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We study the statistical performance of multiresolution-based estimation procedures for
the scaling exponents of multifractal processes. These estimators rely on the computa-

tion of multiresolution quantities such as wavelet, increment or aggregation coefficients.

Estimates are obtained by linear fits performed in log of structure functions of order q
versus log of scale plots. Using various and recent types of multiplicative cascades and a

large variety of multifractal processes, we study and benchmark, by means of numerical

simulations, the statistical performance of these estimation procedures. We show that
they all undergo a systematic linearisation effect: for a range of orders q, the estimates

account correctly for the scaling exponents; outside that range, the estimates signifi-
cantly depart from the correct values and systematically behave as linear functions of

q. The definition and characterisation of this effect are thoroughly studied. In contra-

diction with interpretations proposed in the literature, we provide numerical evidence
leading to the conclusion that this linearisation effect is neither a finite size effect nor a

infiniteness of moments effect, but that its origin should be related to the deep nature

of the process itself. We comment on its importance and consequences for the practical
analysis of the multifractal properties of empirical data.
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1. Motivation

Scaling. During the last twenty years, scaling phenomena and scale invariance

have been observed in a wide range of applications of very different natures (hydro-

dynamic turbulence, computer network teletrafic, body rhythms in biology,. . . to

name but a few). In many applications, accurately measuring scaling exponents

is a key issue, for classification and modelling of empirical data as well as for the

analysis of the physical mechanisms producing scaling phenomena. Therefore, their

detection, analysis and characterisation received considerable efforts and is still an

active research area.

Most often, the practical definition of scaling in empirical time series X(t) is

based on multiresolution quantities (hereafter, TX(a, t)), i.e., quantities that de-

pend jointly on the time t and an analysis scale a. For instance, the TX(a, t) can

stand for the increment, wavelet or box-agreggated coefficients of the process. Scal-

ing phenomena are commonly associated to a power law dependence of statistical

quantities of order q of the |TX(a, t)| with respect to the analysis scale a:

IE|TX(a, t)|q ' cq|a|ζ(q), am ≤ a ≤ aM , qm ≤ q ≤ qM , (1.1)

1
na

na∑
k=1

|TX(a, tk)|q ' cq|a|ζ(q), am ≤ a ≤ aM , qm ≤ q ≤ qM . (1.2)

Though quite often overlooked, it is worth noting that such behaviours may be

valid only within a finite range of scales a ∈ [am, aM ] and for a finite range of

orders q ∈ [qm, qM ], e.g., IE|TX(a, t)|q may no longer exist beyond a critical q value.

Estimation procedures. The practical study of scaling mainly consists in de-

tecting power law behaviours as in Eqs. (1.1) and (1.2), in estimating the corre-

sponding scaling exponents, in identifying the mathematical model (e.g., self similar

processes, multifractal processes. . . ) that better fits the data. The estimation of the

scaling exponents is essentially performed in three steps. First, from the observed

time series, one computes the multiresolution coefficients TX(a, t). Second, one com-

putes the structure functions Sn(q, a) = 1
n

∑n
k=1 |TX(a, k)|q. Third, one measures
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the slope ζ̂(q, n) in a log a versus logSn(q, a) diagram.

MultiExponent MultiFractal Processes. Unlike self-similar processes, mul-

tifractal ones cannot be defined through a single, generally valid definition. In the

present work, we choose to use the following operational definitiona: a process

X is said to be multifractal when Eqs. (1.1) or (1.2) hold in the range of scales

0 ≤ a ≤ aM and for a given range of qs. Note that this includes processes usually

referred to as monofractal as special cases. However, we will not consider here all

multifractal processes but will restrict ourselves to the subset defined by the fact

that the scaling exponents ζ(q) depart from a strict linear behaviour in qb. This

class will be hereafter referred to as MultiExponent MultiFractal (MEMF) processes

for convenience, and is summarised as:

MEMF: ζ(q) 6= qH. (1.3)

The very example of such processes consists of the celebrated Mandelbrot’s cas-

cades. However, such constructions, as well as the processes that can be derived from

them, suffer from important drawbacks: their increments are not wide sense station-

ary (a much desired property as far as the modelling of empirical data is concerned)c

and their scaling behaviours are valid for a specific discrete set of scales only instead

of holding continuously (i.e., for all scales) as suggested in Eq. (1.2). It has been

suspected that some of the results reported in the literature on the behaviours of

the estimators of scaling exponents observed on those specific cascades might be

strongly related to their particularities. In the recent literature11,41,7,8,15,14, new

classes of multifractal processes were proposed, with known and a priori prescribed

ζ(q), with stationary increments and continuous scale invariance. They are, hence,

significantly renewing the possibilities and interests in studying the statistical per-

aWe are aware that such a definition, led by empirical considerations, does not follow the usual
definition for multifractals22,23,36,9.
bNote that this class excludes a priori self-similar processes, Levy motions22, multifractional Brow-
nian motion12.
cIt implies that scaling take the form of Eq. (1.2) while the preferred form in Eq. (1.1) is not valid.
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formance of the ζ̂(q, n) and are motivating the present work.

Goals and methodology. Two major classes of stochastic processes are com-

monly used to model scaling: self similar processes (see e.g.,37) versus multifractal

processes (see e.g.,36). Estimation issues for the former class have been thoroughly

addressed elsewhere (see e.g.,1) and are not considered here. Though considered

in a restricted number of research articles20,13,1,6, estimation procedures for the

latter class received far less attention. Hence, the aims of this work are to present

numerical studies that qualify, quantify and interpret the statistical performance

of the multiresolution based estimation procedures ζ̂(q, n), defined below, for the

ζ(q), when they are applied to given classes of multifractal processes.

This is achieved by applying the ζ̂(q, n) to a large number of independent re-

alisations of identical multifractal reference processes. Statistical performance are

inferred from averaging over the realisations. This benchmarking is performed for

three categories of multiresolution based estimators, based on wavelets, increments

and aggregation, for three types of multiplicative cascades (canonical Mandelbrot

cascades, compound Poisson cascades, infinitely divisible cascades), from which four

classes of processes can be constructed (density, measure, fractional Brownian mo-

tion in multifractal time, multifractal random walk).

Results. Our first major result consists in showing the existence of a lineari-

sation effect in the behaviour of the estimators as a function of q: the estimated

exponents ζ̂(q, n) account for scaling exponents only for values of q within an in-

terval q ∈ [q−∗ , q
+
∗ ] and systematically behave according to an affine function of q

outside this interval. The bounds q±∗ are defined. We comment on the fact that

strangely and despite its systematic nature, this effect has been almost totally

overlooked in the huge literature related to the analysis of multifractal scaling in

applications. However, it has originally been reported in a seminal work on cascades

in turbulence by Mandelbrot27 and then thoroughly and carefully studied in the
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case of the Mandelbrot’s cascades in a limited number of research papers.

