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Abstract

The Lamperti transformation defines a one-to-one correspondence between sta-
tionary processes on the real line and self-similar processes on the real half-line.
Although dating back to 1962, this fundamental result has further received little at-
tention until a recent past, and it is the purpose of this text to survey the Lamperti
transformation and its (effective and/or potential) applications, with emphasis on
variations which can be made on the initial formulation. After having recalled ba-
sics of the transform itself, some results from the literature will be reviewed, which
can be broadly classified in two types. In a first category, classical concepts from
stationary processes and linear filtering theory, such as linear time-invariant systems
or ARMA modeling, can be given self-similar counterparts by a proper “lampertiza-
tion” whereas, in a second category, problems such as spectral analysis or prediction
of self-similar processes can be addressed with classical tools after stationarization by
a converse “delampertization”. Variations and new results will then be discussed by
investigating consequences of the Lamperti transformation when applied to weakened
forms of stationarity or of self-similarity. Locally stationary processes and locally self-
similar processes will be considered this way, as well as cyclostationary processes for
which “lampertization” will be shown to offer a suitable framework for defining a
stochastic extension to the notion of discrete scale invariance which has recently
been put forward as a central concept in many critical systems.

1 Introduction

In a seminal paper published in 1962 [19], J.W. Lamperti introduced key concepts related
to what is now referred to as self-similar processes. Among other important results, he
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first pointed out the one-to-one connection which exists between self-similar processes and
stationary processes, via a transform which essentially consists in a proper warping of the
time axis. This result has often been quoted in the literature (e.g., in [3], [30] or [34]),
but rarely used and even discussed per se. Notable exceptions are the contributions of
Burnecki et al. [8] who proved unicity, and of Nuzman and Poor [25, 26] who explicitly (and
extensively) took profit of it for linear estimation issues concerning fractional Brownian
motion (fBm).

The transform that Lamperti initially pushed forward in 1962 has, since then, been
rediscovered from time to time, under different forms. For instance, Gray and Zhang
re-established in [17] a weakened form of Lamperti’s theorem, upon which they based a
discussion on specific classes of self-similar processes, referred to as multiplicative stationary
processes. From a very close (yet independent) perspective, Yazici and Kashyap advocated
in [37] the use of a transform—which indeed identifies to Lamperti’s—for constructing
related classes of self-similar processes referred to as scale stationary processes, a concept
which had also been briefly discussed and commented in [12]. More recently, Vidács and
Virtamo proposed in [35, 36] an original ML estimation scheme for fBm parameters, which
basically relies on a geometrical sampling of the data, i.e., on a pre-processing guaranteeing
a stationarization in the spirit of the Lamperti approach.

Recognizing both the importance of the Lamperti transform and the sparsity of its
coverage in the literature, the purpose of this text is to offer a guided tour of existing
material in a unified form, and also to discuss new extensions. More precisely, the text is
organized as follows. In Section 2, basics of stationarity and self-similarity are first recalled,
and the Lamperti transform is introduced. The ability of this transform to put self-similar
and stationary processes in a one-to-one correspondence is then proved, and a number of
consequences are detailed, with respect to covariances, spectra, long-range dependence and
scale-covariant generating systems for self-similar processes. Some examples and applica-
tions are dealt with in Section 3, including either stationary processes (random phase tones,
Ornstein-Uhlenbeck, ARMA) and their self-similar counterparts, or self-similar processes
(fractional Brownian motion, Euler-Cauchy) and their stationary counterparts. Section 4
is then devoted to variations on the original approach, obtained by applying the Lamperti
transform to weakened forms of stationarity or self-similarity. Following a brief introduc-
tion of relevant concepts such as multiplicative harmonizability or scale-invariant Wigner
spectra, special emphasis is put on the newly introduced notion of stochastic discrete scale
invariance which is shown to be the Lamperti image of cyclostationarity.

2 The Lamperti transformation

2.1 Stationarity and self-similarity

The notion of stationarity is basic in the study of many stochastic processes. Heuristically,
the idea of stationarity is equivalent to that of statistical invariance under time shifts, and
this concept has proven most useful in many steady-state applications. From a different
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perspective, scale invariance (or self-similarity) is also ubiquitous in many natural and man-
made phenomena (landscape texture, turbulence, network traffic, . . . ). The underlying
idea is in this case that a function is scale invariant if it is identical to any of its rescaled
versions, up to some suitable renormalization in amplitude.

To make these ideas more precise, let us first introduce two basic operations.

Definition 1 Given some number τ ∈ IR, the shift operator Sτ operates on processes
{Y (t), t ∈ IR} according to:

(SτY )(t) := Y (t + τ). (1)

Definition 2 Given some numbers H > 0 and λ > 0, the renormalized dilation operator
DH,λ operates on processes {X(t), t > 0} according to:

(DH,λX)(t) := λ−H X(λt). (2)

Using these operators in the context of stochastic processes, and introducing the nota-

tion “
d
=” for equality of all finite-dimensional distributions, the definitions of stationarity

and self-similarity follow as:

Definition 3 A process {Y (t), t ∈ IR} is said to be stationary if

{(SτY )(t), t ∈ IR} d
= {Y (t), t ∈ IR} (3)

for any τ ∈ IR.

Definition 4 A process {X(t), t > 0} is said to be self-similar of index H (or “H-ss”) if

{(DH,λX)(t), t > 0} d
= {X(t), t > 0} (4)

for any λ > 0.

Such an equality holds in the usual sense for homogeneous functions proportional to
tH , t > 0, and it is useful to remark that, whenever {X(t), t > 0} is H-ss, then the
modulated process {XH′(t), t > 0} such that

XH′(t) := tH
′
X(t) (5)

is (H + H ′)-ss.
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2.2 The transform

Definition 5 Given some number H > 0, the Lamperti transform LH operates on pro-
cesses {Y (t), t ∈ IR} according to:

(LHY )(t) := tH Y (log t), t > 0, (6)

and the corresponding inverse Lamperti transform L−1
H operates on processes {X(t), t > 0}

according to:
(L−1

H X)(t) := e−Ht X(et), t ∈ IR. (7)

The Lamperti transform is invertible, which guarantees that (L−1
H LHY )(t) = Y (t) for

any process {Y (t), t ∈ IR}, and (LHL−1
H X)(t) = X(t) for any process {X(t), t > 0}. We

can however remark that, given two different parameters H1 and H2, we only have

(L−1
H2
LH1Y )(t) = e−(H2−H1)t Y (t), (8)

and, in a similar way, it is immediate to establish that

(LH2L−1
H1

X)(t) = tH2−H1 X(t). (9)

2.3 From stationarity to self-similarity, and back

Lemma 1 The Lamperti transform (6)-(7) guarantees an equivalence between the shift
operator (1) and the renormalized dilation operator (2) in the sense that, for any λ > 0:

L−1
H DH,λLH = Slog λ. (10)

Proof — Assuming that {Y (t), t ∈ IR} is stationary and using the Definitions 1, 2 and 5,
we may write

(L−1
H DH,λLHY )(t) = (L−1

H DH,λ)(t
H Y (log t))

= L−1
H (λ−H(λt)HY (log λt))

= e−Ht(sHY (log λs))s=et

= Y (t + log λ)

= (Slog λY )(t).

