
Complexity Winter School

Marseille - January 30 - February 3 - 2012

Monday January 30

10h45 : Opening.

11h-12h30 : Yiannis N. Moschovakis - Relative complexity in arith-
metic and algebra.

12h30 : Lunch.

14h30-15h : Pierre Valarcher - From intentional behavior to algorith-
mic completeness.

15h-15h30 : Ugo Dal Lago - Higher-order Interpretations and Program
Complexity (joint work with Patrick Baillot).

15h30 : Coffee break

16h-16h30 : Isabel Oitavem - NP with tier 0 pointers.

16h30-17h : Reinhard Kahle - Computational Complexity and Applica-
tive Theories (joint work with Isabel Oitavem).

1



Tuesday January 31

9h-10h30 : Martin Hofmann - Pure pointer programs (implicit compu-
tational complexity) with an abstract datatype of pointers.

10h30 : Coffee break

11h-12h30 : Yiannis N. Moschovakis - Relative complexity in arith-
metic and algebra.

12h30 : Lunch.

14h30-16h : Emmanuel Hainry - Computable Analysis: Computability
and complexity over the reals.

16H : Coffee break

16h30-17h : Marco Solieri - Deep into optimality Complexity and cor-
rectness of shared implementation of bounded logics (joint work with
Stefano Guerrini and Thomas Leventis) .

17h-17h30 : Matthieu Perrinel - Bornes fortes pour la logique linéaire
par niveau.

2



Wednesday February 1

9h-10h30 : Martin Hofmann - Pure pointer programs (implicit compu-
tational complexity) with an abstract datatype of pointers.

10h30 : Coffee break

11h-12h30 : Neil Jones - Alan Turing and 75 years of Research in Models
of Computation .

12h30 : Lunch.

Thursday February 2

9h-10h30 : Heribert Vollmer - Circuit complexity.

10h30 : Coffee break

11h-12h30 : Stefan Szeider - Parameterized complexity.

12h30 : Lunch.

14h30-16h : Virgile Mogbil - Parallel Computation with Boolean Proof
Nets.

16h-16h30 : Clément Aubert - Proof circuits and others parallel models
of computation.

16h30 : Coffee break

Friday February 2

9h-10h30 : Stefan Szeider - Parameterized complexity.

10h30 : Coffee break

11h-12h30 : Heribert Vollmer - Circuit complexity.

12h30 : Lunch.

14h-14h30 : Martin Lackner - Fixed-Parameter Algorithms for Find-
ing Minimal Models (joint work with Andreas Pfandler).

14h30-15h : Johannes Schmidt - On the Parameterized Complexity of
Default Logic and Autoepistemic Logic (joint work with A. Meier, M.
Thomas, and H. Vollmer).

3



Abstracts of the Lectures

Martin Hofmann - Pure pointer programs (implicit computational com-
plexity) with an abstract datatype of pointers.
Pointer programs are a model of structured computation within LOGSPACE (log-
arithmic space on a Turing machine). They capture the common description of
LOGSPACE algorithms as programs that take as input some structured data, e.g.
a graph, and that store in memory only a constant number of pointers to the input,
e.g. to the graph nodes.

We define a formalised language for pointer programs (Purple) and show that
some LOGSPACE algorithms can be programmed in Purple while others cannot
(e.g. reachability in undirected graphs). This yields a better understanding of the
structure of LOGSPACE and also sheds new light on finite model theory ; indeed,
since formulas in deterministic transitive closure logic (DTC) can be evaluated in
Purple it can be deduced that reachability in undirected graphs cannot be defined
by a DTC formula which was hitherto unknown. This also, somewhat trivially,
separates Purple from PTIME. In order to get a more meaningful such separation
we would like to strengthen Purple while still remaining strictly below PTIME.
Possible such extensions are nondeterminism, iterators in the style of Java, and
various patterns of recursion patterns.

The course will give an overview of Purple and related systems and results, in

particular Graph Automata and DTC logic and present some of the extensions to

Purple that we currently investigate. This is joint work with Ulrich Schoepp and

Ramyaa Ramyaa.

