is precisely given by the intermittency factor 2j(2ζ(1)−ζ(2)),
the processes |X ⋆ψj |⋆ψ are less intermittent, and as a result their second moments can
be well approximated by their first order moments, which are precisely the second order
scattering coefficients of X.

One can extend Theorem 4.5 to higher order scattering coefficients up to a certain
order m. In that case, the correction terms will correspond to the processes ||X ⋆
ψj | ⋆ ψj2 | . . . ⋆ ψjm | ⋆ ψ, which are even less intermittent than |X ⋆ ψj | ⋆ ψ. The limit
m = ∞ corresponds to the scattering conservation of energy, proved in the case of
discrete processes [?] and conjectured in the continuous case:

E(|X ⋆ψj |2) = SX(j)2 +

+∞∑

j2=−∞

SX(j, j2)
2 +

+∞∑

m=3

∑

(j2,...,jm)∈Zm−1

SX(j, j2, ..., jm)2 . (57)
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4.4 Estimation of Intermittency

The previous section showed that scattering coefficients provide estimations of intermit-
tency factors for log infinitely divisible multifractal cascades. This result is generalized
by relating normalized scattering coefficients to the intermittency factor ζ(2) − 2ζ(1),
which specifies the relative scaling of first and second order moments

E(|X ⋆ ψj|2)
E(|X ⋆ ψj|)2

≃ 2j(ζ(2)−2ζ(1)) . (58)

Theorem 4.5 characterizes the intermittency factor 2ζ(1) − ζ(2) from normalized

scattering coefficients and the ratios L(j) =
C2

1
C2

E(||X ⋆ ψ−j| ⋆ ψ|2)E(||X ⋆ ψ−j| ⋆ ψ|)−2.
Since limk→∞L(k) = 1, one can obtain an estimator using only normalized scattering,
by approximating L(k) = 1. Moreover, since S̃X(j) ≃ 2jp , j < 0 if ψ ∈ Cp, we can also
neglect the terms j < j0 for some j0 ≤ 0. This estimator thus computes ζ(2) − 2ζ(1)
from the smallest positive root of the equation

∑

k≥j0

S̃X(k)2xl = 1 , (59)

which requires to estimate S̃X.
We begin by introducing an estimator of scattering coefficients from a single realiza-

tion of a self-similar process X(t) and compare the resulting estimator of 2ζ(1) − ζ(2)
to other estimators for multifractal cascades.

We suppose that ψ has a compact support normalized to [−1/2, 1/2]. A realization
of X(t) is measured at a resolution normalized to 1 over a domain of size 2J . We can
thus compute wavelet coefficients X ⋆ ψj(n) for for 2J > 2j > 1 and 2j ≤ n ≤ 2J − 2j .
The expected values SX(j1) = E(|X ⋆ ψj1 |) and SX(j1, j2) = E(||X ⋆ ψj1 | ⋆ ψj2 |) are
computed with time averaging unbiased estimators:

SJX(j1) =
1

2J − 2j1

2J−2j1−1∑

n=2j1−1

|X ⋆ ψj1(n)| (60)

and

SJX(j1, j2) =
1

2J − 2j1 − 2j2

2J−2j1−1−2j2−1∑

n=2j1−1+2j2−1

| |X ⋆ ψj1 | ⋆ ψj2(n)| . (61)

An estimator of S̃X(j1, j2) = SX(j1, j2)/SX(j1) is given by

S̃JX(j1, j2) =
SJX(j1, j2)

SJX(j1)
. (62)

IfX(t) is self-similar or stochastically self-similar, then Propositions 3.1 and 4.1 prove
that that S̃X(j1, j2) = S̃X(j1 + k, j2 + k) for any k ∈ Z if 2j1 + 2j2 < 2J . An estimator
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Table 1: Estimation of 2ζ(1)− ζ(2) = λ2 for an MRW multifractal cascade for different
values of λ2. The table gives the mean and the standard deviation of each estimator
computed with the scattering equation (64), the moment regression (65) and the log
covariance regression (66).

λ2 Regression moments Regression Log-Cov Scattering

0.05 0.05 ±8 · 10−3 0.05 ± 6 · 10−4 0.05 ± 10−3

0.1 0.09 ± 10−2 0.1± 2 · 10−3 0.1 ± 2 · 10−3

0.15 0.14 ± 2 · 10−2 0.15 ± 2 · 10−3 0.15 ± 10−3

0.2 0.23 ± 2 · 10−2 0.2± 3 · 10−3 0.24± 3 · 10−3

of S̃X(j) is obtained averaging the estimators of S̃X(j1, j1 + k) for 1 ≤ j1 < J , in order
to minimize the resulting variance [14]:

S̃JX(j) = (1− 2−J)

J∑

k=1

2−kS̃JX(k, k + j) . (63)

Indeed the relative variance amplitude of each S̃JX(k, k+ j) is typically proportional to
2k, because they are computed from empirical averages over number of samples propor-
tional to 2−k, as shown by (60) and (61).