QED

This observation is the key ingredient for establishing a one-to-one connection between
self-similarity and stationarity. This fact—which, while first stated in 1962 [19], has been
rediscovered many times, see e.g., [37]—is referred to as Lamperti’s theorem and reads as
follows:
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Theorem 1 If {Y (t), t ∈ IR} is stationary, its Lamperti transform {(LHY )(t), t > 0} is
H-ss. Conversely, if {X(t), t > 0} is H-ss, its inverse Lamperti transform {(L−1

H X)(t), t ∈
IR} is stationary.

Proof — Let {Y (t), t ∈ IR} be a stationary process. Using Definition 3 and Lemma 1, we
have for any λ > 0,

{Y (t), t ∈ IR} d
= {(Slog λY )(t) = (L−1

H DH,λLHY )(t), t ∈ IR} (11)

and it follows from Definition 4 that the Lamperti transform X(t) := (LHY )(t) is H-ss
since

{X(t), t > 0} d
= {(DH,λX)(t), t > 0} (12)

for any λ > 0.
Conversely, let {X(t), t > 0} be a H-ss process. Using Definition 4 and Lemma 1, we

have for any λ > 0,

{X(t), t > 0} d
= {(DH,λX)(t) = (LHSlog λL−1

H X)(t), t > 0} (13)

and it follows from Definition 3 that the inverse Lamperti transform Y (t) := (L−1
H X)(t) is

stationary since

{Y (t), t ∈ IR} d
= {(Slog λY )(t), t ∈ IR} (14)

for any λ > 0.

QED

The Lamperti transform establishes therefore a one-to-one connection between station-
ary and self-similar processes, and it is worth noting that it is in fact the unique transform
to permit such a connection [8]. A graphical illustration of this one-to-one correspondence
is given in Figure 1.

Using (9), one can remark that, if {Y (t), t ∈ IR} is stationary, the transformed process
{(L−1

H2
LH1Y )(t), t ∈ IR} cannot be stationary, unless H1 = H2. In a similar way, making

use of the remark on processes as in (5), the composition rule given in (8) shows that, if
{X(t), t > 0} is H-ss, the transformed process (LH2L−1

H1
X)(t) is (H + H2 − H1)-ss.

2.4 Consequences

2.4.1 Covariances and spectra

As a direct consequence of Theorem 1, statistical properties of self-similar processes can
be inferred from those of their Lamperti counterparts, and vice-versa. In particular, if we
restrict to zero-mean second-order processes and if we introduce the notation RX(t, s) :=
IEX(t)X(s), it is straightforward to establish that, for any process {X(t), t > 0}, the
covariance function of its inverse Lamperti transform is given by:

RL−1
H X(t, s) = e−H(t+s) RX(et, es) (15)
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for any t, s ∈ IR.
Conversely, for any process {Y (t), t ∈ IR}, the covariance function of its Lamperti

transform reads
RLHY (t, s) = (ts)H RY (log t, log s) (16)

and, if Y (t) happens to be stationary, we then have RY (t, s) = γY (t − s) (with γY (.) a
non-negative definite function), leading to:

RLHY (t, s) = (ts)H γY (log(t/s)). (17)

Two corollaries to Theorem 1 are therefore as follows:

Corollary 1 Any second-order H-ss process {X(t), t > 0} has necessarily a covariance
function of the form

RX(t, s) = (ts)H cH(t/s) (18)

for any t, s > 0, with cH(exp(.)) a non-negative definite function.

In the specific case where H = 0, we recover this way the class of “multiplicative
stationary processes” introduced in [17], whereas the more general factorization given by
(18) has been pointed out, e.g., in [12] and [37].

Corollary 2 Given a second-order H-ss process {X(t), t > 0}, the power spectrum den-
sity of its stationary counterpart (L−1

H X)(t) is the Mellin transform of the scale-covariant
function cH given in Eq. (18).

Proof — Starting from (15) and using (18), it is immediate to establish that

RL−1
H X(t + τ/2, t − τ/2) = cH(eτ ),

from which it follows that the power spectrum density ΓL−1
H X(f) of the inverse Lamperti

transform of X(t) is such that

ΓL−1
H X(f) :=

∫ +∞

−∞
RL−1

H X(t + τ/2, t − τ/2) e−i2πfτ dτ

=
∫ +∞

−∞
cH(eτ ) e−i2πfτ dτ

=
∫ +∞

0
cH(θ) θ−i2πf−1 dθ

= (McH)(i2πf),

with

(MX)(s) :=
∫ +∞

0
X(t) t−s−1 dt (19)

the Mellin transform [5].

QED
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2.4.2 Long-range dependence

In the case of stationary processes, long-range dependence (LRD), or long-memory, is
usually associated with a slow power-law decay of the correlation function [3] but, more
generally, it may also be defined as follows:

Definition 6 A second-order stationary process {Y (t), t ∈ IR} is said to be long-range
dependent if its normalized correlation function

γ̃Y (τ) := γY (τ)/γY (0) (20)

is not absolutely summable: ∫ +∞

0
|γ̃Y (τ)| dτ = ∞. (21)

In the case of nonstationary processes, a generalization of this definition can be given
as follows [1, 23]:

Definition 7 A second-order nonstationary process {X(t), t > 0} is said to be LRD if its
normalized covariance function

R̃X(t, s) :=
RX(t, s)

(RX(t, t)RX(s, s))1/2
(22)

is such that ∫ +∞

0
|R̃X(t, t + τ)| dτ = ∞ (23)

for any fixed t.

