STATISTICAL ANALYSIS AND MODELLING OF COMPUTER NETWORK TRAFFIC: SCALING, SELF-SIMILARITY, MULTIFRACTALITY?

P. ABRY

SISYPH, Physics Lab, CNRS, Ecole Normale Supérieure, Lyon, France.

IN COLLABORATIONS WITH:
- D. VEITCH, N. HOHN, MELBOURNE UNIV., AUSTRALIA,
- B. LASHERMES, ENS LYON, FRANCE,
- S. JAFFARD, UNIV. PARIS XII, CRÉTEIL, FRANCE.

Séminaire HYPATHIE, Université de Provence, Marseille, 21 janvier 2005.
OUTLINE

• I. INTERNET AND SCALING
 — I.1 INTERNET,
 — I.2 SCALING,

• II. ANALYSIS TOOLS: MULTiresOLUTION ANALYSIS
 — II.1 AGGREGATION, INCREMENT,
 — II.2 WAVELET AND MULTIResolution ANALYSIS,

• III. MODEL1: SELF-SIMILARITY, LONG MEMORY AND RANDOM WALKS
 — III.1 RANDOM WALKS, SELF SIMILARITY AND LONG MEMORY,
 — III.2 SELF SIMILARITY, LONG MEMORY AND WAVELETS,
 — III.3 HURST PARAMETER ESTIMATION,
 — III.4 ROBUSTNESS TO NON-STATIONARITY,
 — III.5 SELF-SIMILARITY AND COMPUTER TRAFFIC,

• IV. MODEL2: MULTIPLICATIVE CASCADES AND MULTIFractal
 — IV.1 MULTIPLICATIVE CASCADES, MULTIFractal PROCESSES,
 — IV.2 MULTIFractal PROCESSES AND WAVELETS,
 — IV.2 MULTIFractal PROCESSES AND COMPUTER TRAFFIC,

• V. MODEL3: CLUSTER POINT PROCESS AND SCALING
 — V.1 CLUSTER POINT PROCESS AND SCALING,
 — V.2 CLUSTER POINT PROCESS AND COMPUTER TRAFFIC.
HETEROGENITY:

Geography, Topology, Hardware, Protocols, Applications, Nature of Data...
INFORMATION FLOWS MODELLING

• **Why?**
 – to **Design Networks**,
 – to **Estimate Dimensions of Components**: Buffer Sizes, Server Capacities, Link Rates,...
 – to **Design Protocols**,
 – to **Ensure Quality Of Services**,
 – to **Avoid Congestion, Delays, Losses**,
 – to **Design Control Of Admission Policies**,
 – to **Design Tarification Policies**,
 – ...

• **How?**
 – by **Collecting Information**, by **Performing Measurements**,
 – by **Performing Statistical Analysis Of Data And Time Series**,
 – by **Connecting Analyses To Network Mechanisms**.
• **PASSIVE MEASUREMENTS:** Look at packets on a link ...

... and collect

- **TIME ARRIVALS,**
- **PACKET LOAD,**
- **PROTOCOL INFORMATION,**
- **APPLICATION INFORMATION,**
- ...

• **MODELLING:** Marked Point Process \(\{ t_i, S_i \}_{i \in I} \)
 - \(t_i \): **ARRIVAL TIMES,**
 - \(S_i \): **MARKS (PACKET LOAD, ...)**

 \(\Rightarrow \text{HUGE COLLECTION OF DATA} \)
• **AGGREGATING ARRIVALS**: Number of Packets per Bin of Size Δ.

Bin Size

- $W_{\Delta}(i) =$ Number of Packets in Bin Number i,
- $W_{\Delta}(i) = \sum_{\forall k, t_i \leq t_k < t_{i+1}} S_k$.

Discrete Time Time Series: $\{W_{\Delta}(i)\}_{i \in I}$ (Regular Sampling)
 PACKET LEVEL (AGGREGATED TIME SERIES)
From packets to flows

- **IP Flow**: Set of packets with Identical 5-tuple

<table>
<thead>
<tr>
<th>IP protocol</th>
<th>Source Address</th>
<th>Destination Address</th>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
</table>

Time
FROM PACKET TO FLOW (OR CONNECTION)

- **IP Flow**: Set of packets with Identical 5-tuple

<table>
<thead>
<tr>
<th>IP protocol</th>
<th>Source Address</th>
<th>Destination Address</th>
<th>Source Port</th>
<th>Destination Port</th>
</tr>
</thead>
</table>

Flow Start

Flow Duration

Time

Time
Flow Level

- Identifying IP Flows:

- Marked Point Process: \(\{t_i, S_i\}_{i \in I} \),
 - \(t_i \): Arrival Times,
 - \(S_i \): Marks (Duration, total load, number of packets, ...)

\[9\]
FLOW LEVEL: FLUCTUATIONS OF THE NUMBER OF ACTIVE FLOWS
SESSION LEVEL

- **IDENTIFYING SESSIONS:**
 A GROUP OF FLOWS CORRESPONDING TO A SAME ACTIVITY OR A SAME INTERNAUT.

- **CONFIDENTIALITY ISSUES:** ?
STATISTICAL ANALYSIS

- **TELEPHONE-BASED ANALYSIS:**
 - Poisson Point Processes, Renewal Point Processes,
 - Gaussian Processes (Central Limit Theorem),
 - Short-Range Dependencies (Markov-Type Processes).

- **FAILURE:**
 - In Modelling,
 - In Predicting Performance,
 - In Enabling Relevant Network Design (Rooter, Buffer Sizes,...),
 - In Providing Relevant Quality Of Services Policies.
 ⇒ Not Solved by a Simple Over-Dimensioning Argument!

- **IRREGULARITIES IN TIME SERIES ?**
SCALING : DILATION ?

Trafic (WAN) Internet

temps (s)

nb connexions

Trafic (WAN) Internet

temps (s)

nb connexions
SCALING : AGGREGATION ?

\[\delta = 12 \text{ms} \]

\[\delta = 12 \times 8 \text{ms} \]

\[\delta = 12 \times 8 \times 8 \text{ms} \]

\[\delta = 12 \times 8 \times 8 \times 8 \text{ms} \]
SCALING : SPECTRUM ?

Trafic (LAN) Ethernet −−− Densite Spectrale de Puissance

Log\(_{10}\) (Frequence (Hz))

Log\(_{10}\) (DSP) −−− Nombre Octets
DEFINITION: NO CHARACTERISTIC SCALE (NON PROPERTY).
(OFTEN COMES WITH NON GAUSSIAN, NON STATIONARY, NON LINEAR)

EVIDENCE: THE WHOLE RESEMBLES ITS PART, AND VICE VERSA.