Normalized scattering coefficients are estimated up to a maximum scale 2K < 2J .
Large scale coefficients do not affect much the value of the smallest root of equation
(59) we thus simply set S̃j(k) = S̃J(K) for k ≥ K. We also set j0 = 0 in numerical
experiments. Equation (59) then becomes

K∑

k=0

S̃JX(k)2xk + S̃JX(K)2
xK+1

1− x
= 1 ,

which amounts to finding the smallest root ρ of the equation

(1− x)

K∑

k=0

S̃X(k)2xk + S̃JX(K)2xK+1 + x = 1 , (64)

and estimate 2ζ(1) − ζ(2) by max(0,− log2(ρ)). Observe that ρ depends mostly upon
the values of S̃JX(k) for small values of k which are smaller variance estimators.

Numerical experiments are performed for MRW multifractal cascades studied in Sec-
tion 4.2, in which case ζ(q) =

(
1
2 + λ2

)
q− λ2

2 q
2, so ζ(2)− 2ζ(1) = −λ2 . Table 1 reports

the results of the intermittency estimation for MRW for several values of λ2. We simu-
late cascades using N = 216 points. We estimate the expected scattering representation
by averaging over 32 realizations, which is then used to estimate the intermittency. We
repeat this experience over 8 runs in order to compute the standard deviation of the
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estimators. The estimate based on the scattering coefficients is compared with a linear
regression on the estimated first and second order moments

2 log2E(|X ⋆ ψj |2)− log2 E(|X ⋆ ψj|)2 ≈ j(ζ(2) − 2ζ(1)) + C . (65)

The wavelet moments E(|X⋆ψj |2) and E(|X⋆ψj |) are estimated with empirical averages
of |X ⋆ ψj| and |X ⋆ ψj|2. We also include a log-covariance estimator from [5] which
estimates

Cov (log |X ⋆ ψj(t)|, log |X ⋆ ψj(t+ l)|) ≃ −λ2 ln
(
l

2J

)
+ o

(
j

l

)
. (66)

Table 1 shows that the estimation of λ2 = 2ζ(1)− ζ(2) based on the scattering equation
(64) outperforms the regression on the moments, and has a variance comparable to
the covariance of the logarithm. For large values of λ2 the approximation L(k) = 1
introduces non-negligible errors, which can be compensated using higher ordre scattering
coefficients.

5 Applications

5.1 Scattering of Turbulence Energy Dissipation

Random cascade models and multifractal analysis were originally introduced in the the
context of phenomenology of fully developed turbulence [27, 11, 32, 24]. Turbulent
regimes that appear in a wide variety of experimental situations, are characterized by
random fluctuations over a wide range of time and space scales. The main physical
picture behind this complexity was introduced by Richardson and Kolmogorov [34, 17]:
the fluid receives kinetic energy at large scales and dissipates this energy at small scales
where fluctuations are well known to be of intermittent nature. The overall range of
scales between injection and dissipation is called the inertial range and only depends
on the Reynolds number. Making a theory of this “energy cascade” across the inertial
range remains one of the most famous challenges in classical physics. According to the
previous picture and as proposed in the pioneering papers of Kolmogorov and Obhukov
[18, 31], the local dissipation field ǫ(~x, t) is described by a multiplicative cascade and
its multiscaling properties are the main signature of intermittency. There has been a
lot of experimental studies that have been devoted to the estimation of the exponent
spectrum associated with these multifractal properties. Most of them agree with a log-
normal cascade of intermittency exponent λ2 ≃ 0.2 (see e.g. [11, 27]). The pertinence
of such a (log-normal) random cascade model can be verified with scattering coefficients
estimated from experimental data. The data we used has been recorded by the group
of B. Castaing in Grenoble in a low temperature gazeous Helium jet which Taylor scale
based Reynolds number is Rλ = 703 [10]. If one supposes the flow homogeneous and
isotropic, the local energy dissipation rate at a given time and location is given by:

ǫ(~x, t) = 15ν

(
∂v||

∂x

)2

,
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where v||(~x, t) is the stream-wise component of velocity and ν stands for the kinematic
viscosity constant. If one assumes the validity of the Taylor frozen-flow hypothesis
[11], a surrogate of the dissipation field can be obtained from the temporal evolution of
longitudinal velocity field as:

ǫ(t) ≃
(
∂v||

∂t

)2

;

. (67)