Starting from (17), we get that

R̃LHY (t, s) = γ̃Y (log(t/s)), (24)

and it follows from a direct calculation that a (nonstationary) H-ss process {X(t), t > 0}
will be LRD in the sense of Definition 7 if and only if its (stationary) Lamperti counterpart
is such that ∫ ∞

1
|γ̃L−1

H X(log τ)| dτ = ∞. (25)

Conversely, a stationary process {Y (t), t ∈ IR} will be LRD in the sense of Definition 6
if and only if its nonstationary (H-ss) Lamperti counterpart is such that

∫ ∞

1
|R̃LHY (t, λt)| dλ/λ = ∞, (26)

or, equivalently (since, from (24), we have R̃LHY (t, λt) = R̃LHY (t, t/λ) for any λ > 0),

∫ 1

0
|R̃LHY (λt, t)| dλ/λ = ∞. (27)
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2.4.3 Scale-covariant systems

In classical linear system theory, it is well-known that linear filters are those linear operators
H which are shift-covariant, i.e., such that

HSτ = SτH (28)

for any τ ∈ IR. By analogy, it is natural to introduce systems which preserve self-similarity,
according to the following definition:

Definition 8 A linear operator G, acting on processes {X(t), t > 0}, is said to be scale-
covariant if it commutes with any renormalized dilation, i.e., if

GDH,λ = DH,λG (29)

for any H > 0 and any λ > 0.

Proposition 1 If an operator G is scale-covariant, then it necessarily acts on processes
{X(t), t > 0} as a multiplicative convolution, according to

(GX)(t) =
∫ +∞

0
g(t/s) X(s) ds/s. (30)

Proof — Let k(t, s) be the kernel of some operator G acting on processes {X(t), t > 0}.
We then have, for any t > 0,

(GDH,λX)(t) =
∫ +∞

0
k(t, s) λH X(λs) ds

= λH−1
∫ +∞

0
k(t/λ, s) X(s) ds

and

(DH,λGX)(t) = λH
∫ +∞

0
k(λt, s) X(s) ds.

It follows that imposing the scale-covariance of G for any process X(t) (in the sense of
Definition 8) amounts to equating the two above expressions, and thus to require that

k(t, s) = k(t/λ, s/λ)/λ (31)

for any t, s > 0 and any λ > 0. In particular, the specific choice λ = s leads to

k(t, s) = k(t/s, 1)/s =: g(t/s)/s, (32)

which concludes the proof.

QED

Corollary 3 Scale-covariant operators preserve self-similarity.
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Proof — Let (GX)(t) be the ouput of a scale-covariant system whose input {X(t), t > 0}
is H-ss. We then have from (4) and (29):

{(DH,λGX)(t) = (GDH,λX)(t), t > 0} d
= {(GX)(t), t > 0}, (33)

thus guaranteeing that {(GX)(t), t > 0} is H-ss.

QED

Corollary 4 The Lamperti transform maps linear filters onto scale-covariant systems.

Proof — The output {Z(t), t ∈ IR} of a linear filter H of impulse response h(.) is given by
the convolution

Z(t) := (HY )(t) =
∫ +∞

−∞
h(t − s) Y (s) ds (34)

for any input process {Y (t), t ∈ IR}. Using (5), we may write

(LHZ)(t) = tH Z(log t)

= tH
∫ +∞

−∞
h(log t − s) Y (s) ds

= tH
∫ +∞

0
h(log(t/v)) Y (log v) dv/v

=
∫ +∞

0
(t/v)H h(log(t/v)) (LHY )(v) dv/v

=
∫ +∞

0
(LHh)(t/v) (LHY )(v) dv/v

and it thus follows that, when “lampertized,” the input-ouput relationship (34) is trans-
formed into

(LHZ)(t) =
∫ +∞

0
(LHh)(t/s) (LHY )(s) ds/s, (35)

taking on the form of a scale-covariant system, according to (30).

QED

Fourier transforming (34) leads to a product form for the input-output relationship of
linear filters in the frequency domain:

(FZ)(f) = (Fh)(f) (FX)(f), (36)

with F the Fourier transform operator, defined by

(FX)(f) :=
∫ +∞

−∞
X(t) e−i2πft dt. (37)

In a very similar way, Mellin transforming (35) leads to a product form too, as expressed
by:

(MLHZ)(s) = (MLHg)(s) (MLHY )(s). (38)

9



Continuing along this analogy, H-ss processes can be represented as the output of scale-
covariant systems, as stationary processes are outputs of linear filters. More precisely,
stationary processes {Y (t), t ∈ IR} are known to admit the Cramér representation [28]

Y (t) =
∫ +∞

−∞
ei2πft dξ(f), (39)

with spectral increments dξ(f) such that

IEdξ(f)dξ(ν) = δ(f − ν) dSY (f) dν, (40)

and dSY (f) = ΓY (f) df in case of absolute continuity with respect to the Lebesgue measure.
Stationarity being preserved by linear filtering, stationary processes admit an equivalent
representation as in (34):

Y (t) =
∫ +∞

−∞
h(t − s) dB(s), (41)

with IEdB(t)dB(s) = σ2 δ(t − s) dt ds, and therefore:

dSY (f) = σ2 |(Fh)(f)|2 df. (42)

Applying the Lamperti transformation to (41) ends up with the relation

(LHY )(t) =
∫ +∞

0
(LHh)(t/s) (LHdB)(s)/s. (43)

Comparing with (35), this corresponds to the output of a linear scale-covariant system
whose input is such that

IE(LHdB)(t)(LHdB)(s) = IEtHdB(log t) sHdB(log s)

= σ2 (ts)H δ(log(t/s)) dt ds

= σ2 t2H+1 δ(t − s) dt ds,

and it follows that

Proposition 2 Any H-ss process {X(t), t > 0} can be represented as the output of a linear
scale-covariant system of impulse response g(.):

X(t) =
∫ +∞

0
g(t/s) dV (s)/s, (44)

with
IEdV (t)dV (s) = σ2 t2H+1 δ(t − s) dt ds. (45)

Corollary 5 Given the representation (44), the covariance function of a H-ss process
{X(t), t > 0} can be expressed as in Eq. (18), with:

cH(λ) = σ2 λ−H
∫ +∞

0
g(θ) g(θ/λ) dθ/θ2H+1. (46)
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Corollary 6 Given the representation (44), the power spectrum density of the stationary
counterpart {(L−1

H X)(t), t ∈ IR} of a H-ss process {X(t), t > 0} is given by

ΓL−1
H X(f) = σ2 |(Mg)(H + i2πf)|2. (47)

3 Examples and applications

Examples and applications of the Lamperti transformation can be broadly classified in
two types. One can for instance be interested in “lampertizing” (according to (6)) some
specific stationary processes {Y (t), t ∈ IR} and constructing this way classes of specific
self-similar processes. From a reversed perspective, one can use the inverse transform (7)
for “delampertizing” self-similar processes and making them amenable to the large body
of machineries aimed at stationary processes. In this case, some desired operation T on
H-ss processes {X(t), t > 0} can rather be handled via the commutative diagram

X(t)
?−→ (T X)(t)

| ↑
inverse Lamperti Lamperti

↓ |

(L−1
H X)(t) −→ (T̃ L−1

H X)(t)

(48)

according to which the overall operation is decomposed as

T = LH T̃ L−1
H , (49)

where the companion operation T̃ acts on stationary processes.