ANALYSIS: RATHER THAN FOR A CHARACTERISTIC SCALE,
LOOK FOR A RELATION, A MECANISM, A CASCADE BETWEEN SCALES.
UBIQUITY ?

Trafic (LAN) Ethernet

Trafic (WAN) Internet

Turbulence de Jet, R_λ ~ 580

Vitesse (m/s)

Dissipation

Nombre Octets

nb connexions

temps (s)

temps (s)

temps (s)
- Hydrodynamic Turbulence,
- Physiology, Biological Rythms (Heart beat, walk),
- Geophysics (Faults Repartition, Earthquakes),
- Hydrology (Water Levels),
- Statistical Physics (Long Range Interactions),
- Thermal Noises (semi-conductors),
- Information Flux on Networks, Computer Network Traffic,
- Population Repartition (local: cities, global: continent),
- Financial Markets (Daily returns, Volatility, Currencies Exchange Rates),
- ...
I. INTERNET AND SCALING
 - I.1 INTERNET,
 - I.2 SCALING,

II. ANALYSIS TOOLS: MULTIRESOLUTION ANALYSIS
 - II.1 AGGREGATION, INCREMENT,
 - II.2 WAVELET AND MULTIRESOLUTION ANALYSIS,

III. MODEL 1: SELF-SIMILARITY, LONG MEMORY AND RANDOM WALKS
 - III.1 RANDOM WALKS, SELF SIMILARITY AND LONG MEMORY,
 - III.2 SELF SIMILARITY, LONG MEMORY AND WAVELETS,
 - III.3 HURST PARAMETER ESTIMATION,
 - III.4 ROBUSTNESS TO NON-STATIONARITY,
 - III.5 SELF-SIMILARITY AND COMPUTER TRAFFIC,

IV. MODEL 2: MULTIPLICATIVE CASCADES AND MULTI-FRACTAL
 - IV.1 MULTIPLICATIVE CASCADES, MULTI-FRACTAL PROCESSES,
 - IV.2 MULTI-FRACTAL PROCESSES AND WAVELETS,
 - IV.2 MULTI-FRACTAL PROCESSES AND COMPUTER TRAFFIC,

V. MODEL 3: CLUSTER POINT PROCESS AND SCALING
 - V.1 CLUSTER POINT PROCESS AND SCALING,
 - V.2 CLUSTER POINT PROCESS AND COMPUTER TRAFFIC.
TOOL 1: AGGREGATION

COMPARE DATA AGAINST A BOX, THEN VARY \(a \)

\[T_X(a, t) = \frac{1}{aT_0} \int_t^{t+aT_0} X(u) du \]

AVERAGE

WORKS ONLY FOR POSITIVE TIME SERIES, DENSITY
TOOL 2: INCREMENT

COMPARE DATA AGAINST A DIFFERENCE OF DELTA FUNCTIONS, THEN VARY a

$$T_X(a, t) = X(t + a\tau_0) - X(t)$$

DIFFERENCE

INCREMENTS OF HIGHER ORDERS OR GENERALISED N-VARIATIONS

- Order 2: $T_X(a, t) = -X(t + 2a\tau_0) + 2X(t + a\tau_0) - X(t)$,
- Order N: $T_X(a, t) = \sum_{p=0}^{N} (-1)^p a_p X(t + p a\tau_0)$,

where $\sum_{p=0}^{N} (-1)^p a_p p^k \equiv 0, k = 0, \ldots, N - 1$.

[21]
Tool: MultiResolution Analysis

- **MultiResolution Quantities:**

 \[X(t) \rightarrow T_X(a, t) = \langle f_{a, t} | X \rangle, \quad f_{a, t}(u) = \frac{1}{a} f_0\left(\frac{u-t}{a}\right) \]

 Aggregation
 \[
 f_0(u) = (\beta_0)
 = \frac{1}{aT_0} \int_t^{t+aT_0} X(u) du

 In increments
 \[
 f_0(u) = (I_0)
 = X(t + a\tau_0) - X(t)

 Box, Average

 ![Graph of X(t) vs temps]

 ![Graph of X(t + a\tau_0) - X(t) vs temps]
Tool: MultiResolution Analysis

- **Multiresolution Quantities:**
 \[X(t) \rightarrow T_X(a,t) = \langle f_{a,t} | X \rangle, \quad f_{a,t}(u) = \frac{1}{a} f_0(\frac{u-t}{a}) \]

- **Choices for Mother Functions:** \(f_0, \)

 Aggregation
 \[f_0(u) = (\beta_0) = \frac{1}{aT_0} \int_t^{t+aT_0} X(u)du \]
 Box, Average

 Increments
 \[f_0(u) = (I_0) = X(t + a\tau_0) - X(t) \]
 Difference

 Wavelets
 \[f_0(u) = \psi_{0,N} = \int X(u) \frac{1}{a} \psi_0(\frac{u-t}{a}), \]
 Average, Difference
Tool: Wavelet Transforms

- **Mother-Wavelet and Wavelet "Basis":**
 \[\int \psi_0(u)du = 0, \quad \psi_{a,t}(u) = \frac{1}{|a|} \psi_0\left(\frac{u-t}{a}\right). \]

- **Continuous Wavelet Transform:**
 \[T_X(a, t) = \langle X, \psi_{a,t} \rangle \]

- **Modulus Maxima vs Discrete Wavelet Transforms:**
 Skeleton:

 Maxima Lines

 Dyadic Grid:
 \[d_X(j, k) = T_X(a = 2^j, t = 2^j k) \]
WAVELETS AND SCALING: KEY INGREDIENTS

- **Dilation Operator**, \(\frac{1}{|a|} \psi_0 \left(\frac{t}{|a|} \right) \)
- **Dilation**, \(a = 1 \), \(a = 2 \), \(a = 4 \)

- **Number of Vanishing Moments**, \(N \geq 1 \),
 \[\int t^k \psi_0(t) dt \equiv 0, \quad k = 0, 1, \ldots, N - 1. \]
TOOL: MultiResolution Analysis

- **MultiResolution Quantities:**
 \[X(t) \rightarrow T_X(a, t) = \langle f_{a,t} | X \rangle, \quad f_{a,t}(u) = \frac{1}{a} f_0\left(\frac{u-t}{a}\right) \]

