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Abstract— The present contribution aims at proposing a
comprehensive and tutorial introduction to the practical use of
wavelet Leader based multifractal analysis to study heart rate
variability. First, the theoretical background is recalled. Second,
practical issues and pitfalls related to the selection of the
scaling range or statistical orders, minimal regularity, parabolic
approximation of spectrum and parameter estimation, are
discussed. Third, multifractal analysis is connected explicitly
to other standard characterizations of heart rate variability:
(mono)fractal analysis, Hurst exponent, spectral analysis and
the HF/LF ratio. This review is illustrated on real per partum
fetal ECG data, collected at an academic French public hospital,
for both healthy fetuses and fetuses suffering from acidosis.

I. INTRODUCTION

Heart Rate Variability. Heart Rate Variability (HRV)
refers to the characterization of the short time (within a
minute) fluctuations of Heart Rate (HR) time series. Often, in
medical practice, a large HRV is considered a sign of good
health [1]. For instance, in per partum fetal HRV analysis,
the variability is commonly defined as the largest oscillation
of the heart rate observed within a window of 3.75s, and
observing it weaker than 5 beats-per-minute constitutes an
indication for fetal suffering and acidosis. Hence, the precise
characterization of HRV is of major practical and clinical
importance and has been, and continues to be, the subject of
numerous and advanced research efforts.
Heart Rate Variability Analysis. HRV has been ana-
lyzed using various statistical signal processing tools and
approaches. Essentially, all techniques aim at measuring the
degree of irregularity of the HR time series. Entropy based
approaches, such as those proposed in e.g., [2], evaluate
the variability of a time series via the complexity of its
marginal distribution. They therefore measure a static prop-
erty of the data that does not account for their intrinsic
dynamic: Two different times series with same marginals but
different correlations for instance still have the same entropy.
To account for the dynamical properties of the data, one
often resorts to spectral analysis, which, after the seminal
contribution of Akselrod and collaborators (cf. e.g., [3]), has
been considered as a reference tool to characterize HRV (cf.,
e.g., [4], [5] for reviews on adult HRV or [6], [1] for more
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specific reviews of fetal HRV analysis). Classically, HRV
spectral analysis relies on the use of pre-defined frequency
bands, referred to as the low frequency (LF) and high
frequency (HF) bands. Notably, the so-called LF/HF ratio,
that measures the ratio between the total energies in the
LF and HF bands, is considered as a key indicator for
HRV analysis. It has indeed been shown to measure the
sympathic-parasympathic balance, hence reflecting the reg-
ulation mechanisms within the central autonomous nervous
system. However, spectral analysis requires stationary data,
a property that can legitimately be called into question for
HR time series. To overcome this limitation, fractal analysis
has been envisaged as an alternative approach to characterize
HRV. Fractal analysis, in essence, consists in measuring a
variability related quantity (increments, oscillations, wavelet
coefficients) simultaneously at different analysis scales a.
These measures are assumed to evolve as a power law with
respect to the analysis scales, and the corresponding power
law (or scaling) exponent to characterize HRV. Amongst
such exponents, the most commonly used are the fractal
dimension, the Hurst or long memory exponents. Multifractal
analysis can be envisaged as an extension to fractal analysis
insofar as it characterizes data variability with a collection
of scaling exponents rather than with a single one. It has
recently been used to investigate HRV, cf. e.g., [7], [8], [9].
Goals and Contributions. Goals of the present con-
tribution are twofold. First, it aims at providing readers
with a methodological introduction to the recently proposed
wavelet Leader based multifractal analysis and to its practical
use for studying HRV. Second, it aims at comparing the
wavelet Leader based multifractal analysis with the wavelet
coefficient based one, the Hurst exponent, and the LF/HF
ratio.
Per Partum Fetal Heart Rate. The theoretical and prac-
tical notions related with multifractal analysis are discussed
below and illustrated on actual per partum fetal HR data
(rather than on synthetic time series). Data were collected at
the department of obstetrics of the academic Hôpital Femme-
Mère-Enfant (Lyon, France), where F-ECG monitoring is
routinely performed to monitor risk of fetal asphyxia. The
data were recorded with a STAN system (Neoventa Medical,
Moelndal, Sweden) and consist of the list of time occurrences
{tn, n = 1, . . . , N} (in ms) of the R-peaks. Interpolating the
points {(tn, (tn+1 − tn)−1), n = 1, . . . , N}, resampling at
some frequency Fs and changing units provides practitioners
with regularly sampled HR time series, in beats-per-minute.
The database contains both healthy fetuses and fetuses suf-
fering from acidosis.



