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ABSTRACT

In the recent past years, scaling, random multiplicative cascades, multifractal stochastic processes became com-
mon paradigms used to analyse a large variety of different empirical times series characterised by scale invariance
phenomena or properties. Scale invariance implies that no characteristic scale can be identified in data or equiv-
alently that all scales are equally important. It also means that all scales are in relation ones with the others,
hence the connection to multiplicative cascades, which, by construction, tie together a wide range of scales. Data
with scale invariance are also often characterised by a high irregularity of their sample path. This variability is
usually accounted for by Multifractal analysis. Hence, in applications, the three notions, scaling, multiplicative
cascade and multifractal are often used ones for the others and even confusingly mixed up. These assimilations,
that turned out to be fruitful in the early stages of the study of scaling, are now often responsible for misleading
analysis and erroneous conclusions. Wavelet coefficients have long been used with relevance to analyse scaling.
However, very recently, it has been shown that the analysis of multifractal properties can be significantly im-
proved both conceptually and practically by the use of quantities referred to as wavelet leaders. The goals of this
article are to introduce the wavelet leader based multifractal analysis, to detail its qualities and to show how it
enables an insightful visit of the relationships between scaling, multifractal and multiplicative cascades.

Keywords: Wavelet, Wavelet Leader, Scaling, Multifractal Analysis, Multifractal Formalism, Multiplicative
Cascade, Compound Poisson Cascade

1. MOTIVATION: SCALING, MULTIFRACTAL AND CASCADES ?

Scale Invariance. In the last twenty years, scale invariance phenomena have been observed or used as an
analysis paradigm in a wide range of different applications and systems with very different nature (see e.g.,1 for
a review of application domains). Scale invariance means that no specific scale of time (or space, or else) that
plays a characteristic role can be identified in the data under study; or equivalently, that all scales are equally
important. It also implies that the common data analysis procedures based on the search for a characteristic
scale are to be replaced by new ones aiming at analysing relationships between scales and mechanisms that
relate them. This is why multiplicative cascades, originally introduced in the field of hydrodynamic turbulence
by Yaglom, Obukhov and Mandelbrot (cf. e.g.,2, 3), have been massively used as a relevant model to describe
scaling. Scaling are also largely associated with the notion of high irregularity in the time evolution of the data.
This strong variability is commonly described via a mathematical theory referred to as the Multifractal Analysis
(cf. e.g.,4, 5).
Following those intuitions, the key words cascade, multifractal and scaling and the corresponding notions are
very often heuristically used interchangeably one for the other. Though this association originally led to fruitful
intuitions and substantial progresses, it now causes potential confusions and induces misanalysis of empirical
data when model identification, model testing or parameter estimation come in order. Let us try to depict
scaling, multifractal and multiplicative cascade and their relationships more precisely.

Multiresolution Quantities. Let {X(t)}t∈R denote the sample path of a 1D stochastic process {X(t)}t∈R,
that we intend to study. Scaling in X are usually studied through multiresolution quantities, TX(a, t). A mul-
tiresolution quantity is loosely defined as the result of the comparison of X against a reference pattern dilated
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by factor a > 0 and translated to time position t. A classical example is provided by the increments of X,
TX(a, t) = X(t+aτ0)−X(t) (τ0 being an arbitrary constant). However, it has long been recognised that wavelet
transforms constitute ideal tools for the study of scale invariance phenomena (see e.g.,6–9 for review papers).
Therefore, in this text, we concentrate on wavelet coefficients: TX(a, t) = 〈1/aψ0((· − t)/a)|X(·)〉 (ψ0 being an
arbitrary mother wavelet).

Scaling. It is commonly said that X posseses scaling properties when the time averages of (some function F )
of |TX(a, t)|q follow power law behaviours with respect to the scale a

1
na

na∑
k=1

F ((|TX(a, tk)|q) ' cq|a|ζ(q), (1)

where na denotes the number of TX(a, t) available at scale a. These power laws are supposed to hold in a given
range of scales, am ≤ a ≤ aM , with aM/am � 1, and for a given range of orders q. The notation F (x) is used
loosely to account for any (possibly non linear) transformation operating on the whole set of multiresolution
coefficients {TX(a, t), a ∈ R∗+, t ∈ R}. In applications, the most commonly encountered choice is the simple
identity, F (x) = x, and the ζ(q) are usually referred to as the scaling exponents.
However, in specific contexts (cf. Section 3.2), the key word scaling may also refer to power law behaviours of
the ensemble averages (or moments) of order q of TX(a, t),

IE|TX(a, tk)|q = cq|a|ξ(q). (2)

Again, restrictions on the range of scales a and orders q are in order and under suitable conditions (stationarity
in time and ergodicity) the time averages above can be thought of as ensemble averages (see e.g.,10, 11).

Multiplicative Cascades. Multiplicative cascades are built from iterative or recursive split/multiply pro-
cedures that hence produce interdependencies between the different scales of the resulting process. The term
multiplicative refers to the fact that cascades are defined as the product of independent identically distributed
positive random variables W , hence called multipliers. If the construction procedure ensures that the number of
multipliers involved in the product evolves as the logarithm of the scale, then the resulting process has scaling
and multifractal properties. A precise construction of a multiplicative process will be detailed in Section 3.2.
Because the multipliers are the central quantities in these constructions, their moments of order q, IEW q, play
a key role in the description of multiplicative cascades. More precisely, some function G of IEW q will be of
particular interest:

φ(q) = G(q, IEW q). (3)

The precise form of G depends on the details of the cascade construction (cf. Section 3.2).