Figure 6-(a) shows a sample of the field ǫ(t) as a function of time estimated from the
experimental velocity records. The Kolmogorov (dissipative) scale η is observed at ap-
proximately 22 sample points, whereas the integral scale T is approximately 211 sample
points. The associated first order scattering coefficients are displayed in panel (b) of
Figure 6. We first observe that at large scales, below the integral scale T , Sǫ(j) ≃ 2−jH ,
with H ≃ 0.5. As explained in section 3, this corresponds to a Gaussian white noise,
as one expects for uncorrelated fluctuations at large scales. In the inertial range, the
scaling law of the exponents is smaller. Let us notice that according to a multiplicative
cascade model for ǫ, this exponent should be zero, i.e., Sǫ(j) ≃ C for η ≪ 2j ≪ T . The
fact that a standard conservative cascade model is not suited to reproduce the data is
even more apparent in Panel (c) of Figure 6. In this Panel are reported the estimated
scattering coefficients S̃ǫ(j1, j2) as a function of j2 − j1 for different values of j1. Unlike
what is expected for a self-similar cascade (as e.g. in Fig. 4), the second order scattering
coefficients do not depend only on j2 − j1. Moreover one does not observe any convex
curve with an asymptotic constant behavior at large j2 − j1. This striking departure
from stochastic self-similarity is likely to originate from the fact that Taylor hypothesis
does not rigorously hold. A single probe provides measures of velocity temporal varia-
tions at a fixed space location that involve both Lagrangian and Eulerian fluctuations.
This point has been discussed in details by Castaing in ref. [9] in order to explain the
behavior of the correlation functions of velocity amplitude variations. Unlike standard
scaling analysis, the analysis relying on second order scattering allows one to detect if
the self-similarity hypothesis, even in the stochastic sense of random cascades, is sound.

5.2 Analysis of Financial Data

Since Mandelbrot’s pioneering work on the fluctuations of cotton price in early sixties, it
is well known that market price variations are poorly described by the standard geometric
Brownian motion [25]: Extreme events are more probable than in a Gaussian world and
variance fluctuations are well known to be of intermittent and correlated nature. Many
recent studies have shown that multifractal processes and more precisely, random cascade
models provide a class of random processes that reproduce faithfully most of empirical
properties observed in financial time series (see e.g. [26, 28, 20, 7] or [8] for a review).
In this framework the logarithm of the price of a given asset X(t) is generally modeled
as :

X(t) = B(Θ(t)), (68)
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Figure 6: (a) Realization of dissipation ǫ(t) =
(
∂v
∂t

)2
in a turbulent flow. (b) First order

scattering coefficients logSǫ(j) as a function of j, estimated from 4 realizations of 219

samples each. (c) Second order Scattering coefficients log S̃ǫ(j1, j2) estimated from the
same data. We plot curves log S̃ǫ(j1, j1 + l) as a function of l for different values of j1.

where B is Brownian motion which is independent of the positive non-decreasing process
Θ(t) which is a multifractal process satisfying the self-similarity property (30). The
process Θ(t) is generally referred to as the trading time [25] and somewhat describes the
intrinsic time (versus the physical time) of the market. Thus dΘ(t) can be seen as the
instantaneous variance of the Brownian motion at time t. The multifractal structure of
X(t) is entirely deduced from the multifractal structure of Θ(t).

In this section, we compute the normalized scattering coefficients to analyze the
process Θ(t)1.

Analysis of high-frequency (”tick-by-tick”) Euro-Bund data

Euro-Bund is one of the most actively traded financial asset in the world. It corresponds
to a future contract on an interest rate of the euro-zone and it is traded on the Eurex
electronic market (in Germany). The typical number of trades is around 40.000 per day
and in this study we have used 800 trading days going from 2009 May to 2012 September.
Each trade occurs at a given price, whose logarithm is modeled by X(t) using (68).

Every single day, the sum of the quadratic variations of X(t) are computed on a
rolling interval of 30 seconds (after preprocessing the microstructure noise using [35]
technique). This can be considered as an estimation of the 30 second variance

∫ t+30s
t dΘ.

It is well known that intraday financial data are subject to very strong seasonal intraday

1We will use a proxy of Θ(t) since only X(t) is directly visible on the market .
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Figure 7: (a) One trading day of the German BUND (b) estimated S̃F (j1, j2) for different
values of j1.

effects (e.g., the variance is systematically stronger at opening and closing time than
at lunch time). In order to remove them, we used a standard technique consisting in
normalizing the variance by the intraday seasonal variance (computed by averaging every
day the 5min variance at a particular time of the day).

Figure 7(a) shows the resulting “deseasonalized” 30s variance for a particular day.
The scattering coefficients have been computed independently for each single day and
then averaged. Fig. 7(b) shows S̃F (j1, j2) for different values of j1. We observe that
this function does not depend on j1 and varies very little. It confirms the stochastic self-
similarity of the variance process and that the normalized scattering function behaves
like the one of an MRM.

Analysis of 5 minutes S&P 100 index

The same analysis is performed on S&P 100 index sampled every 5 minutes from April
8th 1997 to December 17th 2001. It opens 6.5 hours from 9:30am to 4:00pm. The S&P
100 Index is a stock market index of United States stocks maintained by Standard &
Poor’s. It is a subset of the S&P 500 index. We perform the same preprocessing of the
data as we did on the Euro-Bund data except that

• since it is sampled at a lower frequency there is no need to remove the microstruc-
ture noise,

• we used high and low values on each 5mn interval to compute an estimation on
the 5mn variance

∫ t+5mn
t dΘ

• all the days are concatenated and the overnight period has been preprocessed using
the usual deseasonalizing algorithm.

Figure 8(a) shows the deseasonalized 5mn variance during a trading day. Fig. 8(b)
shows S̃F (j1, j2) for different values of j1. We observe that this function does not depend
on j1 and varies very little. Again it confirms the stochastic self-similarity of the variance
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Figure 8: (a) One trading day of the S&P 100 index (b) estimated S̃F (j1, j2) for different
values of j1.

process and that the normalized scattering behaves like the one of an MRM (see Section
4.2).