II. MULTIFRACTAL ANALYSIS: THEORY

Local Regularity and Hölder Exponent. Let X(t) de-
note the bounded function to be analyzed. Its regularity
around time t0 is measured locally by the so-called Hölder
exponent h(t0), defined as the largest α > 0, such that there
exist a constant C > 0 and a polynomial Pt0 of degree
less than α, such that |X(t) − Pt0(t)| ≤ C|t − t0|α in a
neighborhood of t0. To understand this, let us consider the
case where Pt0(t) ≡ X(t0) and 0 < h(t0) < 1. Qualitatively,
h(t0) is hence the fractional order at which X(t) remains
differentiable around t0. When h(t0) is close to 1, X(t)
is close to be differentiable, and hence is locally almost as
regular as a line. Conversely when h(t0) is close to 0, X(t)
is highly irregular at t0. When the degree of Pt0 is m ≥ 1,
then h(t0) > m and the above interpretation translates to the
m-th derivative of X .
Multifractal Spectrum. Although based on a local reg-
ularity measure, multifractal analysis intends to provide a
global analysis of the variability of the data: It characterizes
the geometrical structure of the subset Eh of points ti on
the real line where h(ti) = h. Because such geometrical
structures are inherited from the time evolution of the
data, multifractal analysis hence measures globally the local
dynamics (or variability) of X . This measure is based on
the Haussdorf dimension of Eh, denoted by D(h), and
is referred to as the multifractal spectrum. The Haussdorf
dimension is essentially a mathematical extension of the box
counting dimension (cf. e.g., [10] for technical definitions). A
theoretical multifractal spectrum is sketched in Fig. 1 while
multifractal spectra estimated over 30-min long per partum
fetal ECG data are shown in Fig. 2.
Wavelet Leader Multifractal Formalism. To practically
measure D(h) from a given time series, one cannot measure
directly h(t) for all t and then estimate the dimension
of the Eh, essentially because actual data always have a
finite resolution. Instead one has to resort to a multifractal
formalism procedure. We present here the recently proposed
formalism based on wavelet Leaders [10], [11]. Let ψ denote
the mother wavelet, and ψj,k(t) = 2−jψ(2−jt − k) the
dilated and translated wavelets. Let dX(j, k) denote the (L1-
normalized) discrete wavelet transform coefficients of X ,
where j refers to the analysis scale (a = 2j) and k to
time (t = 2jk). Wavelet Leaders LX(j, k) are defined as
the local supremum of wavelet coefficients taken within a
spatial neighborhood over all finer scales [11]: LX(j, k) =
supλ′⊂3λj,k

|dX(λ′)|, where λj,k = [k2j , (k + 1)2j) and
3λj,k =

⋃
m{−1,0,1} λj,k+m. The scaling exponents ζL(q)

are defined for a = 2j → 0 as

SL(2j , q) =
1
nj

∑
k

LX(j, k)q ' S0(q)2jζL(q). (1)

The Legendre transform DL(h) of the function ζL(q) pro-
vides an upper bound of the multifractal spectrum, i.e.,
DL(h) ≥ D(h). For further theoretical details on multifractal
analysis and wavelet Leader formalism, the reader is referred
to, e.g., [10] and [11], respectively.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

c1

c2

hMhm h0

h

D

Fig. 1. Schematic multifractal spectrum and related multifractal
attributes.

III. MULTIFRACTAL ANALYSIS: PRACTICE

Concave Spectrum and Parabolic Approximation. For
practical purposes, DL(h) is assimilated to the true D(h),
which hence is always concave and practically resembles
a bell-shaped curve, taking values between 0 and 1 (for a
1D signal) over a finite range of Hölder exponents: h ∈
[hm, hM ]. Practically, D(h) is efficiently characterized by
the position of its maximum c1, the width c2 of the best
parabolic approximation around its maximum (note that, by
concavity, c2 ≤ 0), and its minimal and largest Hölder
exponents hm and hM . Often, in practice, the spectrum can
hence be efficiently approximated by a parabola: D(h) '
1 + (h − c1)2/(2c2). Equivalently, this amounts to saying
that, for q close to 0, ζL(q) ' c1q + c2q

2/2.
Ranges of qs. In practice, a natural question that arises
is related to the ranges of values of q that one should
use. Here it is crucial to note that (i) by nature of the
Legendre transform, both positive and negative values of
q are needed to obtain the entire curve DL(h) ; and (ii)
when the function X takes values of Hölder exponent into
a bounded set h ∈ [hm, hM ] (a very natural assumption
for actual data), then, the Legendre transform implies that
both for q ≥ q+∗ and q ≤ q−∗ , ζL(q) is a linear function
of q, with q+∗ = dD(hm)/dh and q−∗ = dD(hM )/dh (cf.
[12]). The range of useful values of q is hence centered
around zero: q ∈ [q−∗ , q

