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ABSTRACT
Surrogates are investigated as procedures of synthesis for multi-
variate time series with prescribed properties. First it is shown
how to prescribe a multivariate covariance function jointly with the
(possibly non-Gaussian) marginal distributions. Second, using his-
togram matching by approximate optimal transport with the Sliced
Wasserstein Distance, the surrogate synthesis is extended to pre-
scribe covariance function and joint-distribution of the components.
Algorithms are described and justified, and numerical examples are
shown. MATLAB codes are publicly available online.

Index Terms— Surrogate, Numerical Synthesis, Multivariate
Series, Optimal Transport, Sliced Wasserstein Distance

1. INTRODUCTION

Improvements in data acquisition leads more and more to multivari-
ate time series. Measurements from sensor networks, computer net-
works, devices of environmental or health monitoring, are as many
examples. These multivariate signals are usually non-Gaussian and
correlated. One challenge is the synthesis of stationary multivariate
time series that have prescribed probability distributions of values
and specified covariance function (both auto- and cross-covariance).

The contribution of this work is to devise synthesis procedures
relying on surrogate methods [1, 2]. Whereas synthesis of Gaus-
sian multivariate time series is known, thanks for instance to the
circulant embedding methods initially proposed in [3, 4] (see also
[5] and references therein), the case of series with prescribed co-
variance function and non-Gaussian distributions is harder, with few
solutions (see [6] and references therein). Surrogates, introduced
initially in non-linear physics [1, 2], are a way of synthesising series
matching empirical properties of some observed data. Our first con-
tribution is to elucidate how surrogates can be used for an elegant
synthesis of many different time series with prescribed properties.
Let X(n) be a multivariate series with M components and xj(n)
with n = 0, ..., N − 1 its j-th component. Let C be a theoreti-
cal prescription of the stationary covariance C of X . It is defined
as Cjk(n) = E{xj(t)xk(t + n)} − E{xj(t)}E{xk(t + n)}, for
n = 0, ..., N − 1 and i, j = 1...M . Let also pj(xj) be a theoretical
prescription of the marginal distribution of component xj . The first
objective is to synthesise multivariate series having this covariance
function C with these marginals pj . We explain how surrogates can
be generated as a solution. This is presented in Section 2.

Recent works, inspired by [7], tackle the non-Gaussian synthe-
sis challenge, where non-Gaussian series are obtained by a mapping
from Gaussian series. The issue is to inverse this mapping for the
covariance. Bivariate series were considered in [8] then multivari-
ate non-Gaussian series in [6] using an elaborated mapping that can
be approximately computed and reversed via Hermite expansions.

An advantage of the new method with surrogates is that it does not
involve such a numerical reversion, a hard step as told in [6].

Furthermore, and this is the contribution in Section 3, surro-
gate synthesis can go one step further in the prescriptions: not
only the marginal distribution can be prescribed, but also the joint-
distribution of the series at a given time. For that, we show how
to modify the surrogates with optimal transport. A practical solu-
tion for optimal transport has been introduced in [9] using a Sliced
Wasserstein Distance. It fills nicely the need of multi-dimensional
histogram matching in the surrogate method. In Section 3.1, some
background is recalled on optimal transport and it is shown in 3.2
how to synthesise series with prescribed covariance and joint-
distributions. An example is given in 3.3. Conclusion is in Section 4.

2. PRESCRIBED COVARIANCE AND MARGINALS

2.1. Background: Classical Surrogates of Multivariate Series

From a given series, the main idea of surrogate is to synthesise new
stationary data by a randomisation in the Fourier domain [1, 2].
Multivariate Surrogates. For multivariate series, cross-correlations
should be kept [10]. The randomisation in the Fourier domain is
chosen so that the differences of phase between components stay the
same. Let X(n) be a multivariate series with M components (xj(n)
with n = 0, ..., N − 1 being its j-th component). For initialisation,
compute the Fourier transform of each component:

