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ABSTRACT

We study the statistical performance of multiresolution (wavelet
based) estimators commonly used for the estimation of the scaling
exponentsζ(q) of multifractal processes. So far, such studies were
conducted exclusively using the celebrated Mandelbrot’s cascades.
A new class of processes, compound Poisson cascades, with better
statistical properties — stationary increments and continuous scale
invariance — has recently been proposed in the literature. Making
use of this new type of processes, we show that the multiresolution
estimators are characterised by a generic and systematic feature:
beyond a critical orderq (which is determined analytically), they
fail to estimate theζ(q) and present instead a linear behaviour in
q. We study in detail this linearisation effect and show that it does
not disappear in the limit of infinite observation durationn and that
the parameters characterising it do not depend onn. We comment
on its major practical consequences and on its having been mostly
overlooked in applications.

1. MOTIVATION

A relevant analysis of scaling phenomena and more precisely an
accurate estimation of the corresponding scaling exponentsζ(q),

IE|X(t+ aτ0)−X(t)|q = cq|a|ζ(q), (1)

has appeared as a crucial issue in a wide variety of applications
ranging from the study of the variability of body rhythms or hy-
drodynamic turbulence to internet data or stock market data mod-
elling. Estimation of theζ(q) is usually performed by estimating
the moments of orderq of some multiresolution quantities, such
as wavelet coefficients, and tracking their power law behaviours as
a function of the resolution (cf. Section 4). Besides self-similar
ones [1], multifractal processes [2] constitute one of the major
class of mathematical model used to account for scaling. How-
ever, the statistical performance of the estimators mentioned above
when applied to multifractal processes received only little atten-
tion. A reason why may lie in the fact that the only theoretically
known multifractal processes remained for a long time the cele-
brated Mandelbrot cascades [2, 3]. However, such processes have
early been recognised to suffer from two major drawbacks: scale
invariance is valid only for discrete scale ratios and does not hold
continuously, the cascades do not form stationary processes. To
overcome those difficulties, Barral and Mandelbrot recently pro-
posed the construction of Multiplicative Products of Cylindrical
Pulses, that will hereafter been referred to as Compound Poisson
Cascades (CPC) [4]. The controlled scaling properties of these
new processes, together with theirnicer statistical properties, mo-
tivate and permit the present study of the statistical performance

of the wavelet based estimators for the scaling exponentsζ(q) of
multifractal processes. The major result reported in this work lies
in the fact that the estimateŝζ(q, n) are undergoing a linearisation
effect in their behaviour inq: for q below a critical valueq∗, the
ζ̂(q, n) relevantly estimate theζ(q) whereas forq aboveq∗, they
necessarily behave linearly as a function ofq. This is studied care-
fully and related to earlier work on close issues. This also sheds a
new light on the analyses and uses of multifractal processes.

2. ESTIMATION

WAVELET COEFFICIENTS. Let ψ0 denote a mother wavelet
designed from a multiresolution analysis and characterised by its
number of vanishing momentsN . Let {ψj,k(t) = 2−jψ0(2

−jt−
k), (j, k) ∈ (Z+,Z)} denote dilated and time-shifted templates of
ψ0 (note the unusualL1 normalisation). Let{dX(j, k) = 〈ψj,k, X〉,
k ∈ Z, j ∈ Z+} stand for the Discrete Wavelet transform (DWT)
coefficients of the processX to be analysed. The reader is referred
to e.g., [5] for a detailed introduction to wavelet transforms.

STRUCTURE FUNCTIONS. Let us define the structure functions,
as time averages of wavelet coefficients at a given scale2j :

Sn(q, j) =
1

nj

njX
k=1

|dX(j, k)|q, (2)

wheren denotes the observation duration of the processX (i.e.,
practically it means the samples{X(1), . . . , X(n)} ofX only are
available) andnj is the number of coefficientsdX(j, k) at scale2j .

ESTIMATOR. The estimation consists in performing (non weighted)
linear regressions inj = log2 2j versusYq,j = log2 Sn(q, j)
plots. This reads:

ζ̂(q, n) =

j2X
j=j1

wjYq,j , (3)

where thewjs simply read:wj = (S0j−S1)/(S0S2−S2
1), with

Sm =
Pj2

j1
jm, m = 0, 1, 2, and where the linear fit is performed

over the continuous range of octavesj ∈ [j1, j2].
By definition, wavelet coefficients are positive and negative ran-
dom variables and for all the processes studied here have probabil-
ity density functions that are continuous and strictly positive in0:
hence, their moments are defined only whenq > −1 and so is the
estimator̂ζ(q, n).