A Proof of lemma 3.4

Let Yj(t) = 2j/2|dB ⋆ ϕ| ⋆ ψj(t). To prove that E(|Yj|) converges to a constant, we shall
prove that the distribution of Yj is asymptotically gaussian:

Yj(t)
l−→

j→∞
A = A1 + iA2 (69)

where A1 and A2 are two zero-mean independant Gaussian distributions of variance σ2/2
with

σ2 = ‖ψ‖22
∫
R|dB⋆ϕ|(τ)dτ

which is the first result of Lemma 3.4. It implies that

|Yj | l−→
j→∞

|A| ,

where |A| has a Rayleigh distribution of parameter σ. We shall also prove that

lim
j→∞

E(|Yj |2) = E(|A|2) = σ2 . (70)

This will allow us to conclude that

lim
j→∞

E(|Yj |) = E(|A|) = σ

√
π

2
. (71)

and hence finish the proof of Lemma 3.4, by applying the following theorem on uniform
integrability of sequences of random variables Xj = |Yj |.
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Theorem A.1 ([?], thm 6.1-6.2) Let {Xj}j ∈ N be a sequence of random variables. If

Xj
d→ X∞ and

sup
j

E(|Xj |1+δ) <∞ for δ > 0 ,

then
lim
j→∞

E(Xj) = E(X∞) .

The convergence (69) of Yj relies on the use of a central-limit theorem for real depen-
dant random variables. The extension to the two-dimensional complex random variables
Yj is done by considering arbitrary linear combinations of its real and imaginary parts.
The Cramer-Wold theorem proves that if Yj = Re(Yj) + i Im(Yj) satisfies

∀(α, β) ∈ R
2 , αRe(Yj) + βIm(Yj)

l−→
j→∞

αA1 + βA2 (72)

then Yj
l−→

j→∞
A1 + iA2, so (69) is satisfied.

The random variables A1 and A2 are zero-mean independant Gaussian random vari-
ables of variance σ2 if and only if αA1 + βA2 = N (0, (α2 + β2)σ2) for all (α, β) ∈ R

2.
Since Yj = 2j/2|dB ⋆ ϕ| ⋆ ψj(t),

Ȳj = αRe(Yj) + βIm(Yj) = 2j/2|dB ⋆ ϕ| ⋆ ψ̄j(t)

with ψ̄ = αRe(ψ) + βIm(ψ). Since ψ is analytic, its real and imaginary parts are
respectively even and odd. They are thus orthogonal and ‖Re(ψ)‖2 = ‖Im(ψ)‖2. It
results that ‖ψ̄‖2 = (α2+β2)‖ψ‖2/2. Proving the Cramer-Wolf hypothesis (72) amounts
to proving that

Ȳj(t)
l−→

j→∞
N (0, σ̄2) (73)

with σ̄2 = ‖ψ̄‖22
∫
R|dB⋆ϕ|(τ)dτ . The second order moment condition (70) is proved by

showing that
lim
j→∞

E(|Ȳj |2) = σ̄2 (74)

given that |Yj |2 = |Re(Yj)|2 + |Im(Yj)|2.
We now concentrate on the proof of (73) and (74) for Ȳj = 2j/2|dB ⋆ ϕ| ⋆ ψ̄j(t). Let

us write ϕ∆ = ϕ1[−∆/2,∆/2]. We shall limit φ to a compact support by defining {∆j}j≥0

with limj→∞∆j = ∞ and decompose

|dB ⋆ ϕ(t)|=|dB ⋆ ϕ∆j
+ dB ⋆ (ϕ− ϕ∆j

)| .

As a result
|dB ⋆ ϕ(t)|=|dB ⋆ ϕ∆j

|+ Zj(t)

with E(|Zj |) ≤ E(|dB ⋆ (ϕ−ϕ∆j
)|). Since dB is the Wiener measure, if θ ∈ L2(Rd) then

E(|dB ⋆ θ|) ≤ E(|dB ⋆ θ|2)1/2 = ‖θ‖2 , (75)
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so E(|Zj |) ≤ ‖ϕ − ϕ∆j
‖2. It results that

|dB ⋆ ϕ| ⋆ ψ̄j(t)=|dB ⋆ ϕ∆j
| ⋆ ψ̄j(t) + Zj ⋆ ψ̄j(t) , (76)

and
E(|Zj ⋆ ψ̄j |) ≤ E(|Zj |)‖ψ̄j‖1 ≤ ‖ϕ− ϕ∆j

‖2 ‖ψ̄‖1 .
Since limj→∞∆j = ∞, limj→∞ ‖ϕ− ϕ∆j

‖2 = 0 so Zj ⋆ ψ̄j converges to 0 in probability
when j increases. So the limits of |dB ⋆ ϕ| ⋆ ψ̄j(t) and |dB ⋆ ϕ∆j

| ⋆ ψ̄j(t) are equal.
We now prove (73) by applying Berk central limit theorem for dependent random

variables [?] to Ȳj = |dB ⋆ ϕ∆j
| ⋆ ψ̄j(t), in order to show that it converges to a normal

distribution. The proof will also verify (74).