(Fxj)(f) =
N−1X

n=0

xj(n)e−i2πnf/N = Axj (f) eiΨxj (f) (1)

The algorithm for multivariate surrogates is as follows:
ALGORITHM 0:
Input Axj (f) and Ψxj (f) for j = 1, ..., M , f = 0, ..., N − 1.
1. Draw a random phase Θ(f), i.i.d., uniform in [0, 2π].
2. Independently for each component j, do a phase randomisation in
the Fourier domain by adding Θ(f) (the same for each j) so that

sj(n) =
1
N

N−1X

f=0

Axj (f)ei(Ψxj (f)+Θ(f))ei2πnf/N . (2)

3. Form the multivariate surrogate S(n) = [s1(n), ..., sM (n)]t.
Output S.

As shown in [10] using the Wiener-Khintchine theorem, the
surrogate S has the same cross-covariance structure as X because
(Fsj)

∗(f)(Fsk)(f) = Axj (f)Axk (f)ei(Ψxk
(f)−Ψxj (f)), hence is

equal to (Fxj)
∗(f)(Fxk)(f). A proof that the surrogates are sta-

tionary holds [11, 12]. Finally these surrogates are Gaussian if N is
large enough (as sums of randomised Fourier modes) [2].
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Synthesis with Gaussian Surrogates. There are two strategies to
use these surrogates to synthesise Gaussian series:
1) The target series should follow an empirical prescription from
some measured data X . This is the original framework of surro-
gates and, given X , the algorithms described above are directly ap-
plicable with initialisation by eq. (1).
2) The target series is given through a model, with a theoretical
prescription of stationary covariance function C (standing for the
Cjk(n) for n = 0, ..., N − 1 and i, j = 1...M ). For the surro-
gate algorithm, C has to be first transformed into Fourier ampli-
tudes Axj (f) and phases Ψxj (f) (these latter impose the cross-
covariance) of one realisation X , before generating new realisations
by ALGORITHM 0. For this seed Gaussian series X , we advocate the
use of circulant embedding methods [3, 4, 5] as the state-of-the-art.

In that case, one could wonder whether there is any need for sur-
rogates if one should know how to synthesise a seed Gaussian series
by another method before using surrogates. A first answer is that,
being based on two Fourier transforms only, the surrogate algorithm
is a quick way to obtain more realisations. Applying this algorithm
with independently drawn Θ(f) will generate new and independent
series. A second answer is, and this is the contribution hereafter, that
surrogates are easily adapted to prescribe also the marginal of each
component (Section 2.2) or their joint-distribution (Section 3).

2.2. Synthesis with Prescribed Covariance and Marginals
Multivariate Surrogate Algorithm for Non-Gaussian Marginals.
From [2], a strategy is designed so that the surrogate is also con-
strained to have the same marginal distribution as the original series.
For that, an iterative procedure alternates projection on the two con-
straints (the covariance function expressed in the Fourier domain,
and the prescribed marginal distributions). This is called the IAAFT
(Iteratively Amplitude Adjusted Fourier Transform) surrogate.

ALGORITHM IAAFT surrogate:
Input Axj (f), Ψxj (f) and xj(n) for j = 1, ..., M , and for n and
f = 0, ..., N − 1
Initialisation: r(1)

j (n) is a classical surrogate S from ALGORITHM
0. The prescribed values vj are the rank-ordered values of x: vj =
sort(xj). At iteration l, one applies the two steps:
Step 1. Projection on the prescribed covariance. Form:

(Fr(l)
j )(f) =

N−1X

n=0

r(l)(n)ei2π nf
N = A

r
(l)
j

(f) e
iΨ

r
(l)
j

(f)

(3)

and transform it back by replacing the amplitudes by the desired ones
Axj (f) while keeping the phase Ψ

r
(l)
j

(f) of this iteration:

s(l)
j (n) =

1
N

N−1X

f=0

Axj e
iΨ

r
(l)
j

(f)

e−i2π nf
N . (4)

Step 2. Projection on the prescribed marginal distributions. Inde-
pendently on each component, apply the rank ordering mapping
with the prescribed values vj :

r(l+1)
j (n) = vj(rank(s(l)

j (n))). (5)

Stop iterations: Define the multivariate surrogates R = [r1, ..., rM ]t

and S = [s1, ..., sM ]t. Convergence when R " S, or when R
and/or S do not evolve anymore from one iteration to the next.
Output S and/or R.