3. COMPOUND POISSON CASCADES AND
FRACTIONAL BROWNIAN MOTION IN

MULTIFRACTAL TIME

COMPOUND POISSON CASCADES. Up to our knowledge, the
only stochastic processes characterised by scaling behaviours of
the type sketched in Eq. (1) and that can be a priori prescribed are
based on multiplicative cascade constructions. For a long time, the
only such known and widely used processes were the celebrated
Mandelbrot’s cascadesQr [3]. However, this is also well-known
that such processes suffer from two major drawbacks when aiming
at real data modelling: they posses only discrete scale invariance
(i.e., the scaling in Eq. (1) are valid only for a discrete subset of
scale ratios, e.g.,2j for recursive binary splitting),Qr do not form
stationary processes. This results from the recursive binary split-
ting construction that is based on a rigid time-scale geometry.
To overcome such drawbacks, a new process has very recently
been introduced and studied by Barral & Mandelbrot [4]. This
construction starts with a random point process(ti, ri)i∈I , defined
on a rectangleI = {(t′, r′) : r ≤ r′ ≤ 1,−1/2 ≤ t′ ≤ T +1/2}
and with densitydm(t, r). To the(ti, ri)i∈I are associated posi-
tive i.i.d. multipliersWi, with mean one. The corresponding den-
sityQr(t), referred to as compound Poisson cascade (CPC, here-
after), is then defined as the product of theWi corresponding to
points within the coneCr(t) = {(t′, r′) : r ≤ r′ ≤ 1, t− r′/2 ≤
t′ ≤ t+r′/2} (where the normalisation factor ensures IEQr = 1):

Qr(t) =

0@IE[
Y

(ti,ri)∈Cr(t)

Wi]

1A−1 Y
(ti,ri)∈Cr(t)

Wi. (4)

FRACTIONAL BROWNIAN MOTION IN MULTIFRACTAL TIME .
To turn this cascadeQr into a process with positive and negative
fluctuations, one can follow an idea which goes back to Mandel-
brot [6]. It will be referred hereafter as theFractional Brown-
ian motion in Multifractal time based on a CPC, CPC-MTFBM,
and is defined as follows. LetA = limr→0

R t

0
Qr(s)ds denote

the measure obtained from the CPC densityQr and letBH stand
for fractional Brownian motion with Hurst parameterH [1]. The
CPC-MTFBM is defined as:

VH(t) = BH(A(t)), t ∈ R+. (5)

STATIONARY INCREMENTS AND SCALING BEHAVIOURS. If
the densitydm(t, r) is chosen to be covariant under time trans-
lation, dm(t, r) = g(r)drdt, theQr(t) are stationary processes,
while A(t) andVH(t) have stationary increments. Moreover, if
dm(t, r) is chosen such that the average number of points on(ti, ri)i∈I
is proportional to− log r, i.e., if dm(t, r) = c(1/r2 + δ(1 −
r))drdt, thenQr(t),A(t) andVH(t) present power law behaviours
as in Eq. (1) that holds continuously for all dilation factorsa. The
corresponding proofs can be found in [4] forQr andA, and in
[7, 8] for VH . The scaling read respectively:

IE( 1
aτ0

R t+aτ0
t

Qr(u)du)
q = cq|a|ϕ(q),

IE|A(t+ aτ0)−A(t)|q = c′q|a|q+ϕ(q),

IE|VH(t+ aτ0)− VH(t)|q = c′′q|a|qH+ϕ(qH),

9=; (6)

whereϕ(q) = c((1− IEW q)− q(1−EW )). Here, we focus our
interest on the (estimation of the)ζ(q) = qH + ϕ(qH) of VH .

DEPTH OF THECASCADE AND OBSERVATIONDURATION. We
have developed the procedures used to numerically synthetize CPC-
MTFBM in M ATLAB . They are documented in [7]. The practical
synthesis of CPC-MTFBM implies that scaling behaviours hold
within a minimal and a maximal (or integral) scales (as can be
seen in the definition of the cone above throughr ≤ r′ ≤ 1). In
the present work, the corresponding scales are, by convention, set
to 20 and and2J , respectively. The total number of samples ofVH

is chosen asn = 2JL so that the relevant parameter controlling
the observation duration has to be written in numbers of integral
scales:2JL/2J .

CRITICAL POINTS AND LEGENDRE TRANSFORM. For reasons
made clear in the next section, we define the Legendre transform
D(h) = 1 + minq (qh− ζ(q)) of the1D function ζ(q) and the
theoretical critical points,D±

∗ , h
±
∗ , q

±
∗ , as:

(h±∗ , D
±
∗ ) such that D±

∗ = 0 andD(h±∗ ) = 0,
q±∗ such that h±∗ = (dζ(q)/dq)

q=q±∗
.

ff
(7)

For simplicity, we will only consider here processes such that
q−∗ < −1 and will therefore further useq+∗ , h

+
∗ , D

+
∗ only.