- **Choices for Mother Functions:** \(f_0, \)

 Aggregation
 \[
 f_0(u) = (\beta_0)^N \\
 = \frac{1}{aT_0} \int_t^{t+aT_0} X(u)du
 \]
 Box, Average

 Increments
 \[
 f_0(u) = (I_0)^N \\
 = X(t + a\tau_0) - X(t)
 \]
 Difference

 Wavelets
 \[
 f_0(u) = \psi_{0,N} \\
 = \int X(u) \frac{1}{|a|} \psi_0\left(\frac{u-t}{a}\right),
 \]
 Average, Difference
• I. **INTERNET AND SCALING**
 – I.1 INTERNET,
 – I.2 SCALING,

• II. **ANALYSIS TOOLS: MULTIRESOLUTION ANALYSIS**
 – II.1 AGGREGATION, INCREMENT,
 – II.2 WAVELET AND MULTIRESOLUTION ANALYSIS,

• III. **MODEL1: SELF-SIMILARITY, LONG MEMORY AND RANDOM WALKS**
 – III.1 RANDOM WALKS, SELF SIMILARITY AND LONG MEMORY,
 – III.2 SELF SIMILARITY, LONG MEMORY AND WAVELETS,
 – III.3 HURST PARAMETER ESTIMATION,
 – III.4 ROBUSTNESS TO NON-STATIONARITY,
 – III.5 SELF-SIMILARITY AND COMPUTER TRAFFIC,

• IV. **MODEL2: MULTIPLICATIVE CASCADES AND MULTI-FRACTAL**
 – IV.1 MULTIPLICATIVE CASCADES, MULTI-FRACTAL PROCESSES,
 – IV.2 MULTI-FRACTAL PROCESSES AND WAVELETS,
 – IV.2 MULTI-FRACTAL PROCESSES AND COMPUTER TRAFFIC,

• V. **MODEL3: CLUSTER POINT PROCESS AND SCALING**
 – V.1 CLUSTER POINT PROCESS AND SCALING,
 – V.2 CLUSTER POINT PROCESS AND COMPUTER TRAFFIC.
MODEL 1: RANDOM WALKS AND SELF SIMILARITY

- **RANDOM WALK:** \(X(t + \tau) = X(t) + \delta \tau X(t) \)
 Steps or Increments

- **STATISTICAL PROPERTIES OF THE STEPS:**
 - **A1:** Stationary,
 - **A2:** Independent,
 - **A3:** Gaussian,
 - Ordinary Random Walk, Ordinary Brownian Motion,
 - \(\mathbb{E} X(t)^2 = 2D|t| \), Einstein relation,
 - \(\mathbb{E} X(t)^q = 2D|t|^{q/2} \), \(q > -1 \).

- **ANOMALIES:**
 - \(\mathbb{E} X(t)^2 = 2D|t|^{\gamma} \),
 - \(\mathbb{E} X(t)^2 = \infty \).

- **SELF SIMILAR RANDOM WALKS:**
 - **B1:** Stationary,
 - **B2:** Self Similarity
MODEL 1: SELF-SIMILARITY

- **DEFINITION:** \(\{\delta_\tau X(t)\}_{t \in \mathbb{R}} \overset{\text{fdd}}{=} \{a^H \delta_{\tau/a} X(t/a)\}_{t \in \mathbb{R}}, \)

\(\forall a > 0, \text{ Dilation Factor}, \quad 1 > H > 0 : \text{SELF-SIMILARITY EXPONENT} \)

- **INTERPRETATIONS:** **SCALING**!
 - Covariance under Dilation (Change of Scale),
 - The Whole and the SubPart (Statistically) Undistinguishable,
 - No Characteristic Scale of Time.

- **IMPLICATIONS:**
 - Additive Structure, Random Walks
 - Power Laws: \(\mathbb{E}|X(t + a\tau_0) - X(t)|^q = C_q|a|^{qH}, \)
 - A Single Scaling Exponent \(H \),
 - \(\forall a > 0, \forall q \geq 1, \)
 - Non Stationarity,
 - Long Memory, Long Range Correlation, when \(1 > H > 1/2 \).
• **P1:** \(\{d_X(j, k), k \in \mathbb{Z}\} \) **Stationary** Sequences for each Scale \(2^j, N \geq 1\).

• **P2:** **Self-Similarity**

\[
\{X(t)\} \quad \overset{fdd}{\Rightarrow} \quad \{a^H X(t/a)\} \Rightarrow \{d_X(0, k)\} \quad \overset{fdd}{=} \quad \{2^{-jH}d_X(j, k)\}
\]

- **P2bis:** **Marginal Dist.** \(P_j(d) = \frac{1}{a} P_{j'}(\frac{d}{a}), \quad a = \left(\frac{2^{j'}}{2^j}\right)^H \) **Dilation**.

• **P3:** \(\{d_X(j, k)\} \) **Short Range Dependent** if \(N > H + 1/2 \).

\[
|2^j k - 2^j k'| \to +\infty, \quad |\text{Cov } d_X(j, k)d_X(j', k')| \leq D |2^j k - 2^j k'|^{2(H-N)}.
\]

Dilation and \(N \geq 1 \).*
Wavelets and Long Range Dependence

H = 0.15
Haar

H = 0.5
Daubechies2

H = 0.95
Wavelets and \(H \)-Self-Similar Processes with Stationary Increments and Finite Variance

- **P1:** \(\{d_X(j, k), k \in \mathbb{Z}\} \) Stationary Sequences for each Scale \(2^j, N \geq 1 \).

- **P2:** Self-Similarity
 \[\{X(t)\} \overset{fdd}{=} \{a^H X(t/a)\} \Rightarrow \{d_X(0, k)\} \overset{fdd}{=} \{2^{-jH} d_X(j, k)\} \]

 - **P2bis:** Marginal Dist.
 \[P_j(d) = \frac{1}{a} P_{j'}\left(\frac{d}{a}\right), \quad a = \left(\frac{2^{j'}}{2^j}\right)^H \]
 Dilation.