Multifractal Spectrum. Processes with scaling are usually characterised by sample paths that present a
high variability. This irregular behaviour can fruitfully be analysed in terms of Hölder exponent (see definition
1 below). For a wide variety of processes, usually referred to as multifractal processes, the Hölder exponent is
not constant along the sample paths but instead varies widely, apparently erratically, from one time position
to another. The variability of this Hölder exponent can be described through the multifractal spectrum, D(h),
which consists of the Hausdorff dimension of the set of points with Hölder exponent h. Through the Legendre
transform of D(h), one can define another function of q:

η(q) = inf
h

(1 + qh−D(h)). (4)

Relationships ? The separate introductions of the three notions scaling, multiplicative cascades, Multifractal
naturally lead us to introduce different functions: the scaling exponents ζ(q) (and/or ξ(q)), the function of the



multipliers φ(q), the multifractal spectrum D(h) (or η(q)), respectively. These different functions of q are very
often mixed up. The reasons are both practical and theoretical. Practically, these functions are all considered
as the same image of the scale invariance property which is tracked in the analysed time series. Theoretically,
standard multifractal formalisms proposed in the literature relate for instance η(q) (or D(h)) to ζ(q). However,
the major source of confusion lies in the fact that multiplicative cascades are also deeply tied to multifractal
and scaling. Indeed, their sample paths are truly multifractal (in the sense that they are characterised by a non
trivial multifractal spectrum), hence a theoretical connection between φ(q) and η(q). They also exhibit scaling
as in Eq. (1) (with non trivial ζ(q) functions, i.e., with functions that depart from a linear behaviour in q), hence
a theoretical relation between φ(q) and ζ(q). For recently proposed multiplicative cascades, such as compound
Poisson cascades, one can even obtain scaling properties as in Eq. (2), hence a relation between φ(q) and ξ(q).
For a very long time, multiplicative cascades remained the only theoretically controlled stochastic processes that
could be used to model scaling and multifractal properties in empirical time series. Though new families of
multifractal processes, such as random wavelet series were recently defined,12, 13 multiplicative cascades remain
the only versatile models used in applications so far. This prominent role led to significant successes at the
early stages of the analysis of scaling. However, it is now responsible for confusing assimilation of the notions
of scaling, multifractal and cascades and hence of the functions: D(h), ζ(q), φ(q). Those incorrect associations
prevent the development of more precise and refined analysis procedures that turn out to be necessary for model
identification, parameter estimation or meaningful physical analysis.

Goals of this article. The use of wavelet enabled significant successes in the study of scaling. However,
very recently, it has been shown that the analysis of multifractal properties can be significantly improved both
conceptually and practically with the use of a quantity referred to as wavelet leaders.14

Therefore, the goals of the present article are twofold. First, it proposes to review the recent theoretical results
related to the wavelet leader based multifractal formalism, to illustrate how and why it improves previously for-
mulated multifractal formalisms. Second, it intends to show that this wavelet leader lens enables a meaningful,
insightful and fruitful revisiting of the relationships between cascades, scaling and multifractal and to detail and
clarify the correspondences and differences between the functions η, ζ, ξ, φ defined above.

Outline. Section 2 defines wavelet coefficients and wavelet leaders, it introduces multifractal analysis with
the corresponding wavelet leader based multifractal formalism. It discusses its relation to previous formalisms.
Section 3 makes use of the rich example of compound Poisson cascades to detail the clarifications, brought by
the wavelet leader prism, to the relationships between Multiplicative Cascades, Scaling and Multifractal.

2. WAVELET BASED MULTIFRACTAL ANALYSIS

2.1. Wavelet Leaders

Wavelet Coefficients. Let ψ0(t) denote a reference pattern called the mother-wavelet. It is usually requested
that ψ0 possesses jointly strongly concentrated time and frequency supports: It therefore acts as an elementary
atom of information. The reconstruction property implies that ψ0 satisfy the so-called admissibility condition:∫

R
ψ0(t)dt ≡ 0. (5)

The mother wavelet is also characterised by a strictly positive integer N ≥ 1, called its number of vanishing
moments, defined as:

∀k = 0, 1, . . . , N − 1,
∫

R
tkψ0(t)dt ≡ 0,

∫
R
tNψ0(t)dt 6= 0. (6)

Let {ψj,k(t) = 2−jψ0(2−jt − k), j ∈ N, k ∈ N} denote templates of ψ0 dilated to scales 2j and translated to
time positions 2jk. Let {X(t), t ∈ R} denote the continuous time time series (or function) to be analysed. The
discrete wavelet transform of X is defined through the computation of its coefficients dX(j, k) as:

dX(j, k) =
∫

R
X(t) 2−j ψ0(2−jt− k) dt. (7)



For a detailed introduction to wavelet decompositions, the reader is referred to e.g.,.6

Wavelet Leaders. In the remainder of this text, we further assume that the mother wavelet ψ0 is chosen with
compact time support and arbitrarily large regularity and that the collection {2−j/2ψ0(2−jt− k), j ∈ N, k ∈ N}
forms an orthonormal basis of  L2(R). Therefore, any L2 function X can be written as:

X(t) =
∑

j,k∈Z
dX(j, k) ψ0(2−jt− k). (8)

Moreover, let us define an alternative indexing for the dyadic intervals:

λ ≡ λj,k =
[
k2j , (k + 1)2j

)
, (9)

so that dλ and ψλ stand for dX(j, k) and 2−jψ0(2−jt−k), respectively. The wavelet ψλ is essentially localized near
the interval λ, more precisely, when the wavelets are compactly supported ∃C > 0 such that ∀λ, supp (ψλ) ⊂ Cλ
(where Cλ denotes the interval homothetic to λ, centered at the same location and C times larger). Finally, let
3λ denote the union of the interval λ and its 2 adjacent dyadic intervals, two dyadic intervals are called adjacent
if they share the same size and are next to each other: 3λ ≡ 3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1.