In most of these works38,39,40,42,28, the linearisation effect is related either to a

finite size effect — there should exist a maximal observable singularity depending

on the sampling rate — or to infiniteness of the moments of the process beyond

a given statistical order q. Our second major result is to show that the numerical

experiments presented here clearly and non ambiguously reject those two interpre-

tations.

A restricted number of papers17,21,30,31,33 studied theoretically the linearisation

effect in the same specific case of the density of a Mandelbrot’s cascade analysed

with the only box-aggregation procedure. Our third major result lies in the fact

that our characterisation of the linearisation effect not only falls in complete agree-

ment with these theoretical studies but also suggests that they can be extended to a

much wider context: new classes of cascades, new types of processes and new fami-

lies of multiresolution based estimators. Following33 and remarks borrowed from11,

we relate this linearisation effect to the very nature of the processes rather than to

the estimation procedures themselves.

Outline. Definitions of the estimators are given in Section 2. Section 3 sum-

marises the definitions and properties of the MEMF processes (positive multiplica-

tive martingales) actually used in the present work for the benchmarking of the

estimation procedures. Empirical results and conjectures are reported in Section

4 while Section 5 proposes comments and interpretations on the origin, nature,

practical importance and consequences of the linearisation effect.

2. Multiresolution based estimators for the scaling exponents

Multiresolution quantities. Let X denote the scaling process under consid-

eration. Let us start recalling that the multiresolution quantities TX(a, t; f0) are

obtained from comparisons, by means of inner products, between X and a collec-
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tion of functions {fa,t, t ∈ R, a > 0}:

TX(a, t; f0) =
∫

R
X(u)fa,t(u)du, with fa,t(u) =

1
a
f0

(
u− t

a

)
. (2.4)

Each specific choice of mother-function f0 gives birth to the definition of a particular

estimator. The three estimators considered here are obtained from:

EI(N), Aggregation : f0(u) = (β0(u))∗N , where β0(u) = 1 if 0 ≤ u < τ0
EII(N), Increment : f0(u) = (I0(u))∗N , where I0(u) = δ(u+ τ0)− δ(u)
EIII(N), Wavelet : f0(u) = ψ0,N (u), where ψ0,N (u) is a standard mother wavelet,

(2.5)

where τ0 is an arbitrary positive constant and (f0(u))∗N , N ∈ Z∗+, indicates that

the function f0 is convolved with itself (N−1)-times. A mother wavelet26 is mainly

characterised by its number of vanishing moments, an integer N ≥ 1, such that:∫
R
tkψ0,N (t)dt ≡ 0, k = 1, . . . , N − 1,

∫
R
tNψ0,N (t)dt 6= 0. (2.6)

It is well known that the selection of the number of vanishing moments and the pos-

sibility to vary it plays a key role in the practical analysis of scaling. This has been

thoroughly discussed for the case of self similar or long range dependent processes1.

To perform fair comparisons between estimators, it is natural to introduce N into

EI(N) and EII(N), through (β0(u))∗N and (I0(u))∗N , respectivelyd.

Structure functions and dyadic grid. From the multiresolution quantities

TX(a, t), one defines the so-called structure functions:

Sn(q, aj ; f0) =
1
nj

nj∑
k=1

|TX(aj , tj,k; f0)|q, (2.7)

where n denotes the observation duration (0, n] of the process X (i.e., practically

it means that X is available through its samples {X(1), . . . , X(n)}) and nj is the

number of coefficients TX(aj , tj,k; f0) at scale aj , roughly nj ' n/aj . When the

dFor the increments (i.e., for EII), N exactly is the number of vanishing moments , as in Eq.
(2.6). For the aggregation procedure (i.e., for EI), the situation is different since (β0(u))∗N has
strictly speaking 0 vanishing moments, whatever N . In this case, N mainly controls the regularity
of the analysing function f0, as in the wavelet case (cf.26). In the analysis of scaling, however,
regularity plays a far less crucial role compared to that of the number of vanishing moments.
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{TX(a, tk; f0)}k∈Z form stationary sequences at a given scale, the time averages

Sn(q, aj ; f0), can be seen as estimators for the ensemble averages IE|TX(a, t)|q.

Without loss of generality with respect to the results reported in Section 4, we have

chosen to compute the multiresolution coefficients TX(aj , tj,k; f0) on a discrete sub-

set of points (aj , tj,k) = (2j , k2j), known in the wavelet terminology as the dyadic

grid. For EIII(N), it amounts to compute the Discrete Wavelet Transforme.

Definition of the estimators. The estimators consist in performing un-

weightedf linear regressions in log-log plots over the range of octaves j ∈ [j1, j2]:
Yq,j = log2 Sn(q, 2j ; f0) versus log2 2j = j,

ζ̂(q, n) =
∑j2

j=j1
wjYq,j ,

wj = (S0j − S1)/(S0S2 − S2
1), with Sm =

∑j2
j1
jm, m = 0, 1, 2.

(2.8)

Comments. By definition, EI(N) can be applied only to first order stationary

processes with positive values, (it can hence be applied only to the density Qr de-

fined in Section 3). Therefore, the box-aggregated coefficients are strictly positive

random variables with PTX(a,t)(T = 0) ≡ 0 and hence their moments are likely to

exist a priori for all q ∈ R. EI(N) can hence be defined a priori with q ∈ R. Con-

versely, by construction, the TX(a, t) for EII(N) and EIII(N), i.e., the increments

and the wavelet coefficients of X, form stationary sequences for all non stationary

processes whose increments of order smaller than N are stationary (they can hence

be applied to the processes A, VH , YH defined in Section 3). However, the TX(a, t)

for EII(N) and EIII(N) are 0-mean, positive and negative random variables, such

that PTX(a,t)(T = 0) > 0 for all the processes studied here. Therefore, their mo-

ments are finite only for q > −1. Hence, EII(N) and EIII(N) are defined only for

q > −1.

eThe reasons that led to that choice are twofold. First, it is known from the wavelet analy-
sis of self-similar processes that the use of the dyadic grid brings close to optimal estimation
performance1,2, this has been confirmed in preliminary analysis of multifractal processes16. Sec-
ond, the TX(2j , k2j ; f0) can be computed, for all three estimators, using fast Mallat type pyramidal
recursive algorithms26.
fThis is supported by arguments developed in13.
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3. Multiplicative Processes

Except for the case of the generalised random wavelet series introduced in4, all the

MEMF processes introduced in the literature and for which a synthesis procedure is

so far available are defined through a multiplicative cascade construction. Therefore,

we concentrate on positive multiplicative cascades in the present work. Roughly, a

multiplicative cascade consists of a recursive procedure that re-distributes the mass

inside a given set according to a geometric fragmentation rule. The limiting object

generated by such a procedure displays multifractal scaling behaviours as in Eqs.