Here, recall that the rank of each values of a series sj is defined by

ALGORITHM 1:
Input covariance Cjk(n) for n = 0, ..., N−1 and and i, j = 1...M ,
and marginal distributions pj(vj)
1. For the desired covariance Cjk(n), create a Gaussian signal X
with circulant embedding methods (cf. [3, 4, 5])
2. Compute amplitude Axj (f) and phase Ψxj (f) of the Fourier
transform of each component j = 1, ..., M , eq. (1)
3.a For each j, draw vj(n), n =∈ {1..N} from desired pj(vj)
3.b Sort values: vj = sort(vj)
4. Initialise ALGORITHM IAAFT by R(1) = S from ALGORITHM
0 (classical surrogate) with random draw of Θ(f); see eq. (2)
5. Apply the iterations of ALGORITHM IAAFT, eq. (3), (4) and (5)
6. Stop if R close enough to S or they do not change
Output R and S

Table 1. Prescribe Covariance and Marginal Distributions

rank(sj(n)) = k if sj(n) is the k-th smallest value in sj .
The algorithm converges to a fixed point r(l+1)

j = r(l)
j so that

R has the same marginal distributions as X and approximately its
covariance (whereas S has the exact covariance and approximative
marginal distributions). In [2], accuracy is further discussed. An-
other way to look at convergence is to realise that the algorithm is
mostly alternating projections on convex sets.

Synthesis of Series with Prescribed Covariance Function and
Marginals. As in Section 2.1, there are two strategies to synthesise
multivariate series with prescribed properties:
1) The usual surrogate framework where a measured multivari-
ate series X imposes its empirical Fourier amplitudes Axj (f) and
phases Ψxj (f), and its empirical marginals (values of xj). Per
above, surrogates S and R will share these properties with X .
2) If a model is given, the covariance C and the desired marginal
distributions pj(x) are prescribed. They are mapped into one re-
alisation of the prescription before generating IAAFT surrogate:

a) The Fourier amplitudes Axj (f) and phases Ψxj (f) are com-
puted by synthesising a seed Gaussian series X having the de-
sired covariance structure, using circulant embedding meth-
ods [3, 4, 5], then using Fourier transform (eq. (1)).

b) For each j, vj(n) are N values drawn i.i.d. from pj(v) us-
ing classical random generators (e.g., inversion method or
acceptance-rejection method).

As Step 2 of the IAAFT surrogates uses rank-ordered distributions
of vj , prescribing these values independently from the covariance
is possible. The method ALGORITHM 1 is summarised in Table 1.
Each call to ALGORITHM 1 returns a new surrogate S (or R).

2.3. Example
An example using ALGORITHM 1 is reported in Fig. 1. It simulates
a non-Gaussian multivariate Moving Average process of order 1 and
dimension M = 3, defined as follows:
– Covariance function C(n) is prescribed from the recurrence
X(n+1) = Φ∗X(n−1)+E(n) where E is i.i.d. Gaussian noise,
of variances 1 and Φ = [[0.8 1.0 0.0]; [0.0 0.2 0.0]; [0.2 1.0 0.5]].
– Marginal p1 is uniform; p2 is a triangular distribution; p3 is a
Gamma distribution, with α = 2.2 and β = 1.45.