If X ∈ L∞, one has

|dλ| ≤
∫
|X(t))||ψj,k(t)|dt ≤ C ‖ ψ0 ‖L1‖ X ‖

L∞ ,

and the quantities,
LX(j, k) ≡ Lλ = sup

λ′⊂3λ
|dλ′ | (10)

are thus finite and referred to as a wavelet leaders.14 Indeed, LX(j, k) consists of the (non linear) replacement
of the usual wavelet coefficient dX(j, k) with a neighbour maximum chosen in a narrow time neighbourhood
(λ′ ⊂ 3λ), along all finer scales (2j′ ≤ 2j). Furthermore, we denote by λj,k(t0) the dyadic interval of size 2j

containing t0 and
Lj(t0) = sup

λ′⊂3λj,k(t0)

|dλ′ |.

Note that the supremum is taken not only on λj,k(t0) but also on the 2 adjacent dyadic intervals.

2.2. Multifractal Analysis

The following definitions gather the key-notions attached to multifractal analysis of functions. For thorough and
complete overviews, the reader is referred to e.g.,.4, 5, 14 Then, the wavelet leader based multifractal formalism
is introduced and studied.

Hölder Exponent. Let {X(t)}t∈R denote the sample path of the function or stochastic process of interest.
Its local regularity is commonly studied via the notion of pointwise Hölder exponent.

Definition 1. Let t0 ∈ R and let α ≥ 0. A locally bounded function X : R → R belongs to Cα(t0) if there exists
a constant C > 0 and a polynomial P satisfying deg(P ) < α and such that, in a neighbourhood of t0,

|X(t)− P (t− t0)| ≤ C|t− t0|α. (11)

The Hölder exponent of X at t0 is
h(t0) = sup{α : X ∈ Cα(t0)}.

If h(t0) < 1, then the polynomial P (t − t0) simplifies to X(t0). A famous though simple example is given by
the function X(t) = A+B|t− t0|h, whose Hölder exponent (sometimes also called the singularity strength) at t0
is simply h (when h is not a even integer) ; A+B|t− t0|h is commonly referred to as a cusp-type singularity.



Wavelet Leaders and Hölder Exponent. The wavelet characterization of the Hölder exponent requires a
regularity hypothesis which is slightly stronger than continuity: X is said to be uniform Hölder if ∃ε > 0 such
that X ∈ Cε(R), i.e.

∃C > 0 such that ∀t, s ∈ R, |X(t)−X(s)| ≤ C|t− s|ε.

The following theorem is a restatement of a result in15 and allows to characterise the pointwise regularity by a
decay condition of the  Lj(t0) when j → +∞.

Theorem 1. Let h > 0. Let ψ0 denote mother wavelet with compact time support and such that N > h. If X
is Ch(t0), then there exists C > 0 such that

∀j ≥ 0, Lj(t0) ≤ C2jh. (12)

Conversely, if (12) holds and if X is uniform Hölder, then ∃C > 0 and a polynomial P satisfying deg(P ) < h
such that, in a neighbourhood of t0,

|X(t)− P (t− t0)| ≤ C|t− t0|h log(1/|t− t0|).

Multifractal (or Singularity) Spectrum. The fluctuations, or the irregularity, of the Hölder exponent
h(t) along along the path {X(t)}t∈R are usually described through the so-called multifractal (or singularity)
spectrum, hereafter labelled D(h).

Definition 2. We denote by Eh the set of points where the Hölder exponent takes the value h. The spectrum
of singularities D(h) of X consists of the Hausdorff dimension of Eh. (By convention, dim(∅) = −∞.)

For the definition of the Hausdorff dimension the reader is referred to e.g.,.4, 5 By definition of the Hausdorff
dimension, the multifractal spectrum takes values in {−∞} ∪ [0, 1]. Furthermore, we will assume without loss
of generality that D(h) differs from −∞ in a finite range of Hölder exponents:

D(h) 6= −∞, h ∈ [h−∗ , h
+
∗ ]. (13)

In applications, D(h) has often been used as a tool to analyse/classify empirical time series (to detect pathologies
in medecine, to model information fluxed in Internet traffic,7 . . . ). Roughly speaking, it pictures the roughness
or irregularity along time of the analysed time series. For instance, the range [h−∗ , h

+
∗ ] of existing singularity

strengths is often used to classify data.

Multifractal Formalism. The determination of the singularity spectrum from empirical data is crucial
for applications. A numerical computation straight from the definition is obviously not feasible: For an in-
teresting multifractal process, the Hölder exponent will vary widely from point to point making its numerical
measurement extremely unstable and actual empirical data come with practical limitations such as discrete time
sampling and finite resolution. The way out consists in obtaining the desired multifractal spectrum via auxiliary
functions (called the structure functions) that can more easily be computed. This procedure is referred to as
the multifractal formalism, after the analogy with thermodynamic formalism first introduced in a seminal work
in hydrodynamic turbulence.16 The original proposition was based on continuous sums of the Lq-norm of in-
crements X(t+ aτ0)−X(t) of X. The remainder of this section aims at showing the theoretical, practical and
pedagogical benefits gained in replacing increments with wavelet leaders.