(1.1) or (1.2) and the scaling exponents ζ(q) are related to the generator of the

cascade (i.e., the rules of re-distribution of the mass).

3.1. Multiplicative cascades

Canonical Mandelbrot’s Cascades Let us start by recalling the definition

of the historical and celebrated canonical multiplicative Mandelbrot’s cascades27

(hereafter referred to as CMC). Two key ingredients are entering their construction:

a rigid geometrical grid and independent identically distributed (i.i.d.) random

multipliers. An initial interval on the real line is splitted into twog. This splitting

procedure is then iteratively applied to each subintervals so that after J iterations

one ends up with a set of dyadic intervals {Ij,k = [k2−j , (k+1)2−j), j = 1, . . . , J, k =

1, . . . , 2j}. To the Ij,k are associated multipliers Wj,k, consisting of positive i.i.d.

random variable with mean equal to one and characterised by (the opposite of the

logarithm of) their moment generating function,

ϕ(q) = − log2 IEW
q, (ϕ(1) = 0). (3.9)

gEquivalent constructions based on the splitting of each interval in b ≥ 2 subintervals instead of
2 have also been proposed.
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At resolution r = 2−J , the cascade, or density Qr(t), is obtained at time t as the

product of all the Wj,k associated to the Ij,k containing t (see Fig. 1, top left):

Qr(t) =
∏

{(j,k):1≤j≤J,t∈Ij,k}

Wj,k. (3.10)

Scaling behaviours for the CMC, such as those of Eq. (1.2), constitute a well-known

result, cf. e.g.,27,36:

IE

[
1
n

n∑
k=1

(
lim
r→0

1
2−j

∫ (k+1)2−j

k2−j

Qr(u)du

)q]
= cq|2−j |ϕ(q), 2−j < 1. (3.11)

CMCs have been the first, and up to a recent past, the only construction yielding

stochastic processes with a priori controlled scaling properties. However, from a

data modelling point of view, they suffer from two major drawbacks. First, they

possess discrete scale invariance only: the scaling behaviour in Eq. (3.11) above only

holds for specific scales, aj = 2−j . Second, the density Qr(t) is not a stationary

processh: indeed, the construction is not time-shift invariant since all time positions

t do not occupy equivalent positions at the end of the rigid dyadic tree.

Compound Poisson Cascades. To overcome those two major drawbacks, Bar-

ral & Mandelbrot proposed to replace the deterministic or rigid dyadic grid with a

random geometry11. This construction starts with a Poisson random point process

(ti, ri)i∈I , defined on a rectangle I :, r ≤ r′ ≤ 1, 0 ≤ t′ ≤ T and with density

dm(t′, r′) (see Fig. 1, top right). Positive, with mean one, i.i.d. multipliers Wi are

associated to the (ti, ri)i∈I . The corresponding density Qr(t), referred to a com-

pound Poisson cascade (CPC hereafter), is then defined as the product of the Wi

corresponding to points within the cone Cr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t− r′/2 ≤ t′ ≤

t+ r′/2}, the normalisation factor ensures IEQr = 1:

Qr(t) =

IE[
∏

(ti,ri)∈Cr(t)

Wi]

−1 ∏
(ti,ri)∈Cr(t)

Wi. (3.12)

hEq. (1.2) holds but Eq. (1.1) does not.
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The choice dm(t, r) = c/r2drdt together with the triangle-shaped cone Cr(t) ensures

that the density Qr(t) presents power law behaviours as in Eq. (1.1) (cf.11,8,14):

IE

[(
lim
r→0

1
a

∫ t+aτ0

t

Qr(u)du)
)q
]

= cq|a|ϕ(q), a ≤ 1, (3.13)

where

ϕ(q) = c[1− IEW q − q(1− IEW )], (ϕ(1) = 0). (3.14)

Infinitely Divisible Cascades. Noting that compound Poisson distributions

fall into the general class of infinitely divisible distributions, the discrete product

Qr(t) ∝
∏

(ti,ri)∈Cr(t)Wi = exp[
∑

(ti,ri)∈Cr(t) logWi] can be further generalized to

the exponential of a continuous random measure dM(t, r), with control measure

dm(t, r)41, cf. Fig. 1, bottom right). This leads to the definition of infinitely divisible

cascades (IDC)8,14,32. The corresponding density Qr reads:

Qr(t) = (IE expM(Cr(t)))−1 exp
∫
Cr(t)

dM(t′, r′). (3.15)

Again, the normalisation ensures that IEQr(t) = 1. The continuous measure M

needs to be defined from an independently scattered infinitely divisible distribution

G with moment generating function G̃(q) = e−ρ(q)18. Again dm(t, r) = c/r2drdt and

the triangle-shaped cone Cr(t) imply that Qr(t) presents power-law behaviours that

can be written exactly as in Eq. (3.13) above with ϕ(q) = ρ(q)− qρ(1), (ϕ(1) = 0).

Positive martingales, degeneracy and divergence of moments. From the

mathematical viewpoint, the three types of cascades Qr defined above form positive

multiplicative martingales. This property rises a number of issues that will appear

of important practical interest in the analysis of the results in Sections 4 and 5.

The results of this paragraph were proven independently for CMC24, for CPC11 and

for IDC8. By construction, the densities Qr(t) converges almost surely to 0 as the

resolution r decreases to 0 so that one is led to define the corresponding measure
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A(t) as:

A(t) = lim
r→0

∫ t

0

Qr(s)ds. (3.16)

A(t) is a non degenerated process if ϕ′(1−) ≥ −1. Moreover, the moments of A are

finite only within a range of orders q: q ∈ [q−c , q
+
c ], where q−c and q+c are defined,

for the three cascadesi, as:

q+c = sup{q ≥ 1 : q + ϕ(q) ≥ 1} q−c = b inf{q ∈ R : IEW q <∞}, (3.17)

where b corresponds to the number of splitting blocks of the CMC (b = 2 here),

b = 1 for the CPC. Furthermore, A(t) also presents power law behaviours as in Eqs.

(1.1) and (1.2), cf. Section 3.3.

3.2. Multiscaling Stochastic processes

Despite their possessing a priori prescribed multiscaling properties, the processes

Qr(t) and A(t) may not be general enough for the modelling of empirical data since

the former takes positive values only and the latter displays non negative variations

only. This section discusses two alternatives recently introduced in the literaturej.

Fractional Brownian motion in Multifractal time Following an idea that

goes back to Mandelbrot29 and was further developed in36, one can define a process

with prescribed scaling exponents as well as positive and negative fluctuations.