We were careful to prescribe Cjj(0) = Var(pj) so that the con-
straints are compatible. Also, ALGORITHM 1 returns fluctuations of
each component around the mean (non-zero for p3). On Fig. 1 are
shown examples of the time series, empirical estimations and pre-
scribed forms for the marginal distributions, the 3 auto-covariances
and 3 cross-covariances (non-time reversible). The resulting series
and estimates show no discrepancy w.r.t. the target.
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Fig. 1. Example with ALGORITHM 1: Covariance of a Moving Aver-
age and marginals as defined in Section 2.3. (a) Zoom on the time se-
ries. (b) Empirical estimations (bars) and prescribed forms (dashed
red lines) for the marginal distributions. (c) Auto-covariances and
(d) Cross-covariance for surrogates (black) and model (red). All em-
pirical estimates on surrogates are done with N = 215.

3. JOINT-DISTRIBUTIONS AND OPTIMAL TRANSPORT

A recent work [9] has studied applications of optimal transport to
multi-dimensional histogram matching. It shows how to compute
approximately yet practically the optimal transport to go from one
histogram to another. From that, not only the marginal distribution
pj can be prescribed for surrogates but also the joint distribution
P (x1, ..., xM ) at a given instant n, assuming that it is stationary
(hence independent of n). Indeed, in the IAAFT algorithm, Step 2
of the iteration given by the rank ordering, eq. (5), is in fact the opti-
mal histogram matching mapping in 1D. Replacing it by the optimal
histogram matching in M dimensions to a distribution P allows us
to prescribe that the surrogates will have P as joint-distribution.

Let us first recall basics on optimal transport and on the solution
proposed in [9] before detailing the new algorithm.

3.1. Optimal Transport with Sliced Wasserstein Distance

The optimal transport between two distributions Yk and Zk, k =
1, ..., N , is the assignment k → σ∗(k) (where σ∗ ∈ ΣN , the set of
possible permutations of N elements) that minimises the quadratic
Wasserstein distance: Wσ(Y, Z)2 =

P
k ||Yk − Zσ(k)||2. Solution

of this problem involves a linear programming with prohibitive com-
putations for large N . An alternative metric coined “Sliced Wasser-
stein Distance” was proposed in [9]:

W̃σ(Y, Z)2 =

Z

θ∈Ω

min
σθ∈ΣN

X

k

||〈Yk − Zσθ(k), θ〉||2dθ, (6)

where σθ is the optimal transport for the points projected on a line
defined by the unit vector θ ∈ Ω = {u ∈ RM , s.t.||u|| = 1}. In 1D

ALGORITHM 2:
Input covariance Cjk(n) for n = 0, ..., N − 1 and i, j = 1...M ,
and joint-distribution P (v1, ..., vM )
1. For the desired covariance Cjk(n), create a Gaussian signal X
with circulant embedding methods (cf. [3, 4, 5])
2. Compute amplitude Axj (f) and phase Ψxj (f) of the Fourier
transform of each component j = 1, ..., M , eq. (1)
3. Draw N independent vectors V (n) from desired P (v1, ..., vM )
4. Initialise ALGORITHM IAAFT by R(1) = S from ALGORITHM
0 (classical surrogate) with random draw of Θ(f); see eq. (2)
5. Iterate a modified IAAFT ALGORITHM:
a. Step 1: apply eq. (3) and (4) to obtain S(l)

b. Step 2: approximate optimal transport (as in 3.1), to map S(l) to
values of V . Result: R(l+1)(n) = V (σ̃∗

S(l),V
(n))

6. Stop if R close enough to S or they do not change
Output R and S

Table 2. Prescribe Covariance Function and Joint-Distribution

optimal transport is given by the rank ordering mapping of eq. (5).
It follows that a stochastic gradient descent can minimise

W̃σ(Y, Z)2 and finds an approximate optimal transport. Starting
from Y , at each iteration a random direction θk is taken and the
descent update reads

Y (k+1) = Y (k) − ηk

“
Y (k) − 〈Zσ∗

θk
, θk〉

”
(7)

where σ∗
θk

is the optimal rank ordering from 〈Z, θk〉 to 〈Y (k), θk〉.
Convergence is discussed in [9] and works well with ηk ≤ 1 in
practice. Not only does it give the distance of eq. (6), but also the
optimal transport from Y to Z for this distance. We note it σ̃∗

Y,Z , and
keep in mind that it is computed with the iterative gradient descent.