Wavelet Leader Multifractal Formalism. Let SL(q, j) denote the wavelet leader based structure functions:

SL(q, j) =
1
nj

nj∑
k=1

|LX(j, k)|q, (14)

where nj is the number of available LX(j, k) at octave j. Roughly (i.e., up to border effects), nj ' n02−j . In
the setting of Section 1, it corresponds to Eq. (1) with the non standard choice F (dX(j, k)) = LX(j, k).



Theorem 1 can loosely been interpreted as stating that, if the Hölder exponent of X at t0 is h, then the
wavelet leader LX(j, t0) of X corresponding to λ = λj(t0) will have size |Lj(t0)| ∼ 2jh. Hence, the points
with Hölder exponent h brings a contribution ∼ 2j2jqh2−jD(h) to SL(q, j). Therefore, SL(q, j) will behave as
∼ cq(2j)ζL(q) and a standard steepest descent argument yields a Legendre transform relationship between the
multifractal spectrum D(h) and the scaling exponents ζL(q) = infh∈[h−∗ ,h+

∗ ] (1 + qh−D(h)):

SL(q, j) ∼2j→0 cq(2j)ζL(q).

This leads to a Wavelet Leader based Multifractal Formalism:

ζL(q) = lim inf
j→0

(
log2 SL(q, j)

j

)
, (15)

D(h) = inf
q 6=0

(1 + qh− ζL(q)) . (16)

It is actually mathematically proven that infq 6=0 (1 + qh− ζL(q)) acts as a sharp upper bound for D(h) for all
functions or processes (on condition that they satisfy the mild uniform Hölder regularity condition)14:

D(h) ≤ inf
q 6=0

(1 + qh− ζL(q)) . (17)

2.3. Wavelet coefficients vs wavelet leaders

In most introductions dedicated to the wavelet based multifractal analysis, this latest is based on wavelet coef-
ficients dX(j, k) instead of wavelet leaders LX(j, k). In this section, we put the emphasis on the improvement
brought by the wavelet leader approach.

Wavelet Coefficient Multifractal Formalism. Wavelet coefficient based structure functions and scaling
exponents are defined as:

Sd(q, j) =
1
nj

nj∑
k=1

|dX(j, k)|q. (18)

In the setting of Section 1, it corresponds to Eq. (1) with the common choice F (x) = x. Arguments similar to
those in previous section yield that Sd(q, j) behave as power laws of the scale in the limit of small scales:

Sd(q, j) ∼2j→0 cq(2j)ζd(q). (19)

The Wavelet Coefficient based Multifractal Formalism is standardly stated as:

ζd(q) = lim inf
j→0

(
log2 Sd(q, j)

j

)
, (20)

D(h) = inf
q≥qo

(1 + qh− ζd(q)) , (21)

where qo is a positive value of q such that ζd(q) = 1 (cf.5, 17). This wavelet coefficient based multifractal formalism
suffers from two major drawbacks discussed below: it fails to operate correctly for negative qs and for processes
that contain oscillating singularities.

Negative qs. For most functions or processes of interest, by definition or nature of the wavelet transforms, a
significant number of wavelet coefficients dX(j, k) will have close to 0 values. This implies that the computation of
Sd(q, j) for negative qs will be numerically unstable. In a stochastic framework, it can be rephrased into the fact
that the wavelet coefficients are random variables with a strictly positive probability density function at the origin
and hence infinite moments of order q < −1. In both cases, it implies practically that wavelet coefficient based
structure functions with q < −1 cannot, must not and should not be used to infer the multifractal properties of X.
A striking example is the one provided by fractional Brownian motion (fBm)18, 19 with self-similarity parameter



H. The Wavelet Coefficient based Multifractal Formalism would yield the following uncorrect determination of
the multifractal spectrum:

D(h) = 1− h+H if h ∈ [H,H + 1],
= −∞ else;

whereas the Wavelet Leader based Multifractal Formalism yields the correct one

D(h) = 1 if h = H,
= −∞ else.

Generally speaking, the Wavelet Coefficient based Multifractal Formalism will miss the part of D(h) that de-
scribes the singularities with the highest values of h. For bell-shaped D(h), it will not see the singularities with
h ≥ h∗∗, where h∗∗ is such that D(h∗∗) is the maximum of D.

Oscillating or chirp-type singularities. For cusp-type singularities A+B|t− t0|h, it has been shown that
the argument |dX(j, t0)| ∼ 2jh holds for wavelet coefficients. This is the crucial step that led to the formulation
of the Wavelet Coefficient based Multifractal Formalism. However, there are known counterexamples, the most
famous ones being chirp-type functions (or oscillating singularities)14 of the form:

X(t) = |t− t0|h sin
(
1/|t− t0|β

)
, with h, β > 0. (22)

For such functions, if λ = λj,t0 then dλ = o(2jγ) ∀γ > 0 so that the standard statement of the multifractal
formalism will fail to yield a correct analysis of the multifractal properties of X. There exists a bound:

D(h) ≤ inf
q≥qo

(1 + qh− ζd(q)) ,

similar to that obtained using ζL(q) (cf. Eq. (17)), but it is far from being as sharp, see.14 Thus a safer
way to derive the multifractal formalism is to base the structure function on the wavelet leaders instead of the
wavelet coefficients. Furthermore, discrepancies potentially observed for q > 0 between empirically observed
ζL(q) and ζd(q) might provide us with an interesting tool to detect the existence of oscillating singularities in
empirical data. Whether such singularities exist in hydrodynamic turbulence is an open issue,2, 16 they are
also expected to exist in gravitational waves.20 Up to our knowledge, so far, no oscillating singularity has ever
been evidenced in actual empirical data, the design of relevant detection tools constitutes hence a major challenge.