Let A be a measure obtained from one of the three densities Qr (CMC, CPC, IDC)

defined above, and let BH denote fractional Brownian motion37 with Hurst param-

eter 0 < H < 1 . The process obtained by warping the time variable according to

iNo theoretical result is available for q−c in the IDC case.
jRandom wavelet cascades3 also provide a solution. Because they suffer from the same drawbacks
as CMCs, we did not consider them here.
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t→ A(t) is called fractional Brownian motion in Multifractal time (MF-FBM)k:

VH(t) = BH(A(t)), t ∈ R+. (3.18)

Multifractal Random Walk Another possible choice was proposed by Bacry

et al.7,32,8. It consists whenever it is mathematically sound to perform a stochastic

integration of a density Qr as defined above, against fractional Brownian motion.

This integration contains numerous mathematical involved issues not discussed here

(the process is well defined only when 2H + ϕ(2) − 1 > 0, cf.32). Hence, YH is

practically defined through the limit of Riemann sums (following7,32, this process

will be referred to as Multifractal Random Walk (MRW)l ):

YH(t) = lim
∆t→0

YH,∆t(t) = lim
∆t→0

t/∆t∑
k=0

Qr(k∆t)(BH(k∆t)−BH((k − 1)∆t)). (3.19)

3.3. Scaling properties

The properties of the processes A, VH and YH are directly inherited from those

of the Qr they are defined from. This implies that when constructed from CMCs,

their increments suffer from non stationarity and discrete scale invariance, while

based on CPCs or IDCs, they possess stationary increments and continuous scale.

The scaling properties of the different processes can be expressed, when aτ0 < 1,

as follows (these results are gathered from36,11,8,14). For CMCs, one hasm:

Qr,
1
n

∑n
k=1(limr→0

1
2−j

∫ (k+1)2−j

k2−j Qr(u)du)q = Sn(q, 2−j ;β0) ' cq|2−j |ϕ(q),

A, 1
n

∑n
k=1 |A((k + 1)2−j)−A(k2−j)|q = Sn(q, 2−j ; I0) ' cq|2−j |q+ϕ(q),

VH ,
1
n

∑n
k=1 |VH((k + 1)2−j)− VH(k2−j)|q = Sn(q, 2−j ; I0) ' c

′

q|2−j |qH+ϕ(qH),

YH ,
1
n

∑n
k=1 |YH((k + 1)2−j)− YH(k2−j)|q = Sn(q, 2−j ; I0) ' c

′′

q |2−j |qH+ϕ(q).

(3.20)

kIn the original definition the label fractional Brownian motion in Multifractal time was used
only for the case where A(t) was obtained from a Mandelbrot’s cascade (CMC); the definition
here is therefore an extension to the CPCs and IDCs. It was labelled Infinitely Divisible Cascading
random walk and log-infinitely divisible multifractal random walk in14,32, respectively.
lThough the soundness of this extension has not yet been proven in general7,32, we extend this
definition to the three types of densities Qr described here. Since numerical simulations are discrete
by nature, the simulation of YH,∆t is easy and can be used as a surrogate definition.
mThe symbol ' stands for the fact that one would have an exact = in the limits n → +∞ and
2−j → 0, cf.36 for precise details. For practical purposes, this ' cannot be distinguished from a
strict =.
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For CPCs and IDCs, one hasn,

Qr, IE(limr→0
1
a

∫ t+aτ0

t
Qr(u)du)q = IE|TQ0(a, t;β0)|q ' cq|a|ϕ(q),

A, IE|A(t+ aτ0)−A(t)|q = IE|TA(a, t; I0)|q ' cq|a|q+ϕ(q),

VH , IE|VH(t+ aτ0)− VH(t)|q = IE|TVH
(a, t; I0)|q ' c′q|a|qH+ϕ(qH),

YH , IE|YH(t+ aτ0)− YH(t)|q = IE|TYH
(a, t; I0)|q ' c′′q|a|qH+ϕ(q).

 (3.21)

Examples of sample path for Qr, A, VH , YH are shown in Fig. 2.

3.4. Synthesis procedures - Number of integral scales versus

resolution (or depth) of the cascade

We developed Matlab procedures to synthesise the processes defined above. They

are documented in14,15 and available upon request. This section does not intend to

detail them but rather to put the emphasis on two key issues: the resolution r of

the cascades and the number nL of integral scales.

The constructions of multiplicative cascades described above imply that scaling hold

from a maximal (or integral) scale L, down to a minimal scale corresponding to the

resolution r of the cascade. This means that the scaling reported in Eqs. (3.20) or

(3.21) are practically valid in the range r < aτ0 < L. Actually, only the ratio L/r

— the depth of the cascade — matters, hence L was arbitrarily labelled L = 1

above (cf. Section 3.1). Practically, we are working with discrete time time series,

with sampling period Ts. It is natural14 to tie the sampling period to the resolution,

Ts = r. The number of samples n corresponding to the observation duration reads

n = nLL/r where nL stands for the number of integrals scale. Varying n amounts

either to decrease the resolution r → 0 for a given nL or to increase the number of

observed integral scales nL for a given resolution. For ease of exposition, those two

different asymptotic behaviours will be referred to as — given nL, r → 0 — and

— given r, nL → +∞ —, respectively. The results and interpretations reported in

Sections 4 and 5 investigate both limits and are valid for these two cases.

nThe symbol ' stands for the fact that one would have an exact = in the limits a→ 0, cf.8,14,15

for precise details. For practical purposes, this ' cannot be distinguished from a strict =.
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4. Linearisation effect: analysis and formulation

4.1. Methodology.

The estimation performance of the ζ̂(q, n) are obtained from numerical simulations:

the estimators ζ̂(q, n) are applied to nbreal copies of a chosen process X. The

statistical characteristics (expectations, variances, . . . ) of the ζ̂(q, n) are deduced

from averaging over realisations. In the present work, we used standard orthonormal

Daubechies wavelets26, N = 1, . . . , 10. We set by convention r = Ts = τ0 = 1,

n = 2J , L = 2JL , nL = 2J−JL , JL = 10, . . . , 16, J = 8, . . . , 17, nbreal = 1000,

j1 = 3, j2 =min(J − (2N + 1), JL − 1).

4.2. Empirical findings

Linearisation effect. The application of the estimation procedures to a very

large number of realisations of a studied process leads to the observation of

the following fundamental empirical fact. While q belongs to a specific interval

q ∈ [q̂−o , q̂
+
o ], the estimates ζ̂(q, n) account for the ζ(q), given by the theoretical

considerations on the studied process developed in Section 3 ; when q is outside that

interval, q /∈ [q̂−o , q̂
+
o ], the ζ̂(q, n) significantly depart from the theoretical ζ(q) and,

besides that, systematically behave as a linear function of q: ζ̂(q, n) = α̂±o + β̂±o q.