- **P3:** \(\{d_X(j, k)\} \) Short Range Dependent if \(N > H + 1/2 \).
 \[|2^j k - 2^{j'} k'| \to +\infty, \quad |\text{Cov} d_X(j, k)d_X(j', k')| \leq D|2^j k - 2^{j'} k'|^{2(H-N)}, \]
 Dilation and \(N \geq 1 \).
 \[\Rightarrow \text{Idealisation:} \quad d_X(j, k) \text{ Independent Variables} . \]
 \[\Rightarrow \text{Interpretations:} \quad X(t) = \sum_k a_X(J, k) \varphi_{J,k}(t) + \sum_{j,k} d_X(j, k) \psi_{j,k}(t). \]

 \[\Rightarrow \text{Implications:} \quad \mathbb{E}|d_X(j, k)|^q = \mathbb{E}|d_X(0, 0)|^q 2^{jqH}, \quad \forall q / \mathbb{E}|d_X(0, 0)|^q < \infty. \]
Estimation of the Scaling (Hurst) Param. H

Principles:

- **Ideas:** \(P2 \) and \(P1 \) \(\Rightarrow \) \(E|d_X(j, k)|^q = E|d_X(0, 0)|^q 2^j q^H \)
 \(\Rightarrow \) \(\log_2 E|d_X(j, k)|^q = j q H + \log_2 E|d_X(0, 0)|^q, \) \(\text{cste}_q \)

- **Problems:** Estimate \(E|d_X(j, k)|^q \) from a Single Finite Length Observation?

- **Solution:** \(P1 \) and \(P3 \) \(\Rightarrow \)Statistical Averages \(\Rightarrow \) Time Averages,
 \(S_q(j) = (1/n_j) \sum_{k=1}^{n_j} |d_X(j, k)|^q \)

Log-Scale Diagrams: \(\log_2 S_q(j) \) vs \(\log_2 2^j = j \)
LOG-SCALE DIAGRAMS: $\log_2 S_q(j)$ vs $\log_2 2^j = j$

- **SYNTHETIC DATA:** Fractional Brownian Motion, $q = 2$.

\[\alpha = 2.57 \]
\[1 \leq j \leq 10 \]
• **Definitions**: Let X be a 2nd stationary process with,
- Correlation Function: $c_X(\tau) = \mathbb{E}X(t)X(t + \tau)$
- Spectrum: $\Gamma_X(\nu)$

$$
c_X(\tau) = c_\tau |\tau|^{-\beta}, \quad 0 < \beta < 1, \quad \tau \to +\infty
$$

$$
\Gamma_X(\nu) = c_f |f|^{-\alpha}, \quad 0 < \alpha < 1, \quad \nu \to 0
$$

with $\alpha = 1 - \beta$ and $c_f = 2(2\pi) \sin((1 - \gamma)\pi/2)c_\tau$.

• **Consequences**:
- $\sum_{A}^{+\infty} c_X(\tau) d\tau = +\infty$, $A > 0$,
- No Characteristic Scale,
- Aggregation: $T_X(a, t) = \frac{1}{aT_0} \int_{t}^{t+aT_0} X(u) du$,

$$
\Rightarrow \text{Var} T_X(a, t) \sim a^{\alpha - 1}, \quad a \to +\infty
$$

- Self.-Sim. Proc. (with $H > 1/2$) are Long Range Dep. (with $\alpha = 2H - 1$).
Wavelets and Long Range Dependence

- **Wavelet based Spectral Analysis:**
 Let X be a 2nd Order stationary process,
 Let ψ have central frequency ν_0 and bandwith $\Delta\nu_0$.

 $$
 E|d_X(j, k)|^2 = \int \Gamma_X(\nu)|\Psi(2^j \nu)|d\nu \\
 \approx 2^{-j} \Gamma_X(2^{-j}\nu_0) \text{ within bandwith } 2^{-j}\Delta\nu_0.
 $$

- **Let X be Long Range Dependent:**
 - **Power Law:** $E|d_X(j, k)|^2 \sim C 2^j(\alpha - 1)$, $j \to +\infty$,
 - **Decorrelation:** $Ed_X(j, k)d_X(j, k') \sim C|k - k'|^{-1-2N}$, $|k - k'| \to +\infty$,
 Short Range Dependence as soon $N > \alpha/2$.

- **Analysis:** $ \log_2(1/n_j \sum_{k=1}^{n_j} |d_X(j, k)|^2) \text{ vs } \log_2 2^j = j$
 \Rightarrow Log-Scale Diagram with $q = 2$.

[36]
LOG-SCALE DIAGRAMS: $\log_2 S_2(j)$ vs $\log_2 2^j = j$

- **SYNTHETIC DATA**: FARIMA(P,d,Q), long memory parameter: $\alpha = 2d$.

\[\alpha = 0.55 \]
\[c_f = 4.7 \]
\[4 \leq j \leq 10 \]
Wavelets and 2nd-Order Scaling: Estimation

- **Dyadic Grid (Discrete Wavelet Transform):**

- **Structure Function (Time Average):**
 \[Y_2(j) = \frac{1}{2} \log_2 S_2(2^j) = \frac{1}{2} \log_2 \frac{1}{n_j} \sum_{k=1}^{n_j} |d_x(j, k)|^2 \]

- **Definition (Weighted Least Squares):**
 \[\hat{H} = \sum j w_j \log_2 S_2(j) \]
 \[w_j = \frac{B_0^j - B_1^j}{a_j (B_0 B_2^j - B_1^j)}, \quad B_{k} = \sum j j^k / a_j \]
 with \(a_j \) arbitrary numbers

- **Performance:** What are the statistical performance of this estimator when applied to self-similar or long-range dependence processes?
WAVELETS AND 2ND-ORDER SCALING: ESTIMATION

- **ASSUME**:
 - i) X Gaussian,
 - ii) Idealisation: exact independence.

- **BIAS**:
 $$ \mathbb{E} \log_2 S_2(j) = \log_2 \mathbb{E} S_2(j) + \Gamma'(n_j/2) - \log_2(n_j/2). $$

 $$ \Rightarrow \mathbb{E} \hat{H} = H + \sum_j w_j g_j. $$

- **VARIANCE**:
 $$ \text{Var} \hat{H} \simeq \left((\log_2(e))^2 \left(\sum_j w_j^2 2^j \right) \right) / n, \text{ min.} $$

 if $a_j = \text{Var} \log_2 S_2(j)$.

- **ACTUAL PERFORMANCE**:
 - **NEGligible Bias**,
 - **A PRIORI KNOWN APPROX. Conf. INTERVAL**,
 - **CLOSE TO MLE IN GAUSSIAN CASE**.

- **CONCEPTUAL AND PRACTICAL SIMPLICITY**:
 DWT AND LINEAR FIT!