3.1 Tones and chirps

Besides white noise, maybe the simplest example of a stationary process is

Y0(t) := a cos(2πf0t + ϕ), (50)

with a, f0 > 0 and ϕ ∈ U(0, 2π). “Lampertizing” such a random phase “tone,” i.e.,
applying (6) to (50), leads to

X0(t) := (LHY0)(t) = a tH cos(2πf0 log t + ϕ). (51)

The transformed process takes therefore on the form of a (random phase) “chirp,” in
the sense of, e.g., [9, 22]. One can remark that X0(t) = Re{a eiϕ ms(t)}, with s = H+i2πf0

and ms(t) := ts the basic building block of the Mellin transform (see Figure 2).
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3.2 Fractional Brownian motion

If we consider second-order processes {X(t), t > 0} which are not only H-ss but also
have stationary increments (or, “H-sssi” processes), it is well-known that their covariance
function is necessarily of the form

RX(t, s) =
σ2

2

(
t2H + s2H − |t − s|2H

)
, (52)

with σ2 := IEX2(1).
If we further assume Gaussianity and if we restrict to 0 < H < 1, we end up with

the only family of fractional Brownian motions (fBm) BH(t) [20]. This offers an extension
of ordinary Brownian motion B(t) ≡ B1/2(t), known to have uncorrelated increments, to
situations where increments may be correlated (negatively if 0 < H < 1/2 and positively
if 1/2 < H < 1).

Since fBm is H-ss, its covariance function (52) can be factorized according to (18), with

cH(λ) =
σ2

2

[
λH + λ−H

(
1 − |1 − λ|2H

)]
. (53)

By application of (15) to (52), the covariance function of the inverse Lamperti transform
{YH(t) := (L−1

H BH)(t), t ∈ IR} expresses as

RYH
(t, s) = e−H(t+s) σ2

2

(
e2Ht + e2Hs − |et − es|2H

)
, (54)

and it is immediate to reorganize terms so that γYH
(τ) := RYH

(t, t + τ) reads:

γYH
(τ) = σ2

(
cosh(H|τ |) − [sinh(|τ |/2)]2H/2

)
. (55)

This stationary covariance function is plotted in Figure 3, as a function of the Hurst
parameter H. If we let H = 1/2 in (55), we readily get

γY1/2
(τ) = σ2 e−|τ |/2, (56)

in accordance with the known-fact that the (Ornstein-Uhlenbeck) process whose stationary
covariance function is given by (56) is the Lamperti image of the ordinary Brownian motion
[30]. The stationary counterpart of fBm appears therefore as a form of generalized Ornstein-
Uhlenbeck (gOU) process.

As a remark, it is worth noting that resorting to fBm increments rather than to the
self-similar process itself guarantees stationarity (and, hence, eases further processing), but
at the expense of facing long-range dependence (LRD) when 1/2 < H < 1. In contrast, it
follows from (55) that

γYH
(τ) ∼ σ2

2

(
e−Hτ + 2He−(1−H)τ

)
∝ e−min(H,1−H)τ (57)
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when τ → ∞, which means that the stationary counterpart of fBm is indeed short-range
dependent for any H ∈ (0, 1), since its correlation function decreases exponentially fast at
infinity. This result is nevertheless consistent with the fact that, according to (25), fBm
itself is LRD in the sense of Definition 7 for any H ∈ (0, 1) since, for any τ∗,

∫ ∞

τ∗
|γ̃YH

(τ)| eτ dτ ∼
∫ ∞

τ∗
e[1−min(H,1−H)]τ dτ = ∞. (58)

As shown in [25, 26], using the Lamperti transformation in the context of linear estima-
tion of self-similar processes makes possible a number of manipulations (such as whitening
or prediction) which otherwise prove much more difficult to handle. Indeed, it first follows
from (57) that the power spectrum density of the (stationary) Lamperti counterpart of
fBm reads

ΓYH
(f) =

σ2

H2 + 4π2f 2

∣∣∣∣∣
Γ((1/2) + i2πf)

Γ(H + i2πf)

∣∣∣∣∣
2

. (59)

Given this quantity, it becomes possible to get its spectral factorization and to write
ΓYH

(f) = |Φ+(f)|2, with Φ+(f) the transfer function of a causal filter. (One can remark
that, instead of the exact fBm, we could have considered its (Barnes-Allan [2]) version
{B̃H(t), t > 0}, with

B̃H(t) :=
1

Γ(H + 1/2)

∫ t

0
(t − s)H−1/2 dB(s). (60)

This corresponds to an H-ss process (with nonstationary increments) that admits a
representation as in (44), with

g(θ) =
1

Γ(H + 1/2)
(θ − 1)H−1/2 u(θ − 1), (61)

(where u(.) stands for the unit step function) and, as first established in [12], it follows
from Corollary 6 that the Lamperti counterpart {ỸH(t), t ∈ IR} of {B̃H(t), t > 0} has a
power spectrum density which turns out to exactly identify with (59).)

Considering the above-mentioned factorization of (59) and using representations of
H-ss processes as given by Proposition 2, it then becomes possible [25, 26] to re-derive
representations formulæ for fBm on a finite interval using a finite interval of ordinary Bm
(and vice-versa), as well as to get explicit prediction formulæ for fBm (including a new one
for the case H < 1/2).

3.3 Ornstein-Uhlenbeck processes

The Ornstein-Uhlenbeck process {Y1/2(t), t ∈ IR} is solution of the Langevin equation:

dY (t) + α Y (t) dt = dB(t), (62)

with α = 1/2.
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Lamperti transforming the general Langevin equation (62), and using appropriate dif-
ferentiation rules (as justified in [26]), we get

(LHdY )(t) = tH dY (log t)

= tH+1 d(Y (log t))

= tH+1 d(t−H X(t))

= tH+1 [t−H dX(t) − H t−H−1 X(t) dt]

= t dX(t) − H X(t) dt,

with X(t) := (LHY )(t). It thus follows that the H-ss process {X(t), t > 0} is solution of

t dX(t) + (α − H) X(t) dt = dV (t), (63)

where dV (t) := (LHdB)(t) is such that IEdV (t)dV (s) = σ2 t2H+1 δ(t− s) dt ds, and is thus
covariance-equivalent to dṼ (t) := tH+1/2 dB(t).