We refer to this behaviour as to a linearisation effect of the ζ̂(q, n) with respect

to q.We put the emphasis on the fact that this occurs for each and every single

realisation of the process and not only on average. The quantities q±o , α̂
±
o and β̂±o

are random variables, taking values that depend on each realisation. It is illustrated

in Fig. 3, top row, on (5 realisations of) two specific examples: left column, CMC,

Qr, EI(1); right column, CPC, VH , EIII(3).

Legendre transforms. Because it turns a straight line into a single point, the

Legendre transform can be thought of as an interesting tool to study the lineari-

sation effect. Let d denote the Euclidean dimension of the space over which the
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process X is definedo, the Legendre transform D(h) of the function ζ(q) is definedp

as (see e.g.,36):

D(h) = d+ Infq (qh− ζ(q)) . (4.22)

Fig. 3, middle row, compares the Legendre Transforms, D̂(h, n), of the estimates

ζ̂(q, n) obtained from each single observation to that, D(h), of the theoretical func-

tion ζ(q). It shows that, within an interval h ∈ [ĥ−o , ĥ
+
o ], the D̂(h, n) tend (to

superimpose) to D(h). It also shows that the D̂(h, n) are abruptly ended by ac-

cumulation points, whose coordinates in the plane (h,D) are labelled (ĥ±o , D̂
±
o ).

The existence of these accumulation points constitutes another evidence for the

linearisation effect and the Legendre transform immediately yields α̂±o = d − D̂±
o

and β̂±o = ĥ±o . Fig. 3, bottom row, shows accumulation points, (ĥ+
o , D̂

+
o ), obtained

from 1000 realisations of the same process. Again, they consist in random variables

depending on realisations. However, one can notice that they are spread in the

neighbourhood of the theoretical curve D(h) and mainly concentrate around the

right and left zeroes of D(h): D(h) = 0.

Dependence with the number of samples n. Since the parameters,

q̂o, α̂o, β̂o, D̂o, ĥo, defining the linearisation effect are random variables taking val-

ues that depend on each realisation, we now investigate the dependence of their

statistics with respect to the number of samples n of the process. The measures of

ĥo, α̂o, β̂o, D̂o are straightforward ; q̂o is computed by equating |ζ̂(q, n)− ζ(q)| and

|ζ̂(q, n)− (α̂o + β̂oq)|. Fig. 4 shows the means and standard deviations of q̂o, D̂o, ĥo

as a function of log2(n) for the asymptotic behaviours — given nL, r → 0 — (right

column) and — given r, nL → +∞ — (left column). Major conclusions can be

drawn from these plotsq. First, the mean values of the parameters characterising

the linearisation effect do not depend on n. This implies that the critical q, above

oFor a 1D time series: d = 1.
pWhen ζ(q) is a continuously differentiable function, D(h) = q(h) dζ

dq
(q(h))− ζ (q(h)), where q(h)

is derived from h = dζ
dq

(q).
qPlots for α̂o, β̂o are not shown for space reasons but would yield identical conclusions.
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which the linearisation occurs, has no functional dependence with the observation

duration n, the average linear function α + βq on which the ζ̂(q, n) collapse does

not vary when n is increased. Therefore, the linearisation effect is in no way

a finite size effect, that would weaken or disappear when n → +∞. Sec-

ond, for a given number of integral scales (right column), the standard deviations

of the fluctuations of the parameters characterising the linearisation effect decrease

as r → 0. In the ideal limit r → 0, q̂o, α̂o, β̂o, D̂o, ĥo may be exactly identical for

all realisations of a same process. Third, for a given resolution (left column), the

standard deviations of the fluctuations of the parameters characterising the lineari-

sation effect remain constant as soon as the observation duration is larger than a

single integral scales n > nL (or J > JL) and do not decrease with the increase of

the number of available scales nL (cf. Fig. 4, where JL = 11). This implies that the

linearisation effect is not a low performance statistical estimation issue,

this is a key information with respect to parameter estimation issues under current

investigations (see25). Note however that Fig. 4 also indicates that in situations

where the observation duration is too short, i.e., when it does not even cover a

single integral scale of the analysed process (in our notations, n ≤ L/r or J ≤ JL),

the linearisation effect may be hidden by dominant estimation issues: ζ̂(q, n) and

q+∗ are then poorly estimated and their low statistical performance depend on n.

Generality. We now wish to put the emphasis on the fact that the experi-

mental findings reported above hold systematically for the three types of cascades

(CMC, CPC, IDC), for the four declinations of MEMF processes (Qr, A, VH , YH),

described in Section 3 as well as for the three families of multiresolution estima-

tors EI(N), EII(N) and EIII(N), and for both types of asymptotic behaviours

— given nL, r → 0 — and — given r, nL → +∞ —: it does not disappear in the

limit of an infinite observation duration and its parameters do not depend on the

observation duration nor on the depth of the cascade.

We also mention that other declinations on multiresolution estimators, such as
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e.g., the Wavelet Transform Modulus Maxima10, are subject to an identical lineari-

sation effect.

As a further extension, let us mention that the linearisation effect occurs identi-

cally for random fields defined in dimension higher than 1. Fig. 5 shows an example

of the linearisation effect observed on a two dimensional cascade (a 2D-CMC), in

that case, d = 2 in the definition of the Legendre transform in Eq. (4.22).

4.3. Conjecture

Based on the fact that the empirical observations reported above are obtained from

large numbers of realisations, for a wide variety of cascades, with various choices

for ϕ(q), for different MEMF-processes and with various types of estimators, we are

led to formulate the following conjecture regarding the behaviour of the ζ̂(q, n).

Critical points. From the Legendre transform of the function ζ(q), we define

the critical values, D±
∗ , h

±
∗ , q

±
∗ , that will enter the theoretical characterisation of

the linearisation effect. Note that these critical quantities depend on the

definition of the process itself only and not on the estimation procedures:

(h±∗ , D
±
∗ ) such that D±

∗ = 0 and D(h±∗ ) = 0,
q±∗ such that h±∗ = (dζ(q)/dq)q=q±∗

,

α±∗ , β ∗± such that α±∗ = d−D±
∗ , β∗± = h±∗ .

 (4.23)

For sake of simplicity and without loss of generality, we restrict here the analysis

to the cases where q−∗ ≤ −1.

Conjecture. For any MEMF-process (cf. definition in Section 1 and Eq. (1.3)),

the ζ̂(q, n) behave as:

EI


ζ̂(q, n) = α̂−o + β̂−o q → d−D−

∗ + h−∗ q, q ≤ q−∗ ,

ζ̂(q, n) → ζ(q), q−∗ ≤ q,≤ q+∗ ,

ζ̂(q, n) = α̂+
o + β̂+

o q → d−D+
∗ + h+

∗ q, q ≥ q+∗ ,

(4.24)

EII&III

{
ζ̂(q, n) → ζ(q), −1 < q ≤ q+∗ ,

ζ̂(q, n) = α̂+
o + β̂+

o q → d−D+
∗ + h+

∗ q, q
+
∗ ≤ q.