−
∗ ]. For the parabolic approximation,

q±∗ = ±
√

2/|c2|. Typically, on HRV data (cf. e.g., [9]), |c2|
ranges from 0.02 to 0.2, hence q±∗ from ±10 to ±3. The
ranges of qs to be actually used is narrow and around 0.
Minimal Regularity and Fractional Integration. Multi-
fractal analysis is theoretically defined for bounded functions
only, i.e., essentially for functions that have a positive
minimal regularity, defined as:

hm = lim inf
2j→0

ln supk |d
(m)
X (j, k)|

ln 2j
. (2)

This is of major practical importance: Indeed, often, HR time
series resemble fractional Gaussian noise, fGn, (increment
process of the fractional Brownian motion, fBm) (cf. e.g. [4],
[5]). However, for fGn with Hurst parameter H(∈ (0, 1)),
hm = H − 1 < 0, and hence multifractal analysis cannot
be applied to it! To overcome this limitation, it has been
proposed first to measure hm, according to Eq. (2) ; second,
whenever hm < 0, to fractionally integrate the data with
an integration order γ > −hm [13]. It has been shown that
practically performing fractional integration can be avoided



by applying the wavelet Leader formalism above to the
pseudo-wavelet coefficients: dγX(j, k) = 2jγdX(j, k) [13].
In practice, one then uses: D(h) = Dγ(h − γ), ζL(q) =
ζγL(q)− γq, c1 = cγ1 − γ, c2 = cγ2 . Note that these relations
are known not to hold in general [13], yet are regarded as
valid approximations for most practical purposes.
Linear Regression and Scaling Range. The definition
of the ζL(q) above (cf. Eq. 1) suggests that they can be
estimated by linear regression of the log2 SL(2j , q) versus
log2 2j = j. Equivalently, c1, c2, hm and the parametric form
DL(q) (the Legendre transform of hL(q)) can be estimated
via linear regressions. These procedures are described in
depth in [11] and hence not recalled here. A key practical
issue yet lies in deciding over which range of scales j ∈
[j1, j2] the linear regressions are to be performed. This
can be envisaged in two ways. Either, one decides that
range a priori and from a physiological understanding of
the data (for example, one can decide that the range of
scales should cover the classical HF and LF bands). Or, one
inspects, visually, or by means of statistical procedures, the
log2 S(2j , q) versus log2 2j = j plots to decide a posteriori
in which range the data actually show a scaling behavior.
In both cases, that range of scales must, by nature, be the
same for all parameters. Note moreover that the interpolation
and resampling procedure transforming the R-peak arrival
into regularly sampled time series creates artificially regular
high frequency behavior. Such high frequencies (or fine
scales) must not be used for variability analysis and hence
must not be included in the regression range. For example,
for intrapartum fetal ECG, HR naturally varies around 120
bpm. This implies that all frequencies larger than 2Hz or,
equivalently, all scales below Fs/2 ≤ 2j do not account for
the actual data variability and shall not be used.
Practical Estimation Procedures. MATLAB routines im-
plementing the procedures listed above are available upon
request. They are complemented by a non-parametric time-
scale bootstrap procedure enabling the estimation of not only
the multifractal parameters but also of confidence intervals
for these estimates as well as the implementation of hypoth-
esis tests.

IV. WAVELET LEADERS VERSUS WAVELET
COEFFICIENTS, HURST PARAMETER AND LF/HF RATIO

Wavelet Leaders versus Wavelet Coefficients. Prior
to the wavelet Leader multifractal formalism, another for-
malism based on wavelet coefficient had been proposed,
relying on Sd(2j , q) = 1

nj

∑
k dX(j, k)q ' S0(q)2jζd(q). It

has long been known that such Sd(2j , q) are numerically
instable and hence turn useless, in practice, for negative qs.
Therefore, practically, only the increasing portion of D(h)
can be measured with wavelet coefficients. Furthermore, it
can be shown theoretically [10] that DL(h) and Dd(h)
(Legendre transform of ζd(q)) coincide exactly only for
h < h0, where h0 is defined as: h0D

′(h0) = D(h0) (as
sketched in Fig. 1). This also implies that ζd(q) and ζL(q)
coincide exactly only for q ≥ q0 ≥ 0. Interestingly, for
the parabolic approximation, it yields h0 =

√
c21 + 2c2 and
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Fig. 2. Wavelet Leader based estimated multifractal spectra computed
from real per partum fetal ECG. Top: healthy fetus ; Bottom: fetus
suffering from acidosis.