Conclusions. The Wavelet Leader Multifractal Formalism overcomes the two drawbacks described above: It
holds both for positive and negative qs and whether the function or process under study embodies chirp-type
singularities or not. Therefore, it provide us with the multifractal spectrum of the studied process over its
whole range and must certainly be preferred theoretically and conceptually to the Wavelet Leader Multifractal
Formalism. However, note that, from a more practical point of view, numerically computing ζL(q)s requires the
knowledge of wavelet coefficients on a deeper range of scales than that necessary to get ζd(q)s: indeed, in order
to be meaningful, the computation of Lλ at a given scale requires that of the wavelet coefficients dλ over several
scales below.

2.4. Further comments

A number of complementary comments and comparisons are in order.

Higher dimensions. For sake of simplicity, the presentation was proposed here for 1D processes or func-
tions. However, the wavelet leader multifractal formalism can be straightforwardly extended to arbitrary higher
dimensions d ≥ 1, {X(t)}t∈Rd , simply by adapting the definitions of the wavelet coefficients and leaders as well
as that of the Legendre transform, infq 6=0(d+ hq − ζL(q)).



Computational costs. On the computational side, the leader approach, based on a decomposition on an
orthogonal wavelet basis can be implemented using the fast pyramidal algorithm underlying the Discrete Wavelet
Transform and has thus a very low computational cost.

Modulus Maxima of the Wavelet Transform. The negative qs issue had already been addressed and solved
by a multifractal formalism based on the Modulus Maxima of the Wavelet Transform initially introduced by S.
Mallat6 and developed in the context of multifractal analysis by Arneodo et al..8, 9 Let {TX(a, t) a > 0, t ∈ R}
denote the continuous wavelet transform:

TX(a, t) =
1
a

∫
X(u)ψ

(
t− u

a

)
du.

The Modulus Maxima Wavelet Transform consists first in extracting for each given scale a, the local maxima
along time t of the functions t→ |TX(a, t)|, second in chaining those maxima along scales at given time positions,
third in selecting only the largest coefficients on a maxima line towards finer scales. Structure functions are then
based on this skeleton. In the setting of Eq. (1), it corresponds to another non linear choice for F .
The wavelet leader approach is highly reminiscent of the Modulus Maxima Wavelet Transform technique because
the leaders also consists of the largest coefficients along scales at each time position while avoiding the (painfull)
maxima tracking and chaining operations. The analogy between leaders and modulus maxima also indicates that
in this latter technique the largest coefficient selection along scale is probably far more important than the time
maxima tracking phase.
The Modulus Maxima Wavelet Transform has also been shown to work on examples containing oscillating
singularities however no general result is so far available.9 Indeed, in this technique, the spacing between local
maxima need not be of the order of magnitude of the scale a or even be regularly spaced. Therefore, the modulus
maxima scaling exponents may differ from the leader ones (see5, 14 where counterexamples are constructed). It
follows that no mathematical result such as the one in Eq. (16) has so far been proven.
From a practical point of view, the modulus maxima technique involves a Continuous Wavelet Transform plus
maxima tracking and chaining operations. This results in a high computational cost whereas the leader approach
benefits from a significantly much lower one. Furthermore, as already mentioned, the wavelet leader approach
can be easily theoretically and practically generalised to higher dimensions. This is far less the case for the
MMWT method, indeed, it requires a d-dimensional Continuous Wavelet Transform plus a dD extension of the
notion of modulus maxima.21

3. BACK TO SCALING, MULTIFRACTAL AND CASCADES

The aim of this section is to revisit the relationships between multifractal, scaling and multiplicative cascades
with the wavelet Leader approach as an enlightening guide. We will see how it clarifies potential confusions
between the various functions of q encountered so far: η(q), ζL(q), ζd(q), ξ(q), φ(q).

3.1. Multifractal vs Scaling
Let us start by examining the connections between the multifractal spectrum and the scaling exponents.

Legendre Transform of the Multifractal Spectrum: D(h) vs η(q) . The Multifractal spectrum is
defined as a Hausdorff dimension, it is hence a positive function, except where D = −∞, that commonly lives
on a finite support h ∈ [h−∗ , h

+
∗ ]. Let us define

D−
∗ = D(h−∗ ), D+

∗ = D(h+
∗ ). (23)

Because, η is defined through a Legendre transform,

η(q) = inf
h∈[h−∗ ,h+

∗ ]
(1 + qh−D(h)), (24)

it implies that:

q > q+∗ , η(q) = d−D−
∗ + qh−∗ , (25)

q < q−∗ , η(q) = d−D+
∗ + qh+

∗ , (26)



where q−∗ , q
+
∗ are defined respectively as:

q+∗ =
(
dD

dh

)
h=h−∗

, (27)

q−∗ =
(
dD

dh

)
h=h+

∗

. (28)

Note that q−∗ , q
+
∗ are possibly infinite. In words, the above set of equations means that, by definition, the function

η(q) necessarily consists of straight lines for large and small qs.
Finally, let us remark that the Legendre transform of η(q) will yield the convex hull of D(h) and hence the
inequality:

D(h) ≤ inf
q 6=0

(d+ qh− η(q)). (29)

Legendre Transform of the Multifractal Spectrum vs Scaling Exponents: η(q) vs ζL(q) . The
wavelet Leader multifractal formalism developed above suggests that relevant structure functions, as defined in
Eq. (14), are to be based on wavelet leaders. In the notations of Section 1, it means that the function F is
chosen such that: LX(j, k) = F (dX(j, k)). With this proper choice, for all uniform Hölder functions or stochastic
processes, we have the very general inequality:

