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Abstract—An operational framework is developed for testing
stationarity relatively to an observation scale, in both stochastic
and deterministic contexts. The proposed method is based on a
comparison between global and local time-frequency features. The
originality is to make use of a family of stationary surrogates for
defining the null hypothesis of stationarity and to base on them two
different statistical tests. The first one makes use of suitably chosen
distances between local and global spectra, whereas the second
one is implemented as a one-class classifier, the time-frequency
features extracted from the surrogates being interpreted as a
learning set for stationarity. The principle of the method and of
its two variations is presented, and some results are shown on
typical models of signals that can be thought of as stationary or
nonstationary, depending on the observation scale used.

Index Terms—One-class classification, stationarity test, support
vector machines, time-frequency analysis.

I. INTRODUCTION

C ONSIDERING stationarity is central in many signal pro-
cessing applications, either because its assumption is a

pre-requisite for applying most of standard algorithms devoted
to steady-state regimes, or because its breakdown conveys spe-
cific information in evolutive contexts. Testing for stationarity
is therefore an important issue, but addressing it raises some dif-
ficulties. The main reason is that the concept itself of “station-
arity,” while uniquely defined in theory, is often interpreted in
different ways. Indeed, whereas the standard definition of sta-
tionarity refers only to stochastic processes and concerns the
invariance of statistical properties over time, stationarity is also
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usually invoked for deterministic signals whose spectral prop-
erties are time-invariant. Moreover, while the underlying invari-
ances (be they stochastic or deterministic) are supposed to hold
in theory for all times, common practice allows them to be re-
stricted to some finite time interval [3]–[5], possibly with abrupt
changes in between [6] and [7]. As an example, we can think of
speech that is routinely “segmented into stationary frames,” the
“stationarity” of voiced segments relying in fact on periodicity
structures within restricted time intervals. Those remarks call
for a better framework aimed at dealing with “stationarity” in
an operational sense, i.e., with a definition that would both en-
compass stochastic and deterministic variants, and include the
possibility of its test relatively to a given observation scale.

Several attempts in this direction can be found in the liter-
ature, mostly based on concepts such as local stationarity [5].
Most of them however share the common philosophy of com-
paring statistics of adjacent segments, with the objective of de-
tecting changes in the data [6], [7] and/or segmenting it over
homogeneous domains [3] rather than addressing the aforemen-
tioned issue. Other attempts have nevertheless been made in this
direction too by contrasting local properties with global ones
[4], [8], but not necessarily properly phrased in terms of hy-
pothesis testing. Among more recent approaches, we can men-
tion those reported in [9] and [10] which share some ideas with
this work, but with the notable difference that they are basically
model-based (whereas ours is not). Early works [11], [12] pro-
posed a global test of stationarity based on approximate sta-
tistics of evolutionary spectra [13], which is performed as a
two-step analysis of variance. The assumption of independence
of time-frequency bins that are used is necessary. It is obviously
and openly understood to be wrong, and may lead to stationary
decision errors due to biased estimations. It is therefore the pur-
pose of this contribution to propose and describe a different ap-
proach, using a resampling method called surrogate data, to ob-
tain robust statistics under the hypothesis of stationarity given
one observation only. It is aimed at deciding whether an ob-
served signal can be considered as stationary, relatively to a
given observation scale, and, if not, to give an index as well as
a typical scale of nonstationarity.

In a nutshell, the purpose of this paper is to recast the question
of stationarity testing within an operational framework elabo-
rating on three main ideas: i) stationarity as an operational prop-
erty relying on one observation has to be understood in a rela-
tive sense including some observation scale as part of its defi-
nition; ii) both stochastic and deterministic situations should be
embraced by the approach so as to meet common practice; and
iii) significance should be given to any test in order to provide
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users with some statistical characterization of the null hypoth-
esis of operational stationarity.

The paper is organized as follows. In Section II, the gen-
eral framework of the proposed approach is outlined, detailing
the time-frequency rationale of the method and motivating the
use of surrogate data for characterizing the null hypothesis of
stationarity and constructing stationary tests. A first test, from
which both an index and a scale of nonstationarity can be de-
rived, is proposed in Section III on the basis of spectral distance
measures and of a parametric modeling of surrogates distribu-
tions. A second, nonparametric, test is introduced in Section IV
by considering surrogates as a learning set and using a one-class
classifier. In both cases, implementation issues are discussed,
together with some examples supporting the efficiency of the
methods. Finally, some of the many possible variations and ex-
tensions are briefly outlined in Section V.