- **COMPUTATIONAL ISSUES**:
 LOW COST, ON-LINE, REAL-TIME, ON-THE-FLY.
ETHERNET DATA

- **BELLCORE ETHERNET PAUG**: LAN, 10BASET, RATE = 0.138 MBPS, \(\simeq 1 h \).
\[W_\Delta (\Delta = 128 \text{ ms}) \]

- **CONSISTENT WITH SELF-SIMILARITY MODELLING**:
 - \(H \simeq 0.8 \), **OVER 12 OCTAVES (3 DECADES)**,
 - **GENERIC (AGGREGATED TS, ARRIVAL LISTS, LOADS, POINT PROCESS)**.

[40]
ETHERNET DATA

- **BELLCORE ETHERNET pAUG**: LAN, 10BaseT, Rate = 0.138Mbps, \(\sim 1h \).
 - GENERIC (AGGREGATED TS, ARRIVAL LISTS, LOADS, POINT PROCESS).

![Graphs](image-url)
Scaling vs Non-Stat.: Robustness vs Superimposed Trends:

\[Y(t) = X(t) + T(t) \Rightarrow d_Y(j, k) = d_X(j, k) + d_T(j, k) \]

- If \(T(t) \) Polynomial of degree \(P \), then \(d_T \equiv 0 \) when \(N > P \),
- If \(T(t) \) smooth trend, then the \(d_T \) decrease as \(N \) increases.

Vary \(N \)!
SCALING VS NON-STAT.: ROBUSTNESS VS SUPERIMPOSED TRENDS:

Ethernet Data

Logsacle Diagram, N=2

Full trace: $\alpha = 0.60$
Part I: $\alpha = 0.62$
Part II: $\alpha = 0.58$
SCALING VS NON-STAT.: CONSTANCY OF SCALING:

Constancy along time of Scaling laws
INTERNET DATA: SCALING AND BiSCALING.

- **AUCKIV:** WAN IP, LINK = OC3, RATE = 2.5MBPS, DURATION ≃ 3h.

- **BiSCALING:**
 - SCALING OVER TWO RANGES OF SCALES (12 OCTAVES ALL TOGETHER),
 - SEPARATION TIME AROUND 1S,
 - GENERIC (DIFFERENT NETWORKS, LINKS, RATES...).
INTERNET DATA: SCALING AT COARSE SCALES

- **AuckIV:**

- **Coarse Scales:** ≥ 1s, **Consistent with Self-Similarity,** $\zeta(q) \sim qH$,
 - $H \sim 0.8$, **Consistent with Long Range Dependence,**
 - **Rather Generic** (different networks, links, rates...),
 - **File Size Distributions** have **Heavy Tails.**
INTERNET DATA: SCALING AT FINE SCALES

- AuckIV:

- FINE SCALES: ≤ 1S, NOT CONSISTENT WITH SELF-SIMILARITY,
 - \(\zeta(q) \neq qH \),
 \[\Rightarrow \text{CLAIM: MULTIFRACTAL MODELS?} \]
FROM SELF-SIMILARITY . . .

- **SELF-SIMILARITY:**
 \[E|d_X(j, k)|^q = C_q(2^j)^{qH} \]
 - Power Laws,
 - \(\forall 2^j \), (All Scales),
 - \(\forall q, \quad /E|d_X(j, k)|^q < +\infty \),
 - A single parameter \(H \),
 - Additive Structure.
... TO MULTIFRACTAL.

- Self-Similarity:

$$\mathbb{E}|d_X(j, k)|^q = C_q(2^j)^{qH}$$

- Power Laws,
- \(\forall 2^j\), (All Scales),
- \(\forall q\), \(\mathbb{E}|d_X(j, k)|^q < +\infty\),
- A single parameter \(H\),
- Exponents Linear in \(q\): \(\zeta(q) = qH\),
- Additive Structure.

- Multifractal

$$\mathbb{E}|d_X(j, k)|^q = C_q(2^j)^{\zeta(q)}$$

- Power Laws,
- \(\forall 2^j < L\), (All Scales below the Integral Scale),
- \(\forall q\), ???,
- A whole collection of scaling parameters \(\zeta(q) \neq qH\),
- Additive Structure.

- ?
OUTLINE

• I. **INTERNET AND SCALING**
 – I.1 INTERNET,
 – I.2 SCALING,

• II. **ANALYSIS TOOLS: MULTiresOLUTION ANALYSIS**
 – II.1 AGGREGATION,_INCREMENT,
 – II.2 WAVELET AND MULTIResolution ANALYSIS,

• III. **MODEL1: SELF-SIMILARITY, LONG MEMORY AND RANDOM WALKS**
 – III.1 RANDOM WALKS, SELF SIMILARITY AND LONG MEMORY,
 – III.2 SELF SIMILARITY, LONG MEMORY AND WAVELETS,
 – III.3 HURST PARAMETER ESTIMATION,
 – III.4 ROBUSTNESS TO NON-STATIONARITY,
 – III.5 SELF-SIMILARITY AND COMPUTER TRAFFIC,

• IV. **MODEL2: MULTIPLICATIVE CASCADES AND MULTIFractal**
 – IV.1 MULTIPLICATIVE CASCADES, MULTIFractal PROCESSES,
 – IV.2 MULTIFractal PROCESSES AND WAVELETS,
 – IV.2 MULTIFractal PROCESSES AND COMPUTER TRAFFIC,

• V. **MODEL3: CLUSTER POINT PROCESS AND SCALING**
 – V.1 CLUSTER POINT PROCESS AND SCALING,
 – V.2 CLUSTER POINT PROCESS AND COMPUTER TRAFFIC.
Model 2: Multiplicative Cascades

Definition:
- Split dyadic intervals $I_{j,k}$ into two,
- I.I.D. multipliers $W_{j,k}$
- $Q_J(t) = \prod_{(j,k): 1 \leq j \leq J, t \in I_{j,k}} W_{j,k}$,

Implications:
- Cascades, multiplicative structure,
- Power laws,
- $\mathbb{E} \left(1/2^j \int_{k2^j}^{(k+1)2^j} \tau_0 X(u) du \right)^q = C_q |2^j| \zeta_q$,
- Multiple exponents $\zeta_q = -\log_2 \mathbb{E} W^q$, non-linear in q,
- Fine scales $a = 2^j \to 0$, $a \ll L$ integral scale,
- No characteristic scale of time beyond an integral scale,
- Non stationarity,
- Local Holder exponent,
- Multi-fractal sample paths, multi-fractal spectrum $D(h)$.
Model 2: Multiplicative Cascades