D(h) ≤ inf
q 6=0

(d+ qh− ζL(q)). (30)

Furthermore, on condition that the function or process enters the large class of self-similar functions defined
and studied thoroughly in,17 this inequality is turned into an identity:

ζL(q) ≡ η(q), q ∈ R. (31)

Let us put the emphasis on the fact that the above equality is valid for most stochastic multifractal processes
studied in the literature and used in applications (multiplicative martingales, random wavelet series, fractional
Brownian motion, Lévy processes,22 . . . ) because their sample paths fall into this broad class of functions. This
means that their functions η and ζL need not be distinguished and those two different notations were introduced
here mainly for pedagogical purposes and to highlight both the multifractal (cf. Eq. (4)) and the scaling (cf.
Eq. (1)) starting points.

Scaling Exponents: ζL(q). Rephrased with different words, this implies that the wavelet leader based
structure functions behave in general as power laws of the scale according to:

SL(q, j) ∼2j→0 cq|2j |ζL(q) = cq|2j |η(q) = cq|2j |inf
h∈[h−∗ ,h

+
∗ ]

(d+qh−D(h))
. (32)

This put the emphasis on a major practical implication largely overlooked in the literature and in applications.
The scaling exponents, whose measurement is often the goal of many estimation/analysis practical procedures,
necessarily behave as linear functions of q when q is outside the interval q ∈ [q−∗ , q

+
∗ ], as stated in Eq. (25) and

Eq. (26) above. Note moreover that the definition of this interval (cf. Eq. (27) and Eq. (28) above) depends
only on the theoretical multifractal properties of the process under analysis and not on practical estimation lim-
itations (finite size, finite observation duration, finite resolution,. . . ). Those issues were further studied in.23, 24

From an application point of view, it means that it is pointless and even dangerous to estimate scaling exponents
for q /∈ [q−∗ , q

+
∗ ]. Particularly, the discrimination between various multifractal models in competition for the

description of data must not be based on q /∈ [q−∗ , q
+
∗ ].

The cusp-type specific case: η(q) vs ζd(q) . For this paragraph, we restrict the discussion to the specific
class of processes that contain only cusp-type singularities (they do not present any chirp-type singularity). For
such a subclass, let us consider the wavelet coefficient multifractal formalism and the corresponding ζd(q) scaling
exponents. It is known that the wavelet coefficient structure functions also behave as power laws of the scale,



as in Eq. (19), with scaling exponents ζd(q). It has been shown, for this specific case (cf. e.g.,4, 5), that we have
the following identity:

ζd(q) = ζL(q) ≡ η(q), q ∈ [0,+∞). (33)

In other words, for cusp-type processes, ζd(q) and η(q) coincide essentially for q > 0 but significantly differ
otherwise, ζd(q) with q ≤ 0 must not be used to analyse the multifractal properties of X.

3.2. Multiplicative Cascades: the pedagogical example of compound Poisson cascades
Now, we want to further investigate the relationships between multiplicative cascades, scaling and multifrac-
tal. The most famous multiplicative cascades are the ones originally introduced in the field of hydrodynamic
turbulence (see for instance, the seminal works in2, 3). Most of the multiplicative cascades described in the lit-
erature fall into the general class of multiplicative martingales25 and therefore share a large set of their deepest
properties. Rather than the celebrated Mandelbrot canonical cascades, we will use here, for the purpose of our
argumentation, the pedagogical example of compound Poisson cascades very recently introduced and studied
in26 ; a major quality of these cascades being that their scaling and multifractal properties are theoretically
known.

Compound Poisson Cascades. The definition of compound Poisson cascades requires the combination of
the following ingredients. Let I denote the upper half-strip R×]0, 1]. Let (ti, ri)i∈I stand for a 2D Poisson point
process with control measure dm(r, t). Let Cr(t) denote a subpart of I and referred to as the cone of influence.
Let {Wi}i∈I be independent identically distributed positive random variables, independent of the point process
(ti, ri)i∈I . They are usually called the multipliers of the cascade and the set (ti, ri,Wi)i∈I defines a marked (or
compound) Poisson process. The Compound Poisson Cascade Qr(t) is then defined at time t as the product of
all the multipliers Wi associated to points (ti, ri) that fall in the cone of influence Cr(t) located at time t:

Qr(t) = exp [(1− IEW )m(Cr(t))]
∏

i,/(ti,ri)∈Cr(t)

Wi, (34)

with
m(Cr(t)) =

∫
Cr(t)

dm. (35)

By construction, {Qr(t), t ∈ R} is a positive process and IEQr(t) ≡ 1,∀ r / 1 > r > 0,∀ t ∈ R. Furthermore, the
choice of a time-shift invariant control measure:

dm(r, t) = g(r)drdt, (36)

combined to the fact that the {Wi, i ∈ I} are independent identically distributed, ensures that {Qr(t), t ∈ R} is
a stationary process. Moreover, the combination of the specific choices,

dm(r, t) =
c

r2
drdt, c > 0, (37)

together with

Cr(t) =
{

(t′, r′) : r′ > r and t′ − r′

2
< t < t′ +

r′

2

}
, (38)

ensures that {Qr(t), t ∈ R} has scaling and multifractal properties, all controlled via the key relation∗:

IEQr(t)q = rϕ(q), q ∈ R, (39)

where we assumed, for sake of simplicity that, ∀q ∈ R, IEW q <∞ and where

ϕ(q) = (IEW q − 1)− q(IEW − 1). (40)
∗Note that in itself, this relation is not the signature of a scaling property since it does not involve a dependence with

an analysing scale but with the construction resolution r.