3.2. Synthesis with Prescribed Covariance and Joint-Distribution

When prescribing both the covariance structure and a stationary
joint distribution P (x1, ..., xM ) (this includes marginal distribu-
tions pj(x) =

R
P (x1, ..., xM )

Q
k $=j dxk), the proposed surrogate

algorithm for synthesis of multivariate time series modifies AL-
GORITHM 1 by including the computation of approximate optimal
transport in replacement of Step 2 of IAAFT surrogate. It follows
an ALGORITHM 2, sketched in Table 2.

Because the individual algorithms (IAAFT and computation of
approximate optimal transport) are guaranteed to converge, this al-
gorithm will converge. Again, the algorithm is chiefly an instance
of alternating projections on convex sets. It is possible that R and
S are not exactly the same if the constraints are not exactly possible
jointly. R is exact for the joint-distribution and S for the covariance.

3.3. Example

An example using ALGORITHM 2 is reported in Fig. 2. It simulates
a non-Gaussian multivariate of dimension M = 2 given as follows:
– Covariance function C(n) is given by exponentially decreasing
functions: Cjk = γjke−αjkn with parameters α11 = 0.5, α22 = 1,
α12 = 0.7; γ11 = 1, γ22 = 1, γ12 = 0.7.
– Joint-distribution P (x1, x2) is so that marginal p1 is uniform and
p2 is a triangular distribution, and for each point x1(n) = x2(n) +
U(n) where U is an i.i.d. uniform centred random variable (hence
the triangular distribution for the marginal p2).

We were careful to prescribe Cjj(0) = Var(pj), and C12(0) =R
x1x1P (x1, x1)dx1dx2 so that the two constraints are compati-

ble. On Fig. 2, are shown examples of the time series, empirical
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Fig. 2. Example with ALGORITHM 2: Covariance and joint-distributions as defined in 3.3. (a) Zoom on the time series. (b) Empirical
estimations (bars) and prescribed forms (dashed red lines) for the marginals. (c) Auto- and Cross-covariances for surrogates (black) and model
(red). (d) Target empirical joint-distribution (values V (n) drawn for point 3 of ALGORITHM 2); (e) Obtained empirical joint-distribution with
ALGORITHM 2; (f) Comparison to empirical joint-distribution obtained with ALGORITHM 1. All estimates are done with N = 215.

estimations and prescribed forms for the marginal distributions, the
2 auto-covariances and the cross-covariance. The result shows no
discrepancy w.r.t. the target. On the second line, the empirical tar-
get and obtained joint-distribution are drawn: they are similar. On
the contrary, if one would use ALGORITHM 1, the marginals and co-
variances are the same, whereas the joint-distribution departs from
the target: it is shown in Fig. 2 (f). It does not respect the con-
straint of the prescribed joint-distribution that x1(n) ∈ [x2(n) +
min(U); x2(n) + max(U)].

4. CONCLUSION

A method of surrogates is developed to synthesise many different
multivariate time-series, where the covariance function and maginal
or joint- distributions are prescribed either through a model (C and
P or pj) or by empirical properties of measured series. To obtain
more realisations of the same series, it is enough to iterate the pro-
posed algorithms. Future work will involve a thorough comparison
in the case of prescribed marginal with the technique of [6]. All com-
putation are done using MATLAB codes that are publicly available1.

The method can find applications on real-world data. For in-
stance, internet traffic has packet or bytes count time series with
an interesting bivariate structure; sensor networks for environmental
monitoring are another instance of joint measurements of tempera-
ture, pressure, rain,... On the methodological side, the method opens
the way to follow [11] and study multivariate stationarity tests.
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