<table>
<thead>
<tr>
<th>Yaglom, Mandelbrot</th>
<th>Barral, Mandelbrot</th>
<th>Schmmitt et al., Bacry et al., Chainais et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandelbrot’s Cascade (CMC)</td>
<td>Compound Poisson Cascade (CPC)</td>
<td>Infinitely Divisible Cascade (IDC)</td>
</tr>
<tr>
<td>- IID W,</td>
<td>- IID W,</td>
<td>- Continuous Infinitely Divisible Measure M,</td>
</tr>
<tr>
<td>- Dyadic Grid,</td>
<td>- Point Process,</td>
<td></td>
</tr>
</tbody>
</table>

\[Q_r(t) = \prod W_{j,k}, \]
\[\varphi(q) = -\log_2 E W^q, \]
\[A(t) = \lim_{r \to 0} \int_0^t Q_r(u)du, \]

For a range of qs, $E|A(t + \alpha \tau_0) - A(t)|^q = c_q |\alpha|^{q+\varphi(q)}$,

Resolution Depth $<\text{Scale}<\text{Integral Scale}$, $a_m = r < \alpha < a_M = L$.

\[\prod W_{j,k}, \]
\[= -q(1 - E W) + 1 - E W^q, \]
\[\exp \int dM(t', r'), \]
\[= \rho(q) - q\rho(1), \]
MODEL 2: MULTI-FRACTAL PROCESSES

Density:

\[Q_r(t) = \prod W_{j,k} \]

\[\mathbb{E} \left(\frac{1}{a} \int_{t}^{t+a\tau_0} Q_r(u) du \right)^q = c_q a^{\varphi(q)}, \]

Measure:

\[A(t) = \lim_{r \to 0} \int_{0}^{t} Q_r(u) du, \]

\[\mathbb{E} |A(t + a\tau_0) - A(t)|^q = c_q |a|^{q\varphi(q)}, \]

Fractional Brownian Motion in Multifractal Time:

\[V_H(t) = B_H(A(t)), \]

\[\mathbb{E} |V_H(t + a\tau_0) - V_H(t)|^q = c_q |a|^{qH+\varphi(q)}, \]

Multifractal Random Walk:

\[Y_H(t) = \int_{t}^{t} Q_r(s) dB_H(s), \]

\[\mathbb{E} |Y_H(t + a\tau_0) - Y_H(t)|^q = c_q |a|^{qH+\varphi(q)}. \]
MULTIFRACTAL ANALYSIS

● PRINCIPLES:

- IDEAS: \(P2 \) and \(P1 \) ⇒ \(\mathbb{E}|d_X(j, k)|^q = \mathbb{E}|d_X(0, 0)|^q 2^j \zeta(q) \)
 ⇒ \(\log_2 \mathbb{E}|d_X(j, k)|^q = j \zeta(q) + \log_2 \mathbb{E}|d_X(0, 0)|^q \)

- PROBLEMS: Estimate \(\mathbb{E}|d_X(j, k)|^q \) from a SINGLE FINITE LENGTH OBSERVATION?

- SOLUTION: \(P1 \) and \(P3 \) ⇒ STATITICAL AVERAGES ⇒ TIME AVERAGES,
 \(S_q(j) = (1/n_j) \sum_{k=1}^{n_j} |d_X(j, k)|^q \)

● LOG-SCALE DIAGRAMS: \(\log_2 S_q(j) \) vs \(\log_2 2^j = j \)
LOG-SCALE DIAGRAMS: \(\log_2 S_q(j) \) vs \(\log_2 2^j = j \)

- **SYNTHETIC DATA:** MULTIFRACTAL RANDOM WALKS.
MultiResolution Estimators

- **Time Average at Given Resolution** α:
 \[S_n(a_j, q; f_0) = \frac{1}{n} \sum_{k=1}^{n} |T_X(a_j, t_{j,k}; f_0)|^q \]

- **Weighted Linear Fits in log-log Plots:**
 \[\log S_n(a, q; f_0) \text{ versus } \log a \]

- **Dyadic Grid (Discrete Wavelet Transform):**
 $a_j = 2^j$, $t_{j,k} = k \cdot 2^j$,

- **What Are the Performance of Such Estimators?**
 When Applied to MultiFractal Processes.

\[Y_{j,q,n} = \log_2 S_n(2^j, q; f_0) \text{ versus } \log_2 2^j = j, \]

\[\hat{\zeta}(q, n) = \sum_{j=j_1}^{j_2} w_{j,q} Y_{j,q,n}. \]
METHODOLOGY.

• **Numerical Synthesis of Processes:**
 – Accumulate \(nbreal\) numerical replications with length \(n\) samples.

• **Apply Scaling Exponents Estimators:**
 – Compute \(\hat{\zeta}(q, n)_{(l)}\) for each replication,
 – Average over repl. to obtain the statistical performance of \(\hat{\zeta}(q, n)\)

• **Asymptotic Behaviours:**
 – The cascade depth increases for a given number of Integral Scales.
 – … ,

\[
\begin{array}{c}
1 \\
\vdots \\
0 \\
\end{array}
\]
\[
\begin{array}{c}
(0, r) \\
\vdots \\
(1, r) \\
\end{array}
\]
\[
\begin{array}{c}
(0, 1) \\
\vdots \\
(1, 1) \\
\end{array}
\]

\[
\begin{array}{c}
(t, r) \\
\vdots \\
(t, 1) \\
\end{array}
\]

\[
\begin{array}{c}
(t, 0) \\
\vdots \\
(t, 1) \\
\end{array}
\]

\[
\begin{array}{c}
(t, r) \\
\vdots \\
(t, 1) \\
\end{array}
\]

\[
\begin{array}{c}
(t, 0) \\
\vdots \\
(t, 1) \\
\end{array}
\]

\[
\begin{array}{c}
(t, 1) \\
\vdots \\
(t, 1) \\
\end{array}
\]

[57]
METHODOLOGY.

- **Numerical Synthesis of Processes:**
 - Accumulate $nbreal$ numerical replications with length n samples.