Yiannis N. Moschovakis - Relative complexity in arithmetic and alge-
bra.
The main aim of these lectures is to show how ideas from the study of recursive
programs and algorithms can be used to derive lower complexity bounds for math-
ematical problems which are robust (with respect to the choice of computation
model) and plausibly ”absolute”, i.e., they restrict ”all algorithms”. An alterna-
tive name for them would be ”Recursion and Complexity”. There will be four,
40-minute lectures, as follows :

(1) Recursive (McCarthy) programs. Mostly well-known introductory material.
One possibly novel idea is a new approach to the foundational problem of justifying
the Church-Turing Thesis, which comes from examining the connection between
recursion and computation.

(2) Uniform processes. A simple, axiomatic approach to the theory of algo-
rithms from specified primitives in the style of ”abstract model theory”. Uniform
processes capture the ”uniformity” of algorithms—that they apply ”the same pro-
cedure” to all inputs—but not their effectiveness. They carry natural complexity
measures and support a simple ”Homomorphism Test” which can be used to derive
absolute lower bounds for algorithms from specified primitives. This is the main,

4



new material in these lectures.
(3) Lower bounds in arithmetic. Strong versions of results obtained jointly

with Lou van den Dries, mostly about the complexity of coprimeness from various
primitives and relative to various computation models.

(4) Lower bounds in algebra. Strong versions of results on ”0-testing” for poly-

nomials over various fields, mostly due to Peter Buergisser (with others) for alge-

braic decision trees.

Stefan Szeider - Parameterized complexity. -
. Parameterized Complexity is a new theoretical framework for the analysis and
solution of hard computational problems. Virtually in every conceivable context
we know more about the problem input than just its size in bytes. The key idea of
parameterized complexity is to represent this additional information in terms of
a parameter, and to study computational problems in a two-dimensional setting
formed by the input size and the parameter. This setting gives rise to a new theory
of algorithms and complexity that allows a more fine-grained complexity analy-
sis than the classical one-dimensional setting. Central to the theory is the notion
of fixed-parameter tractability, which relaxes the classical notion of tractability
by admitting algorithms whose runtime is exponential, but only in terms of the
parameter of the problem instance. In recent years, ideas from parameterized com-
plexity theory have found their way into various areas of computer science, such as
artificial intelligence, database theory, computational logic, computational social
choice, computational geometry, and computational biology.

In the first part of this tutorial we will discuss algorithmic methods for estab-

lishing fixed-parameter tractability, including the method of bounded search trees,

reductions to a problem kernel, and algorithmic meta theorems. In the second part

we will discuss the main concepts of parameterized intractability, which are simi-

lar to the theory of NP-completeness, and allow to provide strong evidence that a

parameterized problem is not fixed-parameter tractable.

Heribert Vollmer - Circuit complexity.
In these introductory lectures we will cover two topics from the area of circuit

complexity : In the first lecture we will talk about arithmetic circuits of small

depth. We will mainly concentrate on the classes #NC1 and #GapNC1 and show

how they provide useful characterizations of counting complexity classes, how they

capture the computational complexity of some problems in linear algebra, and how

they shed new light on the relation between logarithmic depth circuits and loga-

rithmic space Turing machines. In the second lecture we will turn to the area of

proof complexity and use very small NC0 circuit families as proof checkers. Alter-

natively one might say that we use NC0 circuit families to enumerate languages

(allowing repetitions). We will show how on the one hand even NP-complete lan-

guages can be enumerated in this way but on the other hand some very simple

5



languages lack this property.

Abstracts of the Invited talks

Emmanuel Hainry - Computable Analysis: Computability and complex-
ity over the reals.
Computing over continuous domains, in particular on the reals is quite important
for example to simulate physical, biological, mathematical phenomena. Various
models and various machines for computing on such domaines exist but there is
no such thing as a Church-Turing thesis for computing on the reals, some models
staying in the Turing-complete class, some using reals to answer the halting prob-
lem. We will concentrate on one model : Recursive Analysis which is well accepted
and has a long history as it was already present in Turing’s 1936 paper and even
hinted at by Borel in 1912.

We will present the recursive analysis model, including some explanations on
why some choices were made and introduce fundamental results on computability
in recursive analysis. We will also show recent results on the characterization of
classes of computable real functions.