q0 = (
√
c21 + 2c2 − c1)/c2. Assuming |c2|/c1 � 1, this

yields, at first order, h0 ' c1 + c2 and q0 ' 1 !
Fractal Analysis and Hurst Exponent. As mentioned
above, fractal analysis amounts to assuming that HR is well
modeled with fGn and that its Hurst parameter H measures
the corresponding variability of the data. It is well known
that this Hurst exponent can be well estimated using wavelet
coefficients and Sd(2j , q = 2) [14]. Because for fGn, hm =
H−1, and because ζd(2) = ζL(2) (see previous paragraph),
one obtains that the wavelet Leaders yield an estimate of H
via Ĥ = (ζγL(2) − 2γ)/2, for any γ > 1 −H . Note that in
practice, taking the limit case γ = 1 amounts to analyzing
the cumulated sum of fGn, hence fBm. Fig. 3 (left) reports
the Hurst exponents estimated using wavelet coefficients and
Leaders for per partum fetal ECG. The estimations are close
and their correlation coefficients for the entire database is
above 0.9. Incidentally, Fig. 3 (left) also shows that fetuses
actually suffering from acidosis have higher Ĥ , indicating
lesser variability and hence corroborating that a decrease in
variability indicates a non-healthy situation.
Self-similarity (or Monofractal) versus Multifractal.
Let Y denote the cumulated sum of the HR time series
X . Practically, Y is often modeled as fBm, a self-similar
model classically referred to as monofractal, since a single
scaling exponent H controls its entire dynamic and notably
induces that h(t) ≡ H , ∀t. In other words, the (local)
Hölder exponents are all identical and equal to the (global)
self-similarity or Hurst exponent H . For fBm, it has been
shown that: ζL(q) = qH , hence c1 = H and c2 ≡ 0
[11]. Therefore, deciding whether HR time series are mono-
or multi-fractal (more precisely, whether HR time series
should be modeled with fGn or with the increments of a
multifractal process) amounts to testing whether cγ2 = 0 for
γ > −hm. This can actually be tested precisely using the
wavelet Leader based multifractal formalism and the non-
parametric bootstrap procedures described in details in [11].
Although theoretically possible with the wavelet coefficient
formalism, the corresponding tests show significantly less



power in rejecting the null hypothesis cγ2 = 0 with wavelet
coefficients than with wavelet Leaders [11]. This is another
major practical benefit of using wavelet Leaders for HRV
analysis. As can be seen in Fig. 2, per partum fetal ECG data
are found with clear negative c2 both for healthy fetuses and
fetuses suffering from acidosis.
LF/HF Ratio. As mentioned in the introduction, spectral
analysis has been often used to characterize HRV. Let ΓX(ν)
denote the frequency spectrum of X (not to be confused with
the multifractal spectrum D(h)) and Γ̂(ν) any standard spec-
tral estimator. Let [νm, νI ] and [νI , νM ] denote respectively
the LF and HF frequency bands, the LH/HF ratio is defined
as ρ =

∫ νI

νm
γ̂(ν)dν/

∫ νM

νI
γ̂(ν)dν. Let us assume that HR is

well modeled by fGn with parameter H . Then its spectrum
reads approximately ΓX(ν) = C|ν|−(2H−1). In that case,
one can show that: ρ = (ν2−2H

I −ν2−2H
m )/(ν2−2H

M −ν2−2H
I ),

and hence that there is a clear and obvious relation between
the Hurst parameter H and the LF/HF ratio: the larger
H , the larger the energy at low frequency, and the larger
ρ. Even when data are only grossly modeled by fGn, the
estimated Hurst parameter Ĥ remains related with the es-
timated LF/HF ratio ρ̂, as long as the linear regression
yielding Ĥ is performed over a range of scales j ∈ [j1, j2]
that closely matches the union of the LF and HF frequency
bands, i.e., ν ∈ [νm, νM ]. Notably, they will vary in a related
manner, the larger Ĥ , the larger ρ̂. This is clearly evidenced
on per partum fetal ECG data (correlation above 70%, cf.
right plot on Fig. 3) and can be explained as follows. Let Ψ
denote the Fourier transform of ψ. It has then be shown that
[14]: EdX(j, k)2 =

∫
R γX(ν)|Ψ(2jν)|2dν, which indicates

that the variance of the wavelet coefficients at scale 2j are
actually related to the content of the frequency spectrum of
the data around frequency ν0/2j (with ν0 depending only on
ψ). Sd(2j , q = 2) can hence be read as a wavelet spectrum,
i.e., an estimator of Γ(ν0/2j). As a consequence, the linear
regression yielding Ĥ essentially results from a balance
between the energies in the LF and HF bands and is hence
naturally closely related to ρ̂ (cf. Fig. 4 for illustration).

V. CONCLUSION
The wavelet Leader based multifractal analysis extends

and enriches the spectral and fractal based analyses of HRV.
In a recent study [9], it has been shown to discriminate
healthy fetuses, for which the standard clinical practice
had incorrectly lead to an acidosis diagnosis (and hence
to an unnecessary operative delivery), from fetuses actually
suffering from acidosis.
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