(4.25)
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Eqs. (4.24) and (4.25) above mean that (ζ̂(q, n) − ζ(q) − B(q, n))/
√
V (q, n) when

q ∈ [q−∗ , q
+
∗ ] and (ζ̂(q, n)− (d−D±

∗ + h±∗ q)−B(q, n))/
√
V (q, n) when q /∈ [q−∗ , q

+
∗ ]

converge to random variables with unit variance zero mean limiting laws P and

P ′. The terms B(q, n) and V (q, n) account for biases and variances of the ζ̂(q, n).

Their precise forms depend on the exact nature of the studied processes, on q, on the

chosen estimator and require specific case by case formulations. However, generic

features, valid for all processes and all estimators, have been observed. The limiting

laws may significantly depart from a normal law. In the limit of large n, the V (q, n)

decrease as power laws of n, V (q, n) ∼ Λqn
γ(q), where γ(q) ' −1 for q ' 0 and

γ(q) ' −0.1 for |q| ≥ q±∗ , corresponding to an evolution from the usual n−1 fast

decrease to a very slow n−0.1 decrease. This will be detailed in forthcoming works.

Note that MEMF processes such that the critical point D(h±∗ ) = 0 is not defined

simply correspond to q±∗ = ∞. Fig. 6 shows the excellent agreement between the

prediction of this conjecture and the corresponding empirical observations.

5. Linearisation effect: interpretations and comments

5.1. Overview of the literature

Strangely enough, despite its very systematic and robust nature, this linearisation

effect has been almost completely overlooked in the fairly large number of papers

dedicated to the study of the multifractal properties of empirical data obtained from

various applications. However, following the inspiring contribution of Mandelbrot27,

a limited number of works reported the existence of the linearisation effect in empir-

ical data28,38,39,40,42 and relate it theoretically and empirically either to finiteness

of moments issues or to finite size effects. Another set of papers studies theoretically

this effect in the specific case of CMCr, for positive multiplicative martingale Qr,

and the EI(1) estimator17,21,30,31,33,34.

rThe results of33 were recently reformulated35 for conservative Mandelbrot’s cascades, Qr process
analysed with the Haar wavelet (i.e., a specific subcase of EIII(1)).
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Finiteness of moments. In his seminal work on multiplicative cascades (CMC)

in turbulence27, Mandelbrot indicates that, when the resolution r tends to 0, the

moments of the box-aggregated coefficients TQr
(a, t;β0), or equivalently the first

order increment coefficients of A, TA(a, t; I0), are infinite when q > q+c (cf. Eq.

(3.17)). Following this, the issue of the relations between infiniteness of the mo-

ments and the linearisation of the ζ̂(q) has been addressed in e.g.,38,39,40,42. The

results and analysis reported therein relate, in a number of cases referred to as first

order multifractal phase transitions, the critical order q beyond which the lineari-

sation effect occurs to the order q+c beyond which moments are infinite.

For all the cascades and processes studied here, the quantities q±c and q±∗ can be

derived theoretically (cf. Eqs. (3.17) and Eqs. (4.23), respectively). Furthermore, the

convexity of ϕ(q) enables to shows that q−c ≤ q−∗ < 0 < 1 ≤ q+∗ ≤ q+c for all types of

cascades. The numerical simulations reported in the present work are clearly and

unambiguously showing that the critical order q beyond which the linearisation ef-

fect is observed corresponds to q±∗ and not to q±c . Hence, the linearisation effect

is not related to a divergence of moments issue.

Finite size effects. A second category of analysis of the linearisation effect is em-

bedded in the multifractal formalism, for a thorough introduction, see e.g.,36,22,23.

A major property of the processes Qr, A, VH , YH lies in their sample paths being

multifractal, i.e., consisting, in the limit of small scales, in a hierarchical collec-

tion of singularities characterised by their (Hölder) exponent h, this translates tot

|X(t+ aτ0)−X(t)| ∼ c(t)ah(t), a→ 0. The multifractal spectrum D(h) consists of

the Hausdorff dimension of the set of points t on the real line where the singularities

have the same exponent h. It can be related to the scaling exponents in Eqs. (1.1)

and (1.2) through a Legendre transform.

References28,38,39,40,42 claim that, for any finite duration time series of a given

sThe case q+
∗ ≡ q+

c corresponds only to trivial processes where ϕ(q) ≡ 0.
tThis translation implies a slight oversimplification aiming at simplicity of exposition, for precise
statements, see e.g.,36.
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realisation of a multifractal process, there exists a maximal observable singularity

(characterised by a minimal h) and hence a stopping point in the estimated mul-

tifractal spectrum. This yields linearisation through an inverse Legendre transfor-

mation. Pursuing this analysis, these papers indicate that the maximal observable

singularity is dependent both on the sampling rate of the data (in our words, this

corresponds to the depth or resolution of the cascade and asymptotic behaviour —

given nL, r → 0 —) and on the number realisations of the process available for the

analysis, usually referred to as supersampling, (in our work, it corresponds to the

number of integral scales available and asymptotic behaviour — given r, nL → +∞

—). The linearisation effect is hence explained as a finite size effect.

The results reported in the present work unambiguously disagree with that anal-

ysis. They clearly show that the linearisation effect does not disappear either when

— given nL, r → 0 — or — given r, nL → +∞—. They also show that the (average

values of the) parameters entering its description do not depend on the resolution

of the cascade nor on the number of integral scales, but only on quantities entering

the theoretical definition of the process. Therefore, the linearisation effect is

not a finite size effect.

Multiplicative positive martingales and MEMF processes. Elaborating

on17, two independent and recent works by Molchan30,31 and Waymire et al.21,33,34

studied theoretically the linearisation effect in the specific context of CMC, Qr and

EI(1). The experimental observations described here as well as the definitions of the

critical parameters D±
∗ , h

±
∗ , q

±
∗ are in perfect agreement with the theoretical analy-

sis proposed in these papers. The results reported in the present work can therefore

be read and understood as evidence in favour of the extension, mutatis mutandis,

of the characterisation of the linearisation effect to new types of cascades, CMC,

CPC, IDC, to new types of MEMF processes, Qr, A, VH , YH , derived from these

cascades, to new families of multiresolution estimators, EI(N), EII(N), EIII(N),

and to different types of asymptotic behaviours.
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Furthermore, it is worth noting that the MEMF processes tested here, despite

many important differences, are all based, deeply in nature, in multiplicative pos-

itive martingales. Therefore, it could be conjectured that the linearisation effect

is deeply rooted in the multiplicative martingale nature of the process and not in

the estimation procedures themselves. It could also be suspected however that the

results reported here even more crucially depend on the MEMF classification of the

processes and occur identically for MEMF processes not defined from multiplicative

positive martingales. Such issues are under current investigations using the recently

introduced class of multifractal processes referred to as random wavelet series23,4,5.