Then, we will enter the complexity field. What does complexity mean when

the size of the input is infinite and the computation is not terminating ? We will

answer this question, present basic tools to analyse the complexity of functions

and a framework that allows us to translate characterizations of discrete complex-

ity classes into characterizations of the analog real complexity class, and use it to

give a characterization of the class of real functions computable in polynomial time

Neil Jones - Alan Turing and 75 years of Research in Models of Com-
putation .
Alan Turing and 75 years of Research in Models of Computation By Neil D. Jones

and Jakob Grue Simonsen.

From a programming perspective, Alan Turing’s epochal 1936 paper on computable

functions introduced several new concepts, including what is today known as self-

interpreters and programs as data, and originated a great many now-common pro-

gramming techniques.

We begin by reviewing Turing’s contribution from a programming perspective ;

and then systematise and mention some of the many ways that later developments

in models of computation (MOCs) have interacted with computability theory and

programming language research.

Next, we describe the “blob” MOC : a recent stored-program computational model

without pointers. Novelties of the blob model : programs are truly first-class citi-

zens, capable of being automatically executed, compiled or interpreted. The model

6



is Turing complete in a strong sense : a universal interpretation algorithm exists,

able to run any program in a natural way and without arcane data encodings.

The model appears closer to being physically realisable than earlier computation

models. In part this owes to strong finiteness due to early binding ; and a strong

adjacency property : the active instruction is always adjacent to the piece of data

on which it operates.

Next, some of the best-known among the numerous existing MOCs are overviewed

and classified by qualitative rather than quantitative features, paying attention to

two factors of prime importance to programmability and physical realizability :

finiteness (and with respect to what) ; binding times (of what to what at which

point in a computation’s time). We attempt to establish a list of traits an “ideal

” MOC should process.

Finally, we describe how the blob model differs from an “ideal ” MOC, and identify

some natural next steps to achieve such a model.

Keywords : programming, recursion theory, models of computation

Virgile Mogbil - Parallel Computation with Boolean Proof Nets.

Abstracts of the Contributions

Clément Aubert - Proof circuits and others parallel models of compu-
tation.
Proof circuits [Aubert, 11] are a clear and intuitive presentation of the Boolean

proof nets [Terui, 04] in a uniform framework [Mogbil-Rahli, 07] : we define /pieces/

as a set of links and edges of a unbounded variant of *Multiplicative Linear Logic*

representing Boolean constants, n-ary disjunctions and conjonctions, negation and

mechanisms such as deletion and duplication. Thoses pieces may be ”plugged”

together to obtain /proof circuits/ : *MLLu* uniform Boolean proof nets whose

size and depth are implicitly bounded and whose parralel normalization matches

up evaluation in Boolean circuits. This light presentation allows sublogarithmic

translation and simulation between Boolean circuits and proof circuits, lightens

the size of the latter and preserves all the good properties concerning complexity.

We conclude by giving the first hints toward a full correspondence between proof

circuits and alternating Turing machines, enlarging the correspondence between

parallel models of computation.

Ugo Dal Lago - Higher-order Interpretations and Program Complexity
(joint work with Patrick Baillot).

7



Polynomial interpretations and their generalizations like quasi-interpretations have

been used in the setting of first-order functional languages to design criteria en-

suring statically some complexity bounds on programs. This fits in the area of

implicit computational complexity, which aims at giving machine-free character-

izations of complexity classes. Here we extend this approach to the higher-order

setting. For that we consider the notion of simply typed term rewriting systems,

we define higher-order polynomial interpretations (HOPI) for them and give a cri-

terion based on HOPIs to ensure that a program can be executed in polynomial

time. In order to obtain a criterion which is flexible enough to validate some inter-

esting programs using higher-order primitives, we introduce a notion of polynomial

quasi-interpretations, coupled with a simple termination criterion.

Reinhard Kahle - Computational Complexity and Applicative Theories
(joint work with Isabel Oitavem).
By work of Strahm and Cantini, it was already shown that Applicative Theories -

the first order part of Feferman’s system of Explicit Mathematics - provide a very

handy formal framework to characterize classes of computational complexity. In

this talk, we present an applicative theory for FPH and its levels. The presenta-

tion will also include some general consideration concerning the set-up of induction

principles corresponding to recursion principles for complexity classes.