Indeed, for a given α > 0, Ornstein-Uhlenbeck processes admit the integral representa-
tion

Yα(t) =
∫ t

−∞
e−α(t−s) dB(s), (64)

whose Lamperti transform reads

Xα,H(t) := (LHYα)(t) = tH−α
∫ t

0
sα dB(log s). (65)

Noting that dB(log t) is covariance-equivalent to t−1/2dB(t), we end up with

Xα,H(t) = tH−α
∫ t

0
sα−1/2 dB(s), (66)

an expression which can be equivalently rewritten as

Xα,H(t) =
∫ +∞

0
[(t/s)H−α u(t/s − 1)] [sH+1/2 dB(s)]/s. (67)

We recognize in (66) the form resulting from the approach described in [24], whereas
(67) enters the framework of the general representation (44), with the explicit identification
g(θ) := θH−α u(θ − 1) and dV (t) := sH+1/2 dB(t).

Given α > 0, the (Ornstein-Uhlenbeck) solution Yα(t) of the general Langevin equation
(62) is known to have a (stationary) covariance function γYα

(τ) which reads

γYα
(τ) = σ2 e−α|τ |, (68)

thus generalizing (56). It readily follows from (17) that the Lamperti transform (65)-(67),
solution of (63), admits the (nonstationary) covariance function

RXα,H
(t, s) = σ2 (ts)H e−α| log(t/s)|

= σ2 (min(t, s))H+α (max(t, s))H−α.
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Letting α = H in the above expression, we get RXH,H
(t, s) = (min(t, s))2H , in trivial

generalization of the ordinary Brownian situation, corresponding to H = 1/2. In the
special case where α = 1/2, it follows from the composition rule (9) that the solution
X1/2,H(t) of (63) is given by

X1/2,H(t) := (LHY1/2)(t) = (LHL−1
1/2B)(t) = tH−1/2 B(t), (69)

which, as expected, identifies to B(t) too if H = 1/2.
In the general case of arbitrary α and H, {Xα,H(t), t > 0} has been put forward [24]

as a versatile two-parameter model, in which H controls self-similarity whereas α may be
related to long-range dependence. Indeed, we know from (68) that γ̃Yα

(τ) = e−α|τ |, and it
follows from Definition 7 and (25) that {Xα,H(t), t > 0} will be LRD if α < 1.

3.4 Euler-Cauchy processes

Whereas it is known that Brownian motion is not differentiable in the classical sense, the
Langevin equation is usually written as the stochastic (first-order) differential equation

dY

dt
(t) + α Y (t) = W (t), (70)

where the “white noise” W (t) (such that IEW (t) W (s) = σ2 δ(t − s) dt ds) plays formally
the role of a “derivative” for Brownian motion.

The interpretation of (70) is that Y (t) is the output of a first-order linear system whose
input is white noise. As such, it may constitute a building block for more complicated
systems (with elementary sub-systems in cascade and/or in parallel [18, 23]), and it can
also be generalized to higher orders, as in ARMA(p, q) processes of the form

p∑
n=0

αn Y (n)(t) =
q∑

n=0

βn W (n)(t), (71)

with the notation Y (n)(t) := (dnX/dtn)(t).
Such (stationary) processes have (self-similar) Lamperti counterparts that are solutions

of a generalization of (63) [37].

Lemma 2 Let {Y (t), t ∈ IR} be a stationary process, with {X(t) := (LHY )(t), t > 0} its
Lamperti transform. Given a set of coefficients {αn, n = 0, . . . N}, one can find another
set of coefficients {α′

n, n = 0, . . . N} such that the Lamperti transform of the linear process

Z(t) =
N∑

n=0

αn Y (n)(t) (72)

takes on the form

(LHZ)(t) =
N∑

n=0

α′
n tn X(n)(t). (73)
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Proof — From the definition and the linearity of the Lamperti transform, we may write:

(LHZ)(t) =
N∑

n=0

αn (LHY (n))(t)

=
N∑

n=0

αn tH Y (n)(log t).

Iterating the differentiation rule

Y (1)(t) = t
d

dt
(Y (log t)),

there exist coefficients γj(n), functionnally dependent on the αn’s, such that the quantity
Y (n)(log t) admits an expansion of the form

Y (n)(log t) =
N∑

j=0

γj(n) tj
dj

dtj
(Y (log t)).

After a suitable re-organization of terms, we have therefore

(LHZ)(t) =
N∑

n=0

δn tH+n dn

dtn
(t−HX(t)), (74)

with X(t) = (LHY )(t) and

δn := αn

N∑
j=n

γn(j).

The above expression (74) can be simplified further by remarking that

d

dt
(t−HX(t)) = −H t−H−1 X(t) + t−H X(1)(t),

thanks to which there exist coefficients µk(n), functionnally dependent on the δn’s, such
that

dn

dtn
(t−HX(t)) =

n∑
k=0

µk(n) t−H+k−n X(k)(t),

thus leading to the claimed result (73), with

α′
n := δn

n∑
k=0

µk(n).

QED

It follows from this Lemma that [37]
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Proposition 3 The stationary ARMA process (71) has an H-ss Lamperti counterpart,
referred to as an Euler-Cauchy process, which is solution of an equation of the form

p∑
n=0

α′
n tn X(n)(t) =

q∑
n=0

β′
n tn W̃ (n)(t), (75)

with W̃ (t) = tH+1/2 W (t) and t > 0.

Proof — The proof, which follows directly from the application of Lemma 2 to both sides
of (71), is completed by noting that (LHW )(t) = tH W (log t) has for covariance function

IE(LHW )(t) (LHW )(s) = σ2 (ts)H δ(log(t/s))

= σ2 t2H δ(t/s − 1)

= σ2 t2H+1 δ(t − s)

= IEW̃ (t) W̃ (s),

with W̃ (t) = tH+1/2 W (t).

QED

4 Variations

Given Lamperti’s theorem, it is easy to develop variations on the same theme by relaxing
in some way the strict notion of scale invariance, or of stationarity.

4.1 Nonstationary tools

4.1.1 Multiplicative harmonizability

In the case of nonstationary processes {Y (t), t ∈ IR}, a Cramér representation of the type
(39) stills holds, but with non orthogonal increments:

IEdξ(f)dξ(ν) = d2ΦY (f, ν), (76)

i.e., with spectral masses which are not located along the only diagonal of the frequency-
frequency plane. Provided that the Loève’s condition

∫ ∫ +∞

−∞
|d2ΦY (f, ν)| < ∞ (77)

is satisfied, the corresponding nonstationary processes are referred to as harmonizable, and
such that

RY (t, s) =
∫ ∫ +∞

−∞
ei2π(ft−sν) d2ΦY (f, ν). (78)
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A companion concept of multiplicative harmonizability can be introduced in the case of
processes {X(t), t > 0} deviating from exact self-similarity [6]. This readily follows from
the “lampertization” of (39) which, together with (77), leads