5.2. Picturing the linearisation effect

Let Qr denote a CPC densityu. The definition of Qr as a multiplicative positive

martingale implies the existence of, not a single one but, two functions of q and two

different power law behaviours. On the one hand, from the multipliers W , comes

in the function ϕ(q), cf. Eq. (3.14). Let Dϕ(h) denote the Legendre transform of

ϕ(q). When r → 0, the following power law behaviour can be proven8,14,11:

IEQr(t)q = rϕ(q), q ∈ R. (5.26)

Note that this is not a relation describing scaling since it involves the synthesis

resolution of the cascade r and not an analysis scale a. On the other hand, the

power law behaviours of the moments of order q of the multiresolution coefficientsv

TQ0(t, a;β0) = TA(t, a; I0)/a yield another function of q, ζ(q), defined as (with

aτ0 < L):

IETQ0(t, a;β0)q = cq|a|ζ(q), q ∈ [q−c , q
+
c ],

IETQ0(t, a;β0)q = ∞, else,

}
(5.27)

uCPC is chosen because stationarity makes the statement of the arguments easier and clearer. For
sake of simplicity, we assume that ϕ(q) is defined for q ∈ R, in other words that the multipliers
W have have finite moments of any order.
vFor ease of notations, TQ0 (t, a; β0) = limr→0(1/a)

R t+aτ0
t Qr(s)ds.
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with:

ζ(q) = 1 + qh−∗ , q ∈ [q−c , q
−
∗ ],

ζ(q) = ϕ(q), q ∈ [q−∗ , q
+
∗ ],

ζ(q) = 1 + qh+
∗ , q ∈ [q+∗ , q

+
c ].

 (5.28)

Let Dζ(h) stand for the Legendre transform of ζ(q). For CMCs, Eqs. (5.27) and

(5.28), where the expectation IE is replaced by a time average limn→+∞ 1/n
∑n

k=1,

are proven in33. For CPCs, they have not been stated elsewhere as such, however,

they can be deduced from a collection of theorems in11 which contains them im-

plicitly. Up to our knowledge, no theoretical result is available for IDC.

In the specific case of CMCs, the fact that there exist two different types of

power laws had already been pointed out by Mandelbrot in27 and is referred to as

the behaviours of the bare cascade, Qr, and of the dressed cascade, TQ0(t, a;β0),

respectively38,40,42,38,39. Those last papers had noticed and established that the

moments of the dressed cascade remain finite only within a range of values of q,

q ∈ [q−c , q
+
c ] but fail to distinguish between ζ(q) and ϕ(q) and to define theoretically

q±∗ . They explained the linearisation effect by finite size effects arguments combined

together with divergence of moments (implying q+c ) issues.

Up to our knowledge, 30,33 are the first contributions that established theoret-

ically for CMCsw that ϕ(q) and ζ(q) coincide only for q ∈ [q−∗ , q
+
∗ ] and that gave

explicit definitions for q±∗ . Equivalently, it implies that Dϕ(h) and Dζ(h) coincide

only when they are both positive.

The numerical simulations reported here suggest that this picture can be ex-

tended straightforwardly to IDC. Furthermore, they also indicates that this picture

also extends, mutatis mutandis, to the processes X = A, VH , YH and to their incre-

ment or wavelet coefficients TX(t, a; (I0)∗N ) or TX(t, a;ψ0,N ). It is understood as

the fact that their definitions are deeply tied to multiplicative positive martingale

constructions. Finally, it is worth noting that the multiresolution estimators ζ̂(q, n)

are totally blind or unsensitive to the critical values q±c corresponding to the finite-

wThis was also implicitly stated in the theoretical analysis of the regularity of the sample paths
of the so-called random wavelet cascades3.
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ness of the moments and extend the linear behaviour of ζ̂(q, n) beyond q±c . This

picture is summarised and sketched in Fig. 7.

Because in applications, most of, if not all, the MEMF processes used are based

on multiplicative positive martingales, practical multifractal analysis and modelling

have been strongly misled by a potential confusion between the two functions ϕ(q)

and ζ(q). The former is related to the construction (or synthesis) of the model while

the latter traduces scaling behaviours and is hence connected to the empirical anal-

ysis point of view. The scaling analysis with the multiresolution estimators ζ̂(q, n)

can only capture ζ(q): it should therefore be decided whether one seeks to estimate

ϕ(q) or ζ(q).

Major remaining questions are: how is this picture modified for the case of

MEMF processes that are not defined from cascade constructions, in which case

the function ϕ(q) no longer exists? Are the definitions of the critical D±
∗ , h

±
∗ , q

±
∗

strongly tied to the multiplicative positive martingale nature of the processes or do

they hold for a much wider range of processes, as we suspect ? The random wavelet

series introduced in4,5 constitute an excellent and versatile model to address these

issues. As the CMCs, they suffer from non stationarity and non continuous scale

invariance, but, up to our knowledge, they provide the only known, both theoreti-

cally and practically, MEMF processes avoiding multiplicative constructions. This

is under current investigations.

5.3. Major consequences of the linearisation effect

In the practical analysis of multifractal processes, the existence of this linearisa-

tion effect has a major implication: it compels to recast the usual goal — estimate

the scaling exponents ζ(q) — into a new and more accurate one: estimate the critical

points D±
∗ , h

±
∗ , q

±
∗ and ζ(q) only within the interval q ∈ [q−∗ , q

+
∗ ]. This is addressed

in25.

In the analysis and modelling of empirical data, large orders q are often used as
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potentially rich information to discriminate between various candidate models for

the function ζ(q) (this is the case e.g., in hydrodynamic turbulence19). The exis-

tence of the linearisation effect indicates that estimated scaling exponents for large

qs must be used with care.

Furthermore, an important question raised by the analysis of scaling in empirical

data is: should one resort to mono- or multi-fractal models for an accurate descrip-

tion. In most cases, this issue is addressed through the practical rephrasing: do the

estimated scaling exponents ζ̂(q, n) follow a linear behaviour? And the correspond-

ing heuristic answer is: if yes, use a monofractal, if no, use a multifractal. From the

analysis reported in the present work, we see that such an empirical answer makes

no sense unless the linearisation effect of the ζ̂(q, n) is precisely accounted for.