A further simple, yet key, property of Qr is that if forms a multiplicative martingale.25 For detailed analysis of
the properties of the compound Poisson cascades, the reader is referred to.10, 26

A variety of interesting multifractal processes can be defined from Qr, for a review, see e.g.,.24 For sake of
simplicity and pedagogy, we will concentrate here on the simplest one, the compound Poisson motion, labelled
here X (for the coherence of notation with the remainder of the paper) and defined as:

X(t) = lim
r→0

∫ t

0

Qr(u)du. (41)

The properties of {Qr(t), t ∈ R} imprint those of {X(t), t ∈ R}. Therefore, this is a process with stationary
increments (i.e., the statistical properties of {X(t + aτ0) − X(t), t ∈ R}, a > 0, τ0 > 0 do not depend on t).
It exhibits scaling and multifractal properties. For the remainder of this section, it is assumed that X is a
compound Poisson motion as defined above and for ease of notation, let us define

φ(q) = q + ϕ(q), (42)
f(h) = Infq 6=0(1 + qh− φ(q)). (43)

Compound Poisson cascades vs Multifractal spectrum. It has been proven that the process {X(t), t ∈
R} defined above has multifractal sample paths, with multifractal spectrum26:

D(h) = f(h), if f(h) ≥ 0,
= −∞, else.

}
(44)

Since by definition φ(q) is a convex function, it yields immediately that φ(q) and η(q) coincide when q ∈ [q−∗ , q
+
∗ ]

but differ outside this interval:
φ(q) = η(q) q ∈ [q−∗ , q

+
∗ ],

φ(q) 6= η(q) q /∈ [q−∗ , q
+
∗ ].

}
(45)

Compound Poisson Cascades vs Scaling (1/3). The argument developed in Section 3.1 and Eq. (31)
immediately imply that:

φ(q) ≡ η(q) ≡ ζL(q), q ∈ [q−∗ , q
+
∗ ],

φ(q) 6= η(q) ≡ ζL(q), q /∈ [q−∗ , q
+
∗ ].

}
(46)

Compound Poisson Cascades vs Scaling (2/3). Compound Poisson cascades, in particular, and multi-
plicative martingales in general, belong to a specific subclass of stochastic processes characterised by the fact
that they contain no chirp-type singularities. As detailled in Section 3.1 above, this implies that:

φ(q) = ζd(q) = η(q) ≡ ζL(q), q ∈ [0, q+∗ ]. (47)

Compound Poisson Cascades vs Scaling (3/3). The example of the compound Poisson cascades enables
us to address a third issue related to scaling and usually totally overlooked. Because of the multiplicative
martingale nature of Qr, it can be shown that the (positive) moments of order q of X are infinite for q > q+c :

IE|X(t+ aτ0)−X(t)|q = +∞, q > q+c , (48)
q+c = sup{q ≥ 1 : φ(q) ≥ 1}. (49)



From the definitions of q+c and q+∗ , it is straightforward to show that:

1 ≤ q+∗ < q+c . (50)

Detailed studies10 of the compound Poisson cascades also showed with the specific choices of time shift-invariant
power law control measure dm(r, t) = c/r2drdt together with the triangle-shaped cone of influence, the following
result holds†:

IE|X(t+ aτ0)−X(t)|q ' cq|a|φ(q), 0 ≤ aτ0 ≤ 1, q ∈ [0, q+c ]. (51)

This is a scaling relation that can be immediately transferred, together with stationarity, to the wavelet coeffi-
cients as,

IE|dX(j, k)|q ' cq|2j |φ(q), 0 ≤ 2j ≤ 1, q ∈ [0, q+c ], (52)

and can be compared to Eq. (2) and the heuristic approach developed in Section 1. The corresponding scaling
exponents read:

ξ(q) = φ(q), q ∈ [0, q+c ]. (53)

Now, because the process X has stationary increments and wavelet coefficients, the wavelet coefficient struc-
ture functions Sd(q, j) = 1

nj

∑nj

k=1 |dX(j, k)|q, that consist of time average, can naturally be read as estimates of
the ensemble averages IE|dX(j, k)|q. However, because compound Poisson cascades are multiplicative martingales
and hence contain only cusp-type singularities, we also have (cf. Eq. (33) above):

Sd(q, j) ∼2j→0 cq2jζL(q), q ≥ 0.

Comparing the two above relationships yields a surprising, and so far not fully understood, result: despite
stationarity and finiteness, ensemble averages and time averages exhibit the same scaling only within a finite
range of values of q: q ∈ [0, q+∗ ] but have scaling that significantly differ otherwise:

ξ(q) = φ(q) = ζd(q) = ζL(q) ≡ η(q), q ∈ [0, q+∗ ], (54)
ξ(q) = φ(q) 6= ζd(q) = ζL(q) ≡ η(q), q ∈ [q+∗ , q

+
c ]. (55)

An equivalent distinction between ξ(q) and ζL(q) can heuristically be supposed to exist for q ≤ 0 with q−∗
acting as a frontier (in our setting, q−c = −∞). However, no theoretical result for the moments of negative order
for compound Poisson cascades is so far available.

Additional comment. It is also crucial to note that the disagreement between φ(q) (or ξ(q)) and ζL(q) for
q /∈ [q−∗ , q

+
∗ ] does not result from an infiniteness of moments argument, since we necessarily have24:

q−c ≤ q−∗ ≤ 0 ≤ 1 ≤ q+∗ ≤ q+c ,

but is deeply related to the ζL(q) being non linear functions of q. Indeed, for a process like fractional Brownian
motion, where ζL(q) = qH, q ∈ R, one has q+∗ = q+c = +∞ and hence this discrepancy disappears.