(LHY )(t) =
∫ +∞

−∞
tH+i2πσ dξ(σ), (79)

whereas the restriction of this general expression to the special case of independent spectral
increments leads to the representation considered, e.g., in [12, 17, 37]. Provided that
(77) holds, multiplicatively harmonizable processes {Y (t), t > 0} have a (nonstationary)
covariance function such that

RY (t, s) =
∫ ∫ +∞

−∞
tH+i2πf sH−i2πν d2ΦY (f, ν). (80)

4.1.2 Time-dependent spectra

In the general nonstationary case, (multiplicatively) harmonizable processes have a second-
order structure which is described by a two-dimensional function, either in the time-time
plane (covariance function) or in the frequency-frequency plane (spectral distribution func-
tion). These two equivalent descriptions can be supplemented by mixed time-frequency
representations interpreted as time-dependent spectra. Starting from (78) and assuming
further that me may write d2ΦY (f, ν) = Φ̃Y (f, ν) df dν, a proper symmetrization of the
covariance function, followed by a partial Fourier transform, leads to:

∫ +∞

−∞
RY (t + τ/2, t − τ/2) e−i2πfτ dτ =

∫ +∞

−∞
Φ̃Y (f + ν/2, f − ν/2) ei2πtν dν. (81)

Both sides of the above equation equivalently define the so-called Wigner-Ville spectrum
(WVS) [14], thereafter labelled WY (t, f).

By construction, the WVS is a nonstationary extension of the classical power spectrum
density, and it reduces to the latter in the stationary case: if we have RY (t, s) = γY (t− s)
or, equivalently, Φ̃Y (f, ν) = δ(f − ν)ΓY (f), we simply get

WY (t, f) =
∫ +∞

−∞
γY (τ) e−i2πfτ dτ = ΓY (f) (82)

for all t’s. Among the many other properties of the WVS [14], one can cite those related
to marginalizations, according to which:

∫ +∞

−∞
WY (t, f) df = RY (t, t) (83)

and ∫ +∞

−∞
WY (t, f) dt = Φ̃Y (f, f). (84)

Conventional mixed representations of nonstationary processes are based on Fourier
transforms, but alternative forms based on Mellin transforms can also be considered, which
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prove especially useful in the case of self-similar processes. A motivation for their intro-
duction can be found in the interconnection which exists between the Fourier, Mellin and
Lamperti transforms, and which is expressed in the following lemma:

Lemma 3 The Fourier transform of a process {Y (t), t ∈ IR} can be equivalently expressed
as the Mellin transform of its Lamperti transform, according to

(FY )(f) = (MLHY )(H + i2πf). (85)

A consequence of this equivalence is that, in the case of self-similar processes, the
Mellin transform plays, with respect to scaling, a role similar to that played by the Fourier
transform with respect to shifting. More precisely, we have:

Proposition 4 The Mellin spectrum of H-ss processes {X(t), t > 0} is invariant under
renormalized dilations DH,k, for any k > 0:

|(MX)(H + i2πf)|2 = |(MDH,kX)(H + i2πf)|2. (86)

Proof — Assuming that {X(t), t > 0} is an H-ss process, its inverse Lamperti transform
{(L−1

H X)(t), t ∈ IR} is stationary, and thus such that

|(FL−1
H X)(f)|2 = |(FS log kL−1

H X)(f)|2 (87)

for any k > 0. We can then deduce from Lemma 1 and 3 that:

|(MX)(H + i2πf)|2 = |(FL−1
H X)(f)|2

= |(FS log kL−1
H X)(f)|2

= |(FL−1
H DH,kX)(f)|2

= |(MDH,kX)(H + i2πf)|2,

whence the claimed result.

QED

Using the notation RY,t(τ) := IEY (t + τ/2)Y (t − τ/2), we have

WY (t, f) = (FRY,t)(f)

= (MLHRY,t)(H + i2πf)

=
∫ +∞

0
τH RY (t + log τ+1/2, t − log τ−1/2) τ−H−i2πf−1 dτ,

whence

WY (log t, f) =
∫ +∞

0
RY (t + log τ+1/2, t − log τ−1/2) τ−i2πf−1 dτ

=
∫ +∞

0
IEY (log(tτ+1/2))Y (log(tτ−1/2)) τ−i2πf−1 dτ

= t−2H WLHY (t, f), (88)
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with

WX(t, f) :=
∫ +∞

0
RX(tτ+1/2, tτ−1/2) τ−i2πf−1 dτ. (89)

The above quantity WX(t, f) is referred to as a scale-invariant Wigner spectrum [12],
since we have, for any H-ss process {X(t), t > 0} and any k > 0:

WDH,kX(t, f) = t2H WL−1
H DH,kX(log t, f)

= t2H WSlog kL−1
H X(log t, f)

= t2H WL−1
H X(log(kt), f)

= k−2H WX(kt, f).

Proposition 5 In the case of H-ss processes {X(t), t > 0}, the scale-invariant Wigner
spectrum is a separable function of its two variables which can be factorized as:

WX(t, f) = t2H ΓL−1
H X(f). (90)

Proof — We know from (88) that

WX(t, f) = t2H WL−1
H X(log t, f). (91)

If {X(t), t > 0} is H-ss, its inverse Lamperti transform {(L−1
H X)(t), t ∈ IR} is stationary

by construction, and Eq. (82) guarantees therefore that the WVS of the latter reduces to
its power spectrum density for any t.

QED

4.2 From global to local

4.2.1 Locally stationary processes

Rather than resorting to processes that are exactly (second-order) stationary, one can make
use of the weakened model

RY (t, s) = mY

(
t + s

2

)
γY (t − s), (92)

with mY (t) ≥ 0 and γY (.) a non-negative definite function. This corresponds to a class
of nonstationary processes referred to as locally stationary [31], since their symmetrized
covariance function is given by

RY (t + τ/2, t − τ/2) = mY (t) γY (τ), (93)

i.e., as an ordinary stationary covariance function that is allowed to fluctuate as a function
of the local time t. From an equivalent perspective, the WVS of a locally stationary process
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expresses simply as a modulation in time of an ordinary power spectrum, since it factorizes
according to:

WY (t, f) = mY (t)ΓY (f).

When properly “lampertized,” locally stationary processes are therefore such that:

RLHY (t, s) = mY (log
√

ts) (ts)H γY (log(t/s))

and
WLHY (t, f) = mY (t) t2H ΓY (f).

thus generalizing the forms given in (17) and (90), respectively.