Theorem A.2 (Berk Central-Limit) For any j ∈ N, let {Si,j}i=1,...,nj
be a sequence

of zero mean random variables such that for any i ≤ nj Si,j is independant of Si+r,j for
r ≥ mj. If the following properties are satistied

(i) ∃δ > 0 , limj→∞ n−1
j m

2+2/δ
j = 0

(ii) ∃M > 0 , ∀i, j > 0 , E(|Si,j|2+δ) ≤M

(iii) ∃K > 0 , ∀i, j, l > k > 0 , V ar(
∑k+l

i=k+1 Si,j) ≤ l K

(iv) limj→∞ n−1
j V ar(

∑n
i=1 Si,j) = σ2 > 0

then

n
−1/2
j

n∑

i=1

Si,j
l−→

j→∞
N (0, σ2) . (77)

Since |dB ⋆ ϕ∆j
| ⋆ ψ̄j(t) is stationary, its distribution can be evaluated at t = 0

|dB ⋆ ϕ∆j
| ⋆ ψ̄j(0) =

∫
|dB ⋆ ϕ∆j

|(u)ψ̄j(−u)du.

The central-limit theorem is applied by dividing this integrale into disjoint integrals

Si,j = 2j
∫ 2jbi+1,j

2jbi,j

|dB ⋆ ϕ∆j
(u)| ψ̄j(−u)du , (78)

where for each j ∈ Z, {bi,j}1≤i≤nj
is an increasing sequence of points in R ∪ {±∞} such

that

∀i ,
∫ bi+1,j

bi,j

|ψ̄(−u)|du = 2−j‖ψ̄‖1 . (79)

Since ψ̄ is C1 and bounded, we verify that nj ≃ 2j . Summing these random variables
gives

2−j/2

nj∑

i=1

Si,j = 2j/2 |dB ⋆ ϕ∆j
| ⋆ ψ̄j(0) . (80)
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We now show that the Si,j satisfy the hypothesis of the Beck central-limit theorem so
that we can apply the convergence result (77) which implies (73).

Let us first prove that Si,j is independant of Si+r,j for r ≥ mj which satisfies (i). Since
ψ̄ is bounded, it results that inf i,j 2

j |bi,j−bi+1,j| = η > 0. Since ϕ∆j
has a support of size

∆j and dB is a Wiener Noise, it follows that |dB ⋆ϕ∆j
|(u) is indendant of |dB ⋆ϕ∆j

|(u′)
for |u− u′| > ∆j and hence that Si,j is independant of Si+r,j for r ≥ mj = ∆j/η.

To verify (i) let us set δ = 1. Since nj ≃ 2j , if we choose ∆j = 2j/5 then

lim
j→∞

m4
j

nj
≤ η−4 lim

j→∞
2j(4/5−1) = 0 . (81)

We now verify condition (ii) with δ = 1. Since ψ̄j(u) has a zero integral, one can
replace |dX ⋆ ϕ∆j

(u)| by Qj(u) = |dX ⋆ ϕ∆j
|(u) − E(|dX ⋆ ϕ∆j

|) in the definition (78)
of Si,j. It results that

E(|Si,j|3) ≤
∫∫∫

E(Qj(u)Qj(u
′)Qj(u

′′)) 23j |ψ̄j(−u)| |ψ̄j(−u′)| |ψ̄j(−u′′)| du du′ du′′

≤ E(|dB ⋆ ϕ∆j
|3)‖ψ̄‖31 = 25/2π−1/2‖ϕ∆j

‖32‖ψ̄‖31 ≤ 25/2π−1/2‖ϕ‖32‖ψ̄‖31 .(82)

Let us now verify condition (iii). The sum Ak,l,j =
∑k+l

i=k Si,j is by definition

Ak,l,j = 2j
∫ 2jbk+l,j

2jbk,j

|dB ⋆ ϕ∆j
(u)| ψ̄j(−u)du =

∫

R

|dB ⋆ ϕ∆j
(u)|hk,l,j(u) du

with hk,l,j(u) = 2jψ̄j(−u)1[2jbk,j ,2jbk+l,j ](u). It results that

Var(Ak,l,j) ≤ ‖R|dB⋆ϕ∆j
|‖1 ‖hk,l,j‖22 . (83)

But, with a change of variable and applying (79) we get

‖hk,l,j‖22 =
∫ 2jbk+l,j

2jbk,j

|ψ̄(2−ju)|2 du ≤ ‖ψ̄‖∞
∫ bk+l,j

bk,j

2j |ψ̄(u)| du ≤ ‖ψ̄‖∞ ‖ψ̄‖1 l .

We are now going to bound ‖R|dB⋆ϕ∆j
|‖1 by using the decay ϕ(u) = O((1 + |u|−2)).

R|dB⋆ϕ∆j
|(∆) = E(|dB ⋆ ϕ∆j

(∆)| |dB ⋆ ϕ∆j
(0)|) −E(|dB ⋆ ϕ∆j

|)2 .