4. LINEARISATION EFFECT

METHODOLOGY. The performance of̂ζ(q, n) are obtained from
numerical simulations:nbreal copies of CPC-MTFBM, with IEW q =

c(1−exp(µq+σq2)), are produced and the estimatorsζ̂(q, n) are
applied to each of them. Bias, variance and statistical behaviour of
the ζ̂(q, n) are deduced from averaging over realisations. In the
present work, we selected:N = 3, nbreal = 1000, J = 11,
j1 = 3, j2 = 9, n = 2JL with JL = 9, . . . , 16.

LINEARISATION EFFECT. On all the simulations conducted, we
observed the following fundamental fact: the wavelet based esti-
mators for theζ(q) are undergoing alinearisation effectas a func-
tion of q. While q belongs to a specific intervalq ∈ [−1, q̂o], the
estimatêζ(q, n) account for the theoreticalζ(q), as defined in Sec-
tion 3. Forq outside this interval,q ≥ q̂o, theζ̂(q, n) significantly
depart from theζ(q) and, besides that, thêζ(q, n) necessarily be-
have as a linear function ofq, ζ̂(q, n) = α̂o + β̂oq, for each and
every replication of the process. This is illustrated in Fig. 1, on
a single (top left) and on ten (bottom left) replications. Moreover,
it can be seen that̂αo andβ̂o are random variables that depend on
each replication.

LEGENDRE TRANSFORM. To further study this linearisation ef-
fect, let us compare the Legendre transformD̂(h, n) of theζ̂(q, n)
to thatD(h) of the theoretical functionζ(q). Fig. 1, top right,
shows that, forh ≥ ĥo, D̂(h, n) tends to (superimpose to)D(h).
Fig. 1 shows as well that̂D(h, n) is abruptly ended by anaccumu-
lation point, with coordinates denoted by(ĥo, D̂o), which consti-
tutes another evidence for and signature of the linearisation effect.
Fig. 1, bottom right, shows how accumulation points(ĥo, D̂o), ob-
tained from hundreds of replications of the same process, spread in
the neighbourhood of the theoretical curveD(h) and mainly con-
centrate around the critical point:(h+

∗ , D
+
∗ = 0).

DEPENDENCE ON THE OBSERVATION DURATIONn. Fig. 2
shows the behaviours of the parametersα̂o, β̂o, D̂o, ĥo and q̂o,
defining the linearisation effect, as a function of the observation



durationn. The valuêqo is obtained straightforwardly by compar-
ing (and equating)|ζ̂(q, n) − ζ(q)| and |ζ̂(q, n) − (α̂o + β̂oq)|.
Striking conclusions can be inferred from Fig. 2 (left column).
First, the linearisation effect does not disappear when the observa-
tion duration increases,n → +∞: this is not a finite size effect.
Second, the average values of the parameters characterising it do
not depend onn: the average criticalq above which the lineari-
sation occur does not vary withn, nor does the observed average
affine functionα + βq. Third, the variances of the fluctuations
of the parameters characterising the linearisation effect decrease
as long as the observation durationn is shorter than the integral
scale,n ≤ 2J , but remain constant as soon asn ≥ 2J (2J = 211

in Fig. 2). This implies that the amplitude of the statistical fluctu-
ations of the parameters characterising the linearisation effect do
not decrease while the observation duration increases.

CONJECTURE. The empirical observation described above, ob-
tained on a large number of numerical simulations as well as for a
large variety of choices forϕ(q),N andψ0, leads us to formulate
the following conjecture regarding the behaviour of theζ̂(q, n):

ζ̂(q, n) → ζ(q), −1 < q ≤ q+∗ ,

ζ̂(q, n) = α̂o + β̂oq → 1−D+
∗ + h+

∗ q, q+∗ ≤ q.
(8)

whereq+∗ , h
+
∗ , D

+
∗ are defined in Eq. (7) and whereX → x does

not stand for asymptotic convergence whenn → +∞ but simply
indicates thatX is a random variable spread around the determin-
istic quantityx. Let us put the emphasis moreover on the fact that,
for q ≥ q+∗ , theζ̂(q, n) behave linearly for each replication of the
process and not only on average.