4.2.2 Locally self-similar processes

Another possible variation is to accommodate for deviations from strict self-similarity, as it
may be the case with locally self-similar processes, i.e., those processes whose scaling prop-
erties are governed by a time-dependent function H(t) in place of a unique constant Hurst
exponent H. When dealing with second-order Gaussian processes, a useful framework for
such a situation has been developed [1, 27], referred to as multifractional Brownian motion
(mBm). Such processes admit the harmonizable representation

BH(t)(t) =
∫ +∞

−∞

ei2πξt − 1

|ξ|H(t)+1/2
dξ(f),

with H : [0,∞) → [a, b] ⊂ (0, 1) any Hölder function of exponent β > 0, and it has been
shown [1] that their covariance function generalizes that of fBm according to

RBH(t)
(t, s) =

σ2

2

(
th(t,s) + sh(t,s) − |t − s|h(t,s)

)
, (94)

with
h(t, s) := H(t) + H(s).

Using (16) and proceeding as in Section 3.2, it is easy to show that

RYH

(
t +

τ

2
, t − τ

2

)
= σ2e(η(t,τ)−2H)t

(
cosh[η(t, τ)|τ |/2] − [2 sinh(|τ |/2)]η(t,τ)/2

)
, (95)

with
η(t, τ) := h(exp(t + τ/2), exp(t − τ/2)),

and where {YH(t), t ∈ IR} stands for the inverse Lamperti transform of mBm, computed
with some fixed exponent H ∈ (0, 1):

YH(t) := (L−1
H BH(t))(t).

If we formally consider the case where H(t) := H +α log t, we have η(t, τ) = 2(H +ατ)
and the process

Ỹ (t) := e−(H+αt)t BH(t)(t)
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turns out to be such that

RỸ

(
t +

τ

2
, t − τ

2

)
= σ2

(
cosh[(H + αt)|τ |] − [2 sinh(|τ |/2)]2(H+αt)/2

)
. (96)

Comparing with (55), it appears that the above covariance is identical to that of a
gOU process, with H replaced, mutatis mutandis, by H + αt. The interpretation of this
result is that, when H(t) admits locally the logarithmic approximation H(t) := H +α log t,
“lampertizing” a mBm with the time-dependent exponent H + αt ends up with a process
which can be approximated by a (tangential) locally stationary process of gOU type, locally
controlled by the same exponent.

4.3 Discrete scale invariance

According to Definition 4, self-similarity usually refers to an invariance with respect to any
dilation factor λ. In some situations however, this may be a too strong requirement (or
assumption) for capturing scaling properties which are only observed for some preferred
dilation factors (think of the triadic Cantor set [12], for which exact replication can only
be achieved for scale factors {λ = 3k, k ∈ ZZ}, or of the Mellin “chirps” of the form (51)
for which scale invariance applies for {λ = (exp 1/f0)

k , k ∈ ZZ} only).
Such a situation, which is referred to as discrete scale invariance (DSI), has in fact been

recently put forward as a central concept in the study of many critical systems [32], and it
has received much attention in a deterministic context. The purpose of this Section is to
show that the Lamperti transform may be instrumental in the definition and the analysis
of processes which are DSI in a stochastic sense [6, 7].

4.3.1 Definitions

Definition 9 A process {Y (t), t ∈ IR} is said to be periodically correlated of period T0 (or
“T0-cyclostationary”) if

{(ST0Y )(t), t ∈ IR} d
= {Y (t), t ∈ IR}. (97)

Definition 10 A process {X(t), t > 0} is said to possess a discrete scale invariance of
index H and of scaling factor λ0 > 0 (or to be “(H, λ0)-DSI”) if

{(DH,λ0X)(t), t > 0} d
= {X(t), t > 0}. (98)

It naturally follows from these two definitions that T0-cyclostationary processes are also T -
cyclostationary for any T = kT0, k ∈ ZZ, and that (H, λ0)-DSI processes are also (H, λ)-DSI
for any λ = λk

0, k ∈ ZZ.
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Given Definition 9, second-order T0-cyclostationary processes {Y (t), t ∈ IR} have a
covariance function RY (t, t + τ) which is periodic in t of period T0, and which can thus be
decomposed in a Fourier series according to

RY (t, t + τ) =
∞∑

n=−∞
Cn(τ) ei2πnt/T0 . (99)

One deduces from this representation that the spectral distribution function of T0-
cyclostationary processes takes on the form:

Φ̃Y (f, ν) =
∫ ∫ +∞

−∞
RY (t, s) e−i2π(ft−νs) dt ds

=
∫ ∫ +∞

−∞
RY (t, t + τ) e−i2π((f−ν)t−ντ) dt dτ

=
∞∑

n=−∞
cn(ν) δ(ν − (f − n/T0)),

with

cn(ν) :=
∫ +∞

−∞
Cn(τ) e−i2πντ dτ. (100)

In contrast with the stationary case for which Φ̃Y (f, ν) is entirely concentrated along the
main diagonal ν = f of the frequency-frequency plane, the spectral distribution function of
cyclostationary processes is also non-zero along all the equally spaced parallel lines defined
by ν = f − n/T0, n ∈ ZZ.

More on the theory of cyclostationary processes can be found, e.g., in [16].

4.3.2 Characterization and analysis

It has been stated in Theorem 1 that the Lamperti transformation establishes a one-to-one
correspondence between stationary and self-similar processes. An extension of this result
is given by the following Theorem:

Theorem 2 If {Y (t), t ∈ IR} is T0-cyclostationary, its Lamperti transform {(LHY )(t), t >
0} is (H, eT0)-DSI. Conversely, if {X(t), t > 0} is (H, eT0)-DSI, its inverse Lamperti trans-
form {(L−1

H X)(t), t ∈ IR} is T0-cyclostationary.

Proof — Let {Y (t), t ∈ IR} be a T0-cyclostationary process. From Definition 9, we have

{Y (t), t ∈ IR} d
= {Y (t + T0), t ∈ IR} and, using (6), we may write

(LHY )(eT0t) = (eT0t)H Y (log t + T0)
d
= eHT0 tH Y (log t)

= (eT0)H (LHY )(t),

thus proving that {(LHY )(t), t > 0} is (H, eT0)-DSI.
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Conversely, let {X(t), t > 0} be a (H, eT0)-DSI process. From Definition 10, we have

{X(eT0t), t > 0} d
= {eHT0 X(t), t > 0} and, using (7), we may write

(L−1
H X)(t + T0) = e−Ht e−HT0 X(eT0 et)

d
= e−Ht X(et)

= (L−1
H X)(t),

thus proving that {(L−1
H X)(t), t ∈ IR} is T0-cyclostationary.

QED

Since DSI processes result from a “lampertization” of cyclostationary processes, the
form of their covariance function can readily be deduced from the general correspondence
(16) when applied to the specific form (99). We get this way that (H, λ0)-DSI processes
{X(t), t > 0} have a covariance function such that:

RX(t, kt) = (kt)H
∞∑

n=−∞
Cn(log k) tH+i2πn/T0 , (101)

with T0 = log λ0. Plugging this expression into (89), we also get an expansion for the
corresponding scale-invariant Wigner spectrum:

WX(t, f) =
∞∑

n=−∞
cn(f − n/2T0) t2H+i2πn/T0 .