If |∆| > |∆j | then since the support of ϕ∆j
(u) and ϕ∆j

(u − ∆) does not overlapp,
|dB ⋆ϕ∆j

(∆)| and |dB ⋆ϕ∆j
(0)| are independant random variables so R|dB⋆ϕ∆j

|(∆) = 0.

Otherwise, we decompose

|dB ⋆ ϕ∆j
(u)| = |dB ⋆ ϕ∆(u) + dB ⋆ (ϕ∆j

− ϕ∆(u)| .

Since |dB ⋆ ϕ∆(0)| and |dB ⋆ ϕ∆(∆)| are independant random variables,

|R|dB⋆ϕ∆j
|(∆)| ≤ |E(|dB⋆ϕ∆|)2−E(|dB⋆ϕ∆j

|)2|+2E(|dB⋆ϕ∆|)E(|dB⋆(ϕ∆j
−ϕ∆)|)+E(|dB⋆(ϕ∆j

−ϕ∆)|)2 .
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Since E(|dB⋆θ|) ≤ E(|dB⋆θ|2)1/2 ≤ ‖θ‖2, by applying this to θ = ϕ∆ and θ = ϕ∆j
−ϕ∆

one can verify that
|R|dB⋆ϕ∆j

|(∆)| ≤ 6‖ϕ‖2 ‖ϕ− ϕ∆‖2 . (84)

Since ϕ(u) = O((1+ |u|)−2) it results that ‖ϕ−ϕ∆‖2 = O((1+ |∆|)−3/2) so ‖R|dB⋆ϕ∆j
|‖1

is bounded independantly of j. Inserting this in (83) proves the theorem hypothesis (iii).
Let us now verify the hypothesis (iv). It results from (80) that

2−jVar(
∑

i

Si,j) = 2jVar(|dX ⋆ ϕ∆j
| ⋆ ψ̄j) = 2j

∫
R̂|dX⋆ϕ∆j

|(ω)|̂̄ψ(2jω)|2dω .

We proved (84) that R|dB⋆ϕ∆j
| ∈ L1 but the same inequality is valid for R|dB⋆ϕ∆| which

proves that it is also in L1. It results that R̂|dX⋆ϕ| is continuous. Since ϕ∆j
converges to

ϕ in L2∩L1 as j → ∞, R̂|dX⋆ϕj |(0) converges to R̂|dX⋆ϕ|(0). Since 2
j |̂̄ψ(2jω)|2 converges

to ‖ψ̄‖22δ(ω) when j goes to ∞

lim
j→∞

2−jVar(
∑

i

Si,j) = R̂|dX⋆ϕ|(0)‖ψ̄‖22 = σ̄2,

which proves condition (iv). It also proves (74).
We can thus apply Theorem A.2 which proves that 2j/2|dB ⋆ ϕ| ⋆ ψ̄j(t) converges in

distribution to N (0 σ̄2) and hence (73). It finishes the Lemma proof.

B Proof of Theorem 4.5

If X is a stationary process, let us write χ(X) = E(|X|2)E(|X|)−2. Since by hypothesis
E(|X ⋆ ψj|q) = Cq2

jζ(q), and the wavelet decomposition is unitary, it results that

∀ j , χ(X ⋆ ψj) = 1 +
∑

j′

E(||X ⋆ ψj | ⋆ ψj′ |2)
E(|X ⋆ ψj |)2

= 1 +
∑

j′

S̃X(j, j′)2χ(|X ⋆ ψj | ⋆ ψj′) . (85)

We will show that the contribution of the terms j′ > 0 is bounded:

sup
j≤j0

∑

j′≥0

S̃X(j, j′)2χ(|X ⋆ ψj | ⋆ ψj′) = O(1) . (86)

By plugging (86) into (85), since by definition χ(X ⋆ψj) =
C2

C2
1
2j(ζ(2)−2ζ(1)), it results

that

∀j ≤ j0 , 1 =
C2
1

C2
2−j(ζ(2)−2ζ(1))(

∑

j′≤0

S̃X(j, j′)2χ(|X ⋆ ψj | ⋆ ψj′) +O(1)) . (87)
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Now, we use the stochastic self-similarity (30)

|X ⋆ ψj | ⋆ ψj′ |(t) l
= |Dj′X ⋆ ψj−j′| ⋆ ψ|
= A2j′ ||X ⋆ ψj−j′| ⋆ ψ| .

Since E(|X ⋆ ψj |q) = Cq2
jζ(q), it results that E(Aq

2j′
) = 2j

′ζ(q) and hence

χ(||X ⋆ ψj | ⋆ ψj′ |) =
E(|X ⋆ ψj| ⋆ ψj′ |2)
E(|X ⋆ ψj| ⋆ ψj′ |)2

= 2(ζ(2)−2ζ(1))j′χ(|X ⋆ ψj−j′| ⋆ ψ|) . (88)

By substituting in (87) and using the fact that S̃X(j, j′) = S̃X(j′ − j), we obtain

∀j ≤ j0 , 1 =
∑

j′<0

S̃X(j′ − j)22(ζ(2)−2ζ(1))(j′−j)L(j′ − j) +O(2−j(ζ(2)−2ζ(1))) . (89)

Since ζ(2)− 2ζ(1) < 0, by letting j → −∞, we obtain (55).