3.3. Summary

Let us summarise the relationships between D(h) and the different functions of q.

†In this specific case, f(x) ' g(x) is used to indicate that there exists two constants c1 and c2 such that c1g(x) ≤
f(x) ≤ c2g(x), cf.24 for further details and proofs.



In all generality (i.e., for all uniform Hölder functions or processes), the relationships between multifractal
spectrum and scaling can be written:

Definitions

D(h) defined on h ∈ [h−∗ , h
+
∗ ],

D+
∗ = D(h+

∗ ) and D−
∗ = D(h−∗ ),

q+∗ =
(
dD

dh

)
h=h−∗

and q−∗ =
(
dD

dh

)
h=h+

∗

,

Properties

η(q) = inf
h∈[h+

∗ ,h−∗ ]
(d+ qh−D(h)),

q ∈ [q+∗ ,+∞), η(q) = d−D+
∗ + qh+

∗ ,

q ∈ (−∞, q−∗ ], η(q) = d−D−
∗ + qh−∗ ,

Analysis

SL(q, j) =
1
nj

nj∑
k=1

|LX(j, k)|q,

ζL(q) = lim inf
j→0

(
log2 SL(q, j)

j

)
,

q ∈ R, η(q) ≡ ζL(q),
D(h) ≤ inf

q 6=0
(d+ qh− ζL(q)).

For processes that contain cusp-like singularities (and no chirp-type — or oscillating — singularities), one
has:

Analysis

Sd(q, j) =
1
nj

nj∑
k=1

|dX(j, k)|q,

ζd(q) = lim inf
j→0

(
log2 Sd(q, j)

j

)
,

q ≥ 0, ζd(q) = ζL(q) ≡ η(q).

For compound Poisson motion (and all multiplicative martingales, on condition that the definition of φ(q) is
tuned to that of the martingales), one has:

Definitions

q ∈ R, φ(q) = q + (IEW q − 1)− q(IEW − 1),
q+c = sup{q ≥ 1 : φ(q) ≥ 1},

q ∈ [0, q+c ], IE|dX(j, k)|q = (2j)ξ(q),

Analysis

q ∈ [0, q+∗ ], η(q) ≡ ζL(q) = ζd(q) = φ(q) = ξ(q),
q ∈ [q+∗ , q

+
c ], η(q) ≡ ζL(q) = ζd(q) 6= φ(q) = ξ(q),
q ∈ [q−∗ , q

+
∗ ], η(q) ≡ ζL(q) = φ(q).



3.4. Estimation Issues

From a practical point of view, analysing scaling properties in actual empirical data essentially means estimating
scaling exponents via the power law behaviours of structure functions. With this respect, it is crucial to note
that the measured scaling exponents necessarily behave as linear functions of q outside an interval q /∈ [q−∗ , q

+
∗ ]

and that only the ζL(q) with q ∈ [q−∗ , q
+
∗ ] are related to the multifractal properties of the data under analysis.

For instance, it is pointless and meaningless to use values of q outside that interval to discriminate between
various multifractal processes that are potential candidates to model data. Furthermore, when one intends to
describe data with a multiplicative cascade, it is a key point to note that the estimated scaling exponents and
the moments of the multipliers underlying the cascade shall be related only in this same finite interval of values
of q. If one is interested in estimating the moments of the multipliers for larger values of q one has to abandon
the multifractal formalism procedure and the use of structure functions based on multiresolution quantities.
This is why one should recast the usual goal of multifractal analysis: estimate scaling exponents into a more
relevant one: estimate the critical points q±∗ , h

±
∗ , D

±
∗ , and estimate the scaling exponents for q ∈ [q−∗ , q

+
∗ ]. We have

developed a methodology for the estimation of the q+∗ , h
−
∗ , D

−
∗ critical points.23, 24 Its extension to q−∗ , h

+
∗ , D

+
∗

is under current investigation.

4. CONCLUSIONS

In this article, we gave a detailed presentation of the wavelet leader based multifractal analysis and of the
corresponding multifractal formalism. We explained why the replacement of the usual wavelet coefficients with
wavelet leaders brings substantial theoretical, conceptual and practical improvements. It enables the formulation
of a new multifractal formalism valid for all uniform Hölder processes or functions, including those that contain
not only cusp-type singularities but also chirp-type ones. This multifractal formalism yields the determintation
of the multifractal spectrum of the analysed process over its entire range and hence allows to correctly study its
full multifractal and scaling properties.
This wavelet leader multifractal formalism sheds a new insightful light on the relationships between the multi-
fractal, scaling and multiplicative cascades (or martingales) ; the main result being that the observation there is
only a finite range of orders q ∈ [q−∗ , q

+
∗ ] within which the various functions of q independently defined from the

scaling, the multifractal and the multiplicative cascades frameworks coincide. The mixing up of those functions
can at best cause unclear and unprecise analysis and at worst yield the drawing of erroneous and misleading
conclusions. Multifractal formalisms are tied to the multifractal and scaling properties of the process and cannot,
by nature, capture the statistical properties of the multipliers underlying the cascade construction beyond the
interval q ∈ [q−∗ , q

+
∗ ] of statistical orders.

A set of Matlab routines available upon request has been develop to implement the wavelet leader multifractal
formalism as well as estimation procedures for the critical points, mainly for q+∗ .
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