While such representations might suggest to make use of Mellin-based tools for analyz-
ing DSI processes by working directly in the observation space, Theorem 2 offers another
possibility of action by first “delampertizing” the observed scaling data so as to make them
amenable to more conventional cyclostationary techniques (see, e.g., [15, 29]). This is in
fact the procedure followed in [6, 7], where the existence of stochastic DSI is unveiled by
marginalizing an estimated cyclic spectrum computed on the “delampertized” data.

4.3.3 Examples

Weierstrass-Mandelbrot — Let us consider the process

X(t) =
∞∑

n=−∞
λ−Hn G(λnt) eiϕn , (102)

with λ > 1, 0 < H < 1, ϕn ∈ U(0, 2π) i.i.d. random phases and G(.) a 2π-periodic
function. We get this way a generalization of the (randomized) Weierstrass-Mandelbrot
function [4], the latter corresponding to the specific choice:

G(t) = 1 − eit. (103)
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It is immediate to check that

(DH,λX)(t) = λ−H
∞∑

n=−∞
λ−Hn G(λnλt) eiϕn

=
∞∑

n=−∞
λ−Hn G(λnt) eiϕn−1

d
= X(t),

thus guaranteeing that {X(t), t > 0} is (H, λ)-DSI. In a similar way, Lamperti transforming
(102) leads to

(L−1
H X)(t) = e−Ht

∞∑
n=−∞

λ−Hn G(λnet) eiϕn

=
∞∑

n=−∞
e−H(t+n log λ) G(et+n log λ) eiϕn

=
∞∑

n=−∞
(L−1

H G)(t + n log λ) eiϕn ,

from which we deduce that

(Slog λL−1
H X)(t) =

∞∑
n=−∞

(L−1
H G)(t + log λ + n log λ) eiϕn

=
∞∑

n=−∞
(L−1

H G)(t + n log λ) eiϕn−1

d
= (L−1

H X)(t),

evidencing therefore that the “delampertized” process {(L−1
H X)(t), t ∈ IR} becomes log λ-

cyclostationary, as expected from Theorem 2. In the case where the phases would not be
randomly chosen, but all set to the same given value (say, 0), the “delampertized” version
of (102) would simply takes the form of a periodic function [33] (see Figure 4).

As a DSI process, {X(t), t > 0} is necessarily nonstationary. However, introducing the
notation

∆Z(t, τ) := Z(t + τ) − Z(t)

for the increment process of a given process Z(t), we readily get from the definition (102)
that

∆X(t, τ) =
∞∑

n=−∞
λ−Hn ∆G(λnt, λnτ) eiϕn ,

and it follows that the variance of this increment process expresses as

IE|∆X(t, τ)|2 =
∞∑

n,m=−∞
λ−H(n+m) ∆G(λnt, λnτ) ∆G(λmt, λmτ)

∫∫ 2π

0
ei(ϕn−ϕm)dϕn

2π

dϕm

2π

=
∞∑

n=−∞
λ−2Hn |∆G(λnt, λnτ)|2.
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In the specific case of the usual Weierstrass-Mandelbrot process defined through (103),
it is interesting to note that

|∆G(λnt, λnτ)|2 = 2 (1 − cos λnτ) ,

evidencing the fact that the increment process ∆X(t, τ) has a variance which does not
depend on time t [4].

Parametric models — It has been shown in Section 3.4 that continuous-time H-ss processes
can be obtained from Euler-Cauchy systems driven by some appropriately modulated white
noise. Since such systems result from the lampertization of classical ARMA systems,
it follows that varying their coefficients in a log-periodic way in time will generate DSI
processes, in exactly the same way as cyclostationary processes can be obtained as the
output of a (nonstationary) ARMA system with periodic time-varying coefficients.

The problem of getting corresponding models in discrete-time would need a specific
discussion, and it will not be addressed here. Referring to [6, 7] for some further details and
illustrations, we will only mention that two preliminary approaches have been considered
so far, both based on the idea of introducing a log-periodicity in the coefficients of a
discrete-time model. In the first approach, the discretization is obtained by integrating the
evolution of a continuous-time Euler-Cauchy system between two time instants, leading
to an approximate form of DSI. In the second approach, a fractional difference operator
(discretized, e.g., as in [38]) is introduced, and it is cascaded with a nonstationary AR filter
whose coefficients are log-periodic.

5 Conclusion

The Lamperti transform is a simple way of connecting the two key concepts of stationarity
and self-similarity, which are both known to be ubiquitously encountered in many applica-
tions. As such, it has been shown to offer simpler alternative viewpoints on some known
problems, while providing new insights in their understanding. From a more innovative
perspective, it has also been advocated as a new starting point for the analysis, modelling
and processing of situations which depart from strict stationarity and/or self-similarity.

The purpose of this text was to collect and develop a number of general results related
to the Lamperti transform and to support its revival but, of course, much work is still
to be done in different directions. One can think of a number of further natural (e.g.,
multidimensional) extensions, as well as of the need for efficient algorithmic tools, based
in particular on genuinely discrete-time formulations of the transform.
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Brownian motion

Lamperti-stationarized Brownian motion

Figure 1: A graphical illustration of Lamperti’s theorem — Whereas sample paths
of (nonstationary and self-similar) Brownian motion (top) reveal a time-dependence
of variance as a square-root function of time, their “lampertized” versions (bottom)
essentially lie within a band of constant width, in accordance with the stationarity
properties induced by the inverse Lamperti transform.
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tone

chirp

Figure 2: Tones and chirps — The Lamperti transform of a pure tone (top) is a
“chirp” (bottom) with a power-law amplitude modulation and a logarithmic fre-
quency modulation. Said in other words, the Lamperti transform maps the Fourier
basis onto a Mellin basis.
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Figure 3: Stationary covariance function of generalized Ornstein-Uhlenbeck pro-
cesses — “Delampertizing” fractional Brownian motion (fBm) ends up with a sta-
tionary process, referred to as a generalized Ornstein-Uhlenbeck (gOU) process,
whose covariance function is plotted here as a function of the Hurst parameter H.
It is worth noting that this covariance decays exponentially fast for any H ∈ (0, 1),
indicating that gOU is always short-range dependent.
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Weierstrass function (H = 0.5)

"Delampertized" Weierstrass function

Figure 4: Discrete scale invariance and cyclostationarity — The Weierstrass function
(top) is not scale-invariant for all dilation factors, as evidenced by log-periodic fluc-
tuations. “Delampertizing” this function ends up in a periodic function (bottom).
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