COMMENTS AND INTERPRETATION. An equivalent result had
been obtained in [9] for the Mandelbrot’s cascades and the box-
aggregation estimator. This had also been studied for those cases
in [10, 11, 12] and for wavelets and conservative Mandelbrot’s cas-
cades in [13]. Our results are in agreement with those reported in
the above mentioned papers and involve the same critical param-
eters (cf. Eq. (7)). They extend them to CPC cascades, MTFBM
processes and wavelet based estimators, for which, up to our knowl-
edge, this linearisation effect had never been studied. A reason
why this extension holds for CPC may lie in their being multiplica-
tive martingales [4], as are the original Mandelbrot’s cascades.
Other studies of the linearisation effect related to Mandelbrot’s
cascades and box aggregration estimator are available in the litera-
ture (see e.g., [14, 15, 16]). They associate it to finite size effects ,
maximal observable singularity or finiteness of moment of the cas-
cadesQr. So far, our observations and results significantly departs
from theirs (cf. [17]).
This linearisation effect, whose evidence and characterisation we
see as the major result of the present work, implies a fundamen-
tal practical consequence: the analysis of multifractal processes
should no longer consist in estimating the scaling exponentsζ(q)
for all qs but rather in estimating the parameters of the linearisation
effectq+∗ , h

+
∗ , D

+
∗ and then in estimating theζ(q) for q ≤ q+∗ .

5. ESTIMATION OF THE CRITICAL POINTS

PROCEDURES. We now propose estimators for the parame-
ters q+∗ , h

+
∗ , D

+
∗ from a single observation of the process CPC-

MTFBM. Based on the observation that the fluctuations of the crit-
ical parameters do not decrease whenn increases, the observation

X of lengthn is first splitted intoL blocksXl, l = 1, . . . , L,
of sizes2JL+2. On each block, the following estimation proce-
dure is applied. Forq ∈ (−1, . . . , qM ] with qM � q+∗ , estimate
ζ̂l(q, n) as in Eq. (3). For the corresponding Legendre transform
D̂l(h, n), perform a second order polynomial fit,D̃l(h, n), within
a domain selected throughh ≤ hR andD̂l,n ≥ DR and compute
the inverse Legendre transform̃ζl(q, n). Using d̃Xl(j, k; qR) =

|dXl(j, k)|
qR/Sn(qR, j) (following [18]), defineĥ+

l,∗, D̂
+
l,∗ as:

ĥ+
l,∗ =

P
j wj

P
k d̃Xl(j, k; qR). log2 |dXl(j, k)|,

D̂+
l,∗ =

P
j wj

P
k d̃Xl(j, k; qR). log2(d̃Xl(j, k; qR)).

(9)
Define q̂+l,∗ as the value ofq such that|ζ̂l(q, n) − (1 − D̂+

l,∗ +

qĥ+
l,∗)| = |ζ̂l(q, n)− ζ̃l(q, n)|. Defineĥ+

∗ , D̂+
∗ andq̂+∗ as the aver-

ages of the correspondinĝh+
l,∗, D̂+

l,∗ andq̂+l,∗ over theL blocks. In

this work, the parameters are chosen ashR = h such thatD̂l(h, n)
is maximal,DR = 0.3, qR = qM ' 3q+∗ .

RESULTS. Results reported here are obtained from numerical
simulations run overnbreal replications of the same process with
observation durationn = L.211, 2 ≤ L ≤ 25. Fig. 3 clearly indi-
cates that, despite their being preliminary and elementary,q̂+∗ , ĥ+

∗
andD̂+

∗ provide us with relevant estimates of satisfactory orders
of magnitude for the parameters characterising the linear effect.
Their variances decrease asn−1. However, they present a system-
atic residual bias that does not decrease whilen increases. This is
under current study and consistent with finding in [19]. Automatic
selection of the parametershR, DR, qR, qM is under study. Up to
our knowledge, they are the first estimators proposed to measure
the parameters defining the linearisation effect and are working
with a single finite length observation of the analysed process

6. CONCLUSION

Making use of CPC and MTFBM, we showed that scaling ex-
ponentsζ(q) for multifractal processes are meaningful quantities
only for a finite range of values ofqs and that the corresponding
wavelet based estimators undergo a linear behaviour outside this
range. It has been checked elsewhere that this is a generic effect
observed for all multifractal processes and types of cascades so far
proposed in the literature and for all multiresolution based estima-
tors (box-aggregation, increments, wavelets) [17]. This extends
earlier findings on Mandelbrot’s cascades and box-aggregation es-
timators (cf. [9]). A similar linearisation effect occurs around the
critical pointq−∗ , h

−
∗ , D

−
∗ , though more intricate to study.

Despite its systematic nature, this effect has been widely over-
looked in applications and in the actual analysis of empirical time
series. However, it may play a key role in the tasks of distinguish-
ing between various multifractal models or discriminating between
monofractality or multifractality. Its impact on the analysis of data
from hydrodynamic turbulence and internet network traffic is un-
der current investigation.
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