Let us now prove (86). For that purpose, we write Xj(t) = e
ω2J

2j
(t)
dt and Xj(t) =

liml→0 e
ω2j

l
(t)dt. Using the same decomposition as in (45), we have

|X ⋆ ψj | ⋆ ψj′

E(|X ⋆ ψj |)
=

E(|Xjα ⋆ ψj|)
E(|X ⋆ ψj|)

Xjα ⋆ ψj′ + ǫ ⋆ ψj′ + η ⋆ ψj′ , (90)

where α = 1−2ν
3−ζ(2) is chosen with ν < 1/2 and

ǫ =
1

E(|X ⋆ ψj |)
Xjα

(
|Xjα ⋆ ψj | −E(|Xjα ⋆ ψj |)

)

satisfy
E(|η|2) = O(2jν1) , E(|ǫ ⋆ ψj′ |2) = O(2(j−j′)ν2) ,

with ν1, ν2 > 0, thanks to (100) and to (51). We thus have

∑

j′>0

S̃X(j, j′)2χ(|X ⋆ ψj| ⋆ ψj′) =
∑

j′>0

E(|X ⋆ ψj | ⋆ ψj′ |2)
E(|X ⋆ ψj |)2

≤ C
∑

j′>0

E(|Xjα ⋆ ψj|)2
E(|X ⋆ ψj |)2

E(|X ⋆ ψj′ |2) +E(|ǫ ⋆ ψj′ |2) +E(|η ⋆ ψj′ |2)

≤ C
E(|Xjα ⋆ ψj|)2
E(|X ⋆ ψj|)2

∑

j′>0

E(|X ⋆ ψj′ |2) + 2jν2
∑

j′>0

O(2−j′ν2) +E(|η|2)

≤ C
E(|Xjα ⋆ ψj|)2
E(|X ⋆ ψj|)2

∑

j′>0

E(|X ⋆ ψj′ |2) +O(2jmin(ν1,ν2)) . (91)
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Since X decorrelates beyond its integral scale 2J , its second moments satisfy

E(|X ⋆ ψj′ |2) ≃
{

2j
′ζ(2) if j′ < J ,

2−j′ if j ≥ J .
(92)

From (91) and (92), and since

E(|Xjα ⋆ ψj |)2
E(|X ⋆ ψj |)2

−→
j→−∞

1 ,

we obtain (86).
Finally, let us prove (56). Using the decomposition (90) when j′ = 0, we just showed

that
| |X ⋆ ψj| ⋆ ψ|(t)
E(|Xjα ⋆ ψj |)

d
= |Xjα ⋆ ψ|+ ǫj ,

where E(|ǫj |2) = O(2jν) and ν > 0. One can verify that if Y, Y ′ are random variables
such that E(|Y − Y ′|2) ≤ ǫ, then

|χ(Y )− χ(Y ′)| ≤ C
ǫ

E(|Y |)2 (1 + χ(Y ′)) .

It results that

χ(|X⋆ψj |⋆ψ|) =
E(|X ⋆ ψj | ⋆ ψ|2)
E(|X ⋆ ψj | ⋆ ψ|)2

= χ(Xjα⋆ψ)

(
1 +O(2jν)

E(|Xjα ⋆ ψj |)2
E(||X ⋆ ψj | ⋆ ψ|)2

)
. (93)

Since Xjα converges weakly to X as j → −∞ and limj→−∞ S̃X(j, 0) = K̃ from theorem
4.3, it results that

lim
j→−∞

L(j) =
C2
1

C2
χ(X ⋆ ψ) = 1 .

�

C Various results on the MRM measure

Lemma C.1 The process ωT
l (t) used for the construction of the MRM dM is an infinitely-

divisible process whose two-points characteristic function reads:

E
(
ep1ω

T
l
(t1)+p2ωT

l
(t2)

)
= e[F (p1)+F (p2)]ρTl (0)+[F (p1+p2)−F (p1)−F (p2)]ρTl (t2−t1) (94)

where F (−ip) is the cumulant generating function characterizing the infinitely divisible
law as provided by the Levy-Khintchine formula where the drift term is chosen such that

F (1) = 0 , (95)
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and where the function ρTl (τ) is defined by:

ρTl (τ) =





ln(T/l) + 1− |τ |/l , if |τ | ≤ l ,
ln(T/|τ |) , if l ≤ |τ | < T ,

0 , otherwise .
(96)

Moreover, the function ζ(p) which satisfies (31) (with X = dM where dM is the associ-
ated MRM) is given by

ζ(p) = p− F (p).