Martin Lackner - Fixed-Parameter Algorithms for Finding Minimal
Models (joint work with Andreas Pfandler).
Computing minimal models is an important task in AI and Reasoning that appears
in formalisms such as circumscription, diagnosis and answer set programming.
Deciding whether there is a minimal model containing a given variable is known
to be ΣP

2 -complete.

In this talk I present a study of this problem from the viewpoint of parame-

terized complexity theory that has been undertaken together with Andreas Pfan-

dler. We performed an extensive complexity analysis of this problem with respect

to eleven parameters. We identified tractable fragments based on combinations

of these parameters by giving several fixed-parameter algorithms. Furthermore,

for the remaining combinations we showed parameterized hardness results and

thus proved that no further fixed-parameter algorithms exist for these parameters

(under usual complexity theoretic assumptions). In particular, we proved W[2]-

completeness when parameterizing by the maximum cardinality of the model. This

answered an open question posed in (Gottlob, Scarcello, and Sideri 2002).

Isabel Oitavem - NP with tier 0 pointers.
We give a characterization of NP using a recursion scheme with tier 0 point- ers.

This extends the Bellantoni-Cook characterization of Ptime and, si- multaneously,

8



it is a restriction of a recursion-theoretic characterization of Pspace.

Matthieu Perrinel - Bornes fortes pour la logique linéaire par niveau.
La logique linéaire par niveaux, introduite par Baillot et Mazza, est un sursystème

de la logique linéaire light de Girard. Des bornes polynomiales faibles, c’est à dire

pour des stratégies de réduction particulières, ont été montrées pour deux versions

de la logique linéaire par niveau (mL4 et mL40). Mais, les stratégies correspondant

étant complexe, il était difficile de transformer ces logiques en vrais langages de pro-

grammation, avec une stratégie de réduction explicite. En étendant la sémantique

des contextes à la logique linéaire par niveaux, nous montrons une borne forte poly-

nomiale (valable pour n’importe quelle stratégie de réduction) pour mL4 et mL40.

Johannes Schmidt - On the Parameterized Complexity of Default Logic
and Autoepistemic Logic (joint work with A. Meier, M. Thomas, and H.
Vollmer).
We investigate the application of Courcelle’s Theorem and the logspace version of

Elberfeld et al. in the context of the implication problem for propositional sets of

formulae, the extension existence problem for default logic, as well as the expan-

sion existence problem for autoepistemic logic and obtain fixed-parameter time

and space efficient algorithms for these problems. On the other hand, we exhibit,

for each of the above problems, families of instances of a very simple structure

that, for a wide range of different parameterizations, do not have efficient fixed-

parameter algorithms (even in the sense of the large class XPnu), unless P=NP.

Marco Solieri - Deep into optimality Complexity and correctness of
shared implementation of bounded logics (joint work with Stefano Guerrini
and Thomas Leventis) .
Sharing graphs are an implementation of both the Lévy-optimal reduction on
lambda calculus, and of linear logic proof-nets. Since the proof of inadequacy
of Lévy families as a cost model for lambda calculus, studies on the complexity
of the shared reduction are far from complete. Indeed, the only comparative re-
sult considers the restricted case of bounded logics. Because of their well known
complexity, it was possible to provide semantically, via geometry of interaction, a
correspondent bounding of their shared implementation.

In a similarly restricted case, where the abstract algorithm is sufficient, we
present a complete and stronger comparison between the cost of the cut elimination
on proof-nets and the cost of the corresponding shared reduction. Then, for the first
time, the expected benefits of sharing and avoiding duplication in the reduction
are made explicit. The proof exploits an intermediate graph rewriting system, that
permits us to give a precise account of complexity on the former and to establish
a simulation of the latter. Such simulation implies the main complexity result of
the shared implementation, as well as its correctness.

9



Our syntactical approach enlightens the connection between the different styles

of duplication of the two systems - global in proof-nets, local in sharing graphs.

This insight appears a suitable starting point for the two, more general, related

complexity problem which are still open : the cost model for the lambda calculus

itself, and the cost of its shared implementation.

Pierre Valarcher - From intentional behavior to algorithmic com-
pleteness.
I propose to present problems of the algorithmic expressiveness of some program-

ming languages (imperative and functional) that compute extensionally the same

set of functions.

10