6. Conclusion and perspectives

Measuring the scaling exponents on empirical data has been the subject of a

considerable amount of research works, spread in a large variety of domains. Sur-

prisingly, the linearisation effect studied here remained so far widely overlooked. It

might be because of the involved nature of the theoretical studies of the estimation

procedures for the still partially understood multifractal processes. We have indi-

cated here that the theoretical results obtained for CMC, Qr, EI(1) in17,30,33 and

characterising the linearisation effect can be extended to a much wider context:

to new types of multiplicative positive cascades, to new sets of multi-exponents

multifractal processes, to new families of multiresolution estimators, to asymptotic

behaviours of different natures. It can also straightforwardly be extended to higher

dimensions. We also clear out the facts that the linearisation effect is not related to

infiniteness of moments, that this is not a finite size effect nor an estimation diffi-

culty effect. We indicate that the linearisation effect is a limitation that is intrinsic

to the nature of the multi-exponents multifractal processes and shed a new light on

how the estimation of scaling exponents must be thought of and estimates used to
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analyse data and draw physical conclusions.

A considerable amount of work is still to be done. The design of relevant prac-

tical estimators for the critical parameters q±∗ , h
±
∗ , D

±
∗ is under study25. Detailed

analysis of the bias and variance of the ζ̂(q, n) are being performed. The incorpo-

ration of that effect into a practical procedure aiming at discriminating between

mono- and multi-fractal may also prove of valuable help. Finally, the existence of

the linearisation effect and the measurements of the corresponding critical points

for empirical data in the fields of hydrodynamic turbulence and computer network

telefraffic are being considered.
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Fig. 1. Compared illustrations for the ”time-scale” construction of multiplicative cas-
cades between, top left, Canonical Mandelbrot’s Multiplicative Cascade (CMC), top right,
Compound Poisson Cascade (CPC), bottom right, Infinitely Divisible Cascade (IDC). The grey
region indicates the cone containing multipliers that determine the value of the density at time
t. The geometrically rigid grid underlying the construction of the CMC is replaced with random
ones, a point process for the CPC, a continuously scattered measure for the IDC.
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Fig. 2. Examples of Sample Paths of multifractal processes. They are obtained from a
Compound Poisson Cascade (CPC), with IEW q = exp(µq + σ2q2) (µ = 0.1, σ = 0.03) and with
H = 3/4 for VH and YH : top left, Qr(t), top right, A(t), bottom left, VH(t) and bottom
right, YH(t).
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Fig. 3. linearisation Effect: empirical facts. Left column, EI(1) applied to a CPC, Qr (with
IEW q = exp(µq + σ2/2q2), µ = 0.04, σ2 = 0.03). Right column, EIII(3) applied to the corre-
sponding VH , (with H = 3/4). Top row, linearisation effect observed on 5 independent realisations.
Solid curves stand for the theoretical function ζ(q), derived from ϕ(q), q ∈ R, according to Eqs.

(3.20) or (3.21), while dotted ones denote the estimated ζ̂(q, n). Beyond critical values, the esti-
mates systematically follow linear behaviours in q. The vertical dashed lines indicate the positions

of the theoretical q±∗ . Middle row, Legendre transforms D(h) of ζ(q) (solid line) and D̂(h, n) of

ζ̂(q) (dotted line) for the same 5 realisations. D̂(h, n) and D(h) roughly superimpose for a range

of hs but D̂(h, n) is abruptly ended by accumulation points. Bottom row, accumulation points
obtained from 1000 realisations of the same processes. The accumulation points are widely spread
still along D(h) (solid line) and centered around the point defined as D(h) = 0.
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Fig. 4. Dependence on n: For a CPC(IEW q = exp(µq+σ2/2q2, µ = 0.05, σ2 = 0.005), VH(H =
3/4), EIII(3), left column, dependence on the number of integral scales, asymptotic behaviour
— given r, nL → +∞ —, the integral scale corresponds to 2JL with JL = 11. Right column,
dependence on the cascade resolution, asymptotic behaviour — given nL, r → 0 —, one integral
scale, nL = 1. Means plus and minus two standard deviations of the parameters characterising

the linearisation effect as a function of log2(n): top, q̂+
o , middle, ĥ+

o , bottom, D̂+
o . Dashed lines

denote the theoretical critical values D+
∗ , h+

∗ , q+
∗ . Key observations are: the mean values of the

parameters characterising the linearisation effect do not depend on n ; for asymptotic behaviour
— given r, nL → +∞ — the variances decrease as long as n ≤ nL = 2JL (i.e., the observation
duration is shorter then the integral scale) but remain constant as soon as n & nL (i.e., when the
observation duration is larger than or equal to the integral scale).
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Fig. 5. Linearisation effect: a 2D example. Top left, a 2D CMC density Qr. Right column, solid

line: theoretical ζ(q), dotted line: ζ̂(q, n), top: for 5 realisations, bottom, dotted line is obtained
by averaging over thousands of realisations, dashed line corresponds theoretical ensemble average

IEζ̂(q, n). Bottom left, Legendre transform of ζ(q) (derived from ϕ(q), q ∈ R, according to Eqs.

(3.20) or (3.21), solid line) and of IEζ̂(q, n) (dotted line). One clearly sees that a linearisation
effect occurs as in the 1D case. The formulation of its characterisation can be straightforwardly
extended from the 1D to the 2D case, mutatis mutandis.
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Fig. 6. Linearisation Effect: illustration of the major result. Left, on a CPC Qr and EI(1)
and, right, on the corresponding VH and EIII(3), as in Fig. 3. Top row, Scaling exponents: solid
line, theoretical ζ(q), derived from ϕ(q), q ∈ R, according to Eqs. (3.20) or (3.21); mixed line,

theoretical ensemble average IEζ̂(q, n) of the estimates ζ̂(q, n), the corresponding linear behaviour

is extended to the origin for clarity, dotted line, estimated value of IEζ̂(q, n) obtained by performing
averages over a large number of realisations. The vertical dashed lines indicate the positions of
the theoretical q±∗ . Bottom row, Legendre transform: solid line, theoretical D(h), derived from

ϕ(q), q ∈ R, dotted line, estimated value of IED̂(h, n) obtained from average over realisations.
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Fig. 7. Linearisation Effect: Sketched Interpretation. Let Qr denote a density obtained from
a multiplicative cascade and X a corresponding multifractal process (A, VH , YH) . The moments
of order q of the multiresolution coefficients TQ0 (a, t) (respectively, TX(a, t)) are finite only when

q ∈ [q−c , q+
c ]. Moreover, they behave as power laws of the scale a, with theoretical scaling exponents

as given in Eqs. (3.20) or (3.21) only within a subinterval q ∈ [q−∗ , q+
∗ ] ⊂ [q−c , q+

c ], and with scaling

exponents 1 + qh+
∗ (resp., 1 + qh−∗ ) when q ∈ [q+

∗ , q+
c ] (resp., q ∈ [q−c , q−∗ ]). The estimators ζ̂(q, n)

account for the scaling exponents only within q ∈ [q−∗ , q+
∗ ] and behave on average as 1 + qh±∗

elsewhere. The ζ̂(q, n) are totally blind to q±c .