The proof of this Lemma is given in [6].
The next Lemma uses an alternative MRM measure considered in Ref. [6] defined by

dM̃(t) = lim
l→0

eω̃
T
l
(t)dt

where ω̃T
l is defined exactly as the process ωT

l but only differs by its ρ function which is
replaced by : ρ̃Tl (τ) = ρTl (τ) +

τ
T − 1, for τ ≤ T . One can then easily show that ω̃T

l is
linked with ωT

l by the following cascade property :

∀l ≤ a ≤ T, ωT
l (u)

a.s.
= ω̃a

l (u) + ωT
a (u) (97)

where ω̃a
l and ωT

a are independent copies of the processes defined previously. Moreover,
ω̃T
l satisfies both (37) and (37).
We are now ready to state the last Lemma we will need.

Lemma C.2 Let ωT
l the infinitely divisible process associated to the MRM dM and ψ

be a wavelet of support in [0, 1] such that ||ψ||∞ < ∞. For all α such that 0 < α < 1,
one has:

∀l < 2j , (ψj ⋆ e
ωT
l )(t) = e

ωT

2jα
(t)

(
ψj ⋆ e

ω̃2jα

l

)
+ ηl,j(t) , (98)

where the process ηl,j(t) has a limit process liml→0 ηl,j(t) = ηj(t) which satisfies, in the
limit j → −∞,

E(|ηj(t)|) = O(2j
1−α(1+F (2))

2 ) (99)

and
E(|ηj(t)|2) = O(2j(3−F (2)−α)) . (100)

Without loss of generality we fix t = 0. Let us consider 0 < α < 1 and l and j small
enough and such that:

l < 2j < 2jα < T

Let us first remark that, for u < 2jα, one has from Eq. (94):

E
(
e
p(ωT

2jα
(u)+ωT

2jα
(0))

)
= 2−jαF (2p)TF (2p)eF (2p)(1−u2−jα) (101)
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where F (p) = ϕ(−ip) = p− ζ(p). Hence, we have:

E
(
e
2ωT

2jα
(u)

)
= 2−jαF (2)TF (2)eF (2)

E
(
e
ωT

2jα
(u)+ωT

2jα
(0)

)
= 2−jαF (2)TF (2)eF (2)(1−u2−jα) .

One defines ηl,j as:

ηl,j(0) = 2−j

∫
ψ(u2−j)

(
eω

T
l
(u) − e

ω̃2jα

l
(u)+ωT

2jα
(0)

)
du (102)

Using dominated convergence, Eq. (97), E(eω̃
2jα

l ) = 1 and the fact that ψ is a
bounded function of support [0, 1] one has:

E(lim
l→0

|ηl,j |) = lim
l→0

E(|ηl,j |)

≤ ||ψ||∞2−j

∫ 2j

0

√
E

[(
e
ωT

2jα
(u) − e

ωT

2jα
(0)

)2
]
du

= ||ψ||∞2−j

∫ 2j

0

√
E
(
e
2ωT

2jα
(0)

+ e
2ωT

2jα
(u) − 2e

ωT

2jα
(u)+ωT

2jα
(0)

)
du

=
√
2||ψ||∞2−

jαF (2)
2 T

F (2)
2 e

F (2)
2

∫ 1

0

(
1− e−F (2)u2j(1−α)

) 1
2
du

=
j→−∞

O(2j
1−α(1+F (2))

2 )

which proves (99). In order to bound the second moment, we consider

E(lim
l→0

|ηl,j |2) = lim
l→0

E(|ηl,j |2)

= 2−2j

∫∫ 2j

0

ψ(2−ju)ψ(2−ju′)E(eω̃
2jα

l (u)+ω̃2jα

l (u′))E
(
(eω

T

2jα
(u) − eω

T

2jα
(0))(eω

T

2jα
(u′) − eω

T

2jα
(0))

)
dudu′

≤ 2−2j2−jαF (2)(Te)F (2)

∫∫ 2j

0

|ψ(2−ju)| |ψ(2−ju′)|E(eω̃
2jα

l (u)+ω̃2jα

l (u′)) ·

·
∣∣∣e−F (2)|u−u′|2−jα

+ 1− e−F (2)|u|2−jα − e−F (2)|u′|2−jα
∣∣∣ dudu′

= 2−jαF (2)(Te)F (2

∫∫ 1

0

|ψ(u)||ψ(u′)|E(eω̃
2jα

l (2ju)+ω̃2jα

l (2ju′)) ·

·
∣∣∣e−F (2)|u−u′|2j(1−α)

+ 1− e−F (2)|u|2j(1−α) − e−F (2)|u′|2j(1−α)
∣∣∣ dudu′

=
j→−∞

O(2j(1−α(1+F (2))))E(|eω̃2jα

l (2ju) ⋆ |ψ||2)

= O(2j(1−α(1+F (2))+ζ(2)+αF (2)) = O(2j(3−F (2)−α)) .

�.
Let us remark that one could obtain a smaller error with a smoother variant of the

ωl. Indeed, as shown by (Vargas, Robert, 2008) it is possible to choose the way ωl is
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regularized at scale l. One can thus define a MRM process using ωl with a covariance
function that is C2 at τ = 0. In that case, in Eq. (101), the function ρl(u) would
be proportional to 2−2jαu2 and the error mean absolute value could be bounded by
2j(1−α−F (2)/2).
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