- **Apply Scaling Exponents Estimators:**
 - Compute $\hat{\zeta}(q, n)_l$ for each replication,
 - Average over repl. to obtain the statistical performance of $\hat{\zeta}(q, n)$

- **Asymptotic Behaviours:**
 - The cascade depth increases for a given number of Integral Scales.
 - The number of Integral Scales increases for a given cascade depth,
LINEARISATION EFFECT: $\hat{\zeta}(q) (1/7)$

$q > q_o$, $\hat{\zeta}(q, n) = \alpha_o + \beta_o q$, q_o, α_o, β_o ARE RV.
LINEARISATION EFFECT: LEGENDRE TRANSF. (2/7)

\[D(h) = d + \min_q(qh - \zeta(q)), \] (d EUCLIDIEN DIMENSION OF SPACE).

ACCUMULATION POINTS: \(D_o(h_o) \), WITH \(D_o = d - \alpha_o, h_o = \beta_o \),
\(D_o, h_o \) ARE RV.
• Given resolution, increasing number of integral scales,

• Given number of integral scales, increasing resolution,
LINEARISATION EFFECT: CONJECTURE (4/7)

- **Critical Points:**
 \[
 \begin{align*}
 D_\pm^* &= 0, \\
 D(h_\pm^*) &= 0, \\
 h_\pm^* &= (d\zeta(q)/dq)_{q=q_\pm^*}.
 \end{align*}
 \]

- **Results:**
 \[
 EI : \begin{cases}
 \hat{\zeta}(q, n) = d - D_o^- + h_o^- q \quad \rightarrow \quad d - D_\pm^* + h_\pm^* q, \quad q \leq q_\pm^- , \\
 \hat{\zeta}(q, n) &\rightarrow \zeta(q), \quad q_-^- \leq q \leq q_\pm^+, \\
 \hat{\zeta}(q, n) = d - D_o^+ + h_o^+ q \quad \rightarrow \quad d - D_\pm^* + h_\pm^* q, \quad q_\pm^+ \leq q.
 \end{cases}
 \]

 \[
 EII&III : \begin{cases}
 \hat{\zeta}(q, n) = d - D_o^+ + h_o^+ q \quad \rightarrow \quad \zeta(q), \quad 0 < q \leq q_\pm^+, \\
 \hat{\zeta}(q, n) &\rightarrow \zeta(q), \quad q_\pm^+ \leq q.
 \end{cases}
 \]

- **Illustration:**

![Graph](image_url)
LINEARISATION EFFECT: COMMENTS (5/7)

• WHEN DOES THE LINEARISATION EFFECT EXIST?

— FOR ALL TYPES OF CASCADES: CMC, CPC, IDC,
— FOR ALL TYPES OF PROCESSES: Q_r, A, V_H, Y_H,
— FOR ALL NUMBERS OF VANISHING MOMENTS: $N \geq 1$,
— FOR ALL MRA-BASED ESTIMATORS: WAVELETS, INCREMENTS, AGGREGATION,
— CAN BE WORKED OUT FOR $q < 0$,
— EXTENDS TO DIMENSION HIGHER THAN $d > 1$.
EXTENSION: STANDARD WT VERSUS WTMM (1/3).
EXTENSION: 2D MULTIPLICATIVE CASCADE (2/3).
EXTENSION: 3D MULTIPLICATIVE CASCADE (3/3).

3D CMC (LOG NORMAL), EI(1) COMPARED TO A 2D SLICE.
• **When does the Linearisation Effect exist?**
 - For all types of cascades: CMC, CPC, IDC,
 - For all types of processes: Q_r, A, V_H, Y_H,
 - For all numbers of vanishing moments: $N \geq 1$,
 - For all MRA-based estimators: Wavelets, Increments, Aggregation,
 - Can be worked out for $q < 0$,
 - Extends to dimension higher than $d > 1$.

• **What the Linearisation Effect is not:**
 - A low performance estimation effect.
 - A finite size effect: The critical parameters do not depend on n,
 be it the number of integral scales,
 or the depth (or resolution) of the cascades.
 - A finiteness of moments effect,
 \[-q_c^- < 0 < 1 < q_c^+, \ q - 1 + \varphi(q) = 0,\]
 \[-q_c^- < q_*^- < 0 < 1 < q_*^+ < q_c^+,
\]

• **What the Linearisation Effect might be:**
 - Multiplicative Martingales?
 - Ossiander, Waymire 00, Kahane, Peyrière 75, Barral, Mandelbrot 02.
LINEARISATION EFFECT: PICTURE (6/7)

- **TWO POWER-LAWS, TWO FUNCTIONS OF** q:

 - **BARE CASCADE**:
 \[
 \mathbb{E}Q_r(t)^q = r^{\varphi(q)}, \quad q \in \mathcal{R}.
 \]

 - **DRESSED CASCADE**:
 \[
 \frac{1}{n_a} \sum_k T_{Q_0}(t_k, a; \beta_0)^q = c_q |a|^{\zeta(q)}, \quad q \in [q_c^-, q_c^+] \\
 \frac{1}{n_a} \sum_k T_{Q_0}(t_k, a; \beta_0)^q = \infty, \quad \text{ELSE},
 \]

 WITH:
 \[
 \begin{align*}
 \zeta(q) &= 1 + q h_{-}^*, \quad q \in [q_c^-, q_*^-], \\
 \zeta(q) &= \varphi(q), \quad q \in [q_*^-, q_*^+], \\
 \zeta(q) &= 1 + q h_{+}^*, \quad q \in [q_*^+, q_c^+].
 \end{align*}
 \]

- **CONFUSION BETWEEN** $\varphi(q)$ AND $\zeta(q)$:

 - **MULTIPLICATIVE CASCADE**: $\varphi(q), \quad q \in \mathcal{R}$,
 - **SCALING EXPONENTS**: $\zeta(q), \quad q \in [q_c^-, q_c^+]$.

[68]
LINEARISATION EFFECT: CONSEQUENCES (7/7)

- **RECAST THE USUAL GOALS:**

 - **ESTIMATE THE INTEGRAL SCALE AND THE RESOLUTION OF THE CASCADE,**
 \[\Rightarrow \text{ i.e., FIND A SCALING RANGE } [a_m, a_M] \]
 - **ESTIMATE THE CRITICAL PARAMETERS** \(D^\pm, h^\pm, q^\pm \),
 - **ESTIMATE THE** \(\zeta(q) \) **FOR** \(q \in [q^\pm, q^\pm] \),
ESTIMATION OF q^*_*: MAIN IDEAS

Asymptotic Modelling 1: LINEAR FIT OF $\hat{\zeta}(q)$ FOR $q \geq q_{as}$

$A_1(q) = \alpha + \beta q$

Asymptotic Modelling 2: QUADRATIC FIT OF $\hat{D}(h)$ FOR $\hat{D} \geq 0.5$

$A_2(q) = C_0 + C_1 q + C_2 q^2$

$\hat{q}^*_*: \text{when } \hat{\zeta}(q) \text{ shifts from } A_1(q) \text{ to } A_2(q)$

$\left| \hat{\zeta}(\hat{q}^*_*) - A_1(\hat{q}^*_*) \right| = \left| \hat{\zeta}(\hat{q}^*_*) - A_2(\hat{q}^*_*) \right|$

- Numerical Validation: CPC DENSITY, WAVELET ANALYSIS
LINEARISATION EFFECT: CONSEQUENCES (7/7)

Recast the Usual Goals:

- Estimate the Integral Scale and the Resolution of the Cascade,
 \[\Rightarrow \text{i.e., Find a Scaling Range } [a_m, a_M] \]
- Estimate the Critical Parameters \(D^\pm, h^\pm, q^\pm, \)
- Estimate the \(\zeta(q) \) for \(q \in [q^-_*, q^+_*], \)

Issues:

- Discrimination of MF Models based on \(\hat{\zeta}(q, n), \)
 \[??? \text{Log-Normal versus Log-Poisson} ??? \]
- Discrimination between monoFractal versus MultiFractal.

Answers:

- No Need - No Point - No meaning - to use \(q \)s above \(q^+_* \).
NEGATIVE qs (1/4)

- **Difficulties?**
 - **Structure Functions** $S_q(j) = \frac{1}{n_j} \sum_{k=1}^{n_j} |d_X(j, k)|^q$
 - **Wavelet Coefficients** $\Rightarrow d_X(j, k) \approx 0$,
 - **Numerical Instability?**
 - **Finiteness**: $\mathbb{E}|d_X(j, k)|^q < \infty$?
 - **Theory**: Weak Hölder Exponent vs Exact Hölder Exponent?

- **Solutions?**

[72]
AGGREGATION: \(T_x(a, t) = \frac{1}{aT_0} \int_{t}^{t+aT_0} X(u) du \)

⇒ APPLIES ONLY TO POSITIVE DATA MODELLED BY CONSERVATIVE MEASURE
⇒ DOES NOT SOLVE THEORETICAL ISSUES
NEGATIVE qS - SOLUTION 2 (3/4)

- **WT MODULUS MAXIMA** (Arneodo et al.)

\[L_X(a, t_k) = \text{SUP}_{a' < a} |T_X(a', t_k(a'))| \]

⇒ SOLVES $q < 0$,
⇒ SOLVE THEORETICAL ISSUES?
⇒ COMPUTATIONALLY EXPENSIVE!
NEGATIVE qS - SOLUTION 3 (4/4)

- **WAVELET LEADERS:** (JAFFARD ET AL.)

$$d_X(j, k) \rightarrow L_X(j, k) = \sup_{j' < j} d_X(j', 2^{-j'})$$

⇒ **Solves $q < 0$: MultiFractal Spectrum over its Entire Range,**
⇒ **Theor. Issues: MultiFractal Spectrum for Oscillating (Chirp-type) Singularities,**
⇒ **Computationally Efficient and Excellent Statistical Performance,**
⇒ **Straighforward Extension to Higher Dimensions.**
INTERNET DATA: SCALING AT FINE SCALES

• **AuckIV:**

![Graphs showing scaling behavior for different values of q](image)

- **Fine Scales:** ≤ 1s, claimed to be consistent with multi-fractality but ...

[76]
INTERNET DATA: SCALING AT FINE SCALES

- **Estimated Scaling Exponents:** \(\zeta(q)/q = f(q) \),

- **Conclusions:** According to our works,
 - Weak evidence for multifractal at fine scales,
 - Cannot discriminate between self-similarity and multifractality,
 - Even call into question scaling . . . ?
MODEL 3: CLUSTER POINT PROCESS

• DEFINITION:
 – **Ingredient 1:** Poisson Renewal Process, $\lambda_F, \{t_F(i)\}_{i \in I}$, *Flow Arrivals*,
 – **Ingredient 2:** Number of Point per Cluster, P, $\mathbb{E}P = \mu_P$, *Pkts per Flow*,
 – **Ingredient 3:** Gamma Renewal Process, $\lambda_A, \gamma_A, \{A(l)\}_{l \in P}$, *Pkts in a Flow*,
 – **Result:** $X(t) = \sum_i \sum_{p=1}^{P(i)} \delta(t - t_F(i)) - \sum_{l=0}^{p-1} A_i(l)$,

• INTUITIONS:
 – **Back to Point Processes — Packet Arrival Processes**,
 – **Flow and Packet Levels**,
 – **Physical Parameters Relevant to Traffic Modelling**,
 – **Heavy Tails (β) in Pkt Numbers P — Long Range Dependence $H = 2 - \beta$.

[78]
Cluster Point Process and Scaling?

- **Fit**: Adjust CPP Params $\lambda_F, \mu_P, \beta, \lambda_A, \gamma_A$ to Data,

Data

<table>
<thead>
<tr>
<th>q</th>
<th>$q = 0.5$</th>
<th>$q = 1$</th>
<th>$q = 4$</th>
<th>$q = 6$</th>
</tr>
</thead>
</table>

- **Gamma Renewal**: Fit Marginals,
- **Heavy Tail in Pkt Nb → Long Range Dependence at Coarse Scale**,
- Reproduce the Two Ranges and the Separation Position,
- **Mimic Scaling (MultiFractal)** at Fine Scales, BUT,
- Theoretically **Not Scaling** at Fine Scales, BUT,
- Actual Practical Analysis Tools Cannot Discriminate.
CONCLUSIONS

- **Scaling in Computer Network Traffic?**
 - Two ranges of scales,
 - Long range dependence at coarse scales,
 - Scaling at fine scales? Controversial!
 - If scaling at fine scales: MultiFractal? Controversial!
 - Valid at packet and flow levels,
 - Cluster point process,
 - Future evolution (Internet is a living beast)?

- **Analysing Scaling in Data? Think Wavelet**
 - Conceptual adequation,
 - Practical simplicity,
 - Robustness.

- **MultiFractal Analysis?**
 - A very intricate issue!!

- **Theoretical Analysing of Scaling?**
 - Goodness of fit: Scaling or not scaling,
 - Goodness of fit: Self-similarity vs MultiFractal,
 - Parameter estimation.
REFERENCES AND RESOURCES

Patrice.Abry@ens-lyon.fr

perso.ens-lyon.fr/patrice.abry