II. FRAMEWORK

Second-order stationary processes are a special case of the
more general class of (nonstationary) harmonizable processes,
for which time-varying spectra can be properly defined [14].
When the analyzed process happens to be stationary, those
time-varying spectra may reduce to the classical (stationary,
time-independent) power spectrum density (PSD) when
suitably chosen (this holds true, e.g., for the Wigner–Ville
spectrum (WVS) [14]). In the case of more general defini-
tions that can be considered as estimators of the WVS (e.g.,
spectrograms), the key point is that stationarity still implies
time-independence, the time-varying spectra identifying, at
each time instant, to some frequency smoothed version of the
PSD. The basic idea underlying the approach proposed here is
therefore that, when considered over a given duration, a process
will be referred to as stationary relatively to this observation
scale if its time-varying spectrum undergoes no evolution. In
other words, stationarity in this acceptance happens if the local
spectra at all different time instants are statistically similar to
the global spectrum obtained by marginalization. This idea
has already been pushed forward [4], but the novelty is to
address the significance of the difference “local versus global”
by elaborating from the data itself a stationarized reference
serving as the null hypothesis for the test (see Section II-C).

A. A Time-Frequency Approach

As far as only second-order evolutions are to be tested,
quadratic time-frequency (TF) distributions and spectra are
natural tools [14]. Well-established theories exist for justifying
the choice of a given TF representation. In the case of stationary
processes, the WVS is not only constant as a function of time
but also equal to the PSD at each time instant. From a practical
point of view, the WVS is a quantity that has however to be
estimated. In this study, we choose to make use of multitaper
spectrograms [15] defined as

(1)

where the stand for the spec-
trograms computed with the first Hermite functions as short-
time windows :

(2)

The reason for this choice is that spectrograms can be both inter-
preted as estimates of the WVS for stochastic processes and as
reduced interference distributions for deterministic signals [14].

In (2), the Hermite functions are defined by

with . In practice, such functions can be
computed recursively, according to

where the stand for the Hermite polynomials
that obey the recursion

with the initialization and . Being or-
thonormal and maximally concentrated in TF domains with el-
liptic symmetry, they are a preferred family of windows for the
multitaper approach which is adopted here in order to reduce
estimation variance without some extra time-averaging which
would be inappropriate in a nonstationary context. In practice,
the multitaper spectrogram is evaluated only at time positions

, with a spacing which is an ad-
justable fraction—typically, one half—of the temporal width
of the windows .

B. Relative Stationarity

The TF interpretation suggesting that suitable representations
should undergo no evolution in stationary situations, stationarity
tests can be envisioned on the basis of some comparison be-
tween local and global features. Relaxing the assumption that
stationarity would be some absolute property, the basic idea un-
derlying the approach proposed here is that, when considered
over a given duration, a process will be referred to as stationary
relatively to this observation scale if its time-varying spectrum
undergoes no evolution. Quantitatively, this corresponds to the
fact that the local spectra at all different time in-
stants are statistically similar to the global (average) spectrum

(3)

obtained by marginalization. In practice, fluctuations in local
spectra will always exist, be the signal stationary or not. The
whole point of the paper is therefore to develop a comprehensive
and operational methodology able to assess the significance of
observed fluctuations.

C. Surrogates

Revisiting stationarity within the TF perspective has already
been pushed forward [4], but the novelty is to address the signifi-
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cance of the difference “local versus global” by elaborating from
the data itself a stationarized reference serving as the null hy-
pothesis for the test. Indeed, distinguishing between stationarity
and nonstationarity would be made easier if, besides the ana-
lyzed signal itself, we had at our disposal some reference having
the same marginal spectrum while being stationary. Since such
a reference is generally not available, one possibility is to create
it from the data. This is the rationale behind the idea of “surro-
gate data,” a technique which has been introduced and widely
used in the physics literature, mostly for testing linearity [16]
(up to some proposal reported in [17], it seems to have never
been used for testing stationarity).

For an identical marginal spectrum over the same observation
interval, nonstationary processes are expected to differ from sta-
tionary ones by some structured organization in time, hence in
their time-frequency representation. A set of “surrogates” is
thus computed from a given observed signal, so that each of
them has the same PSD as the original signal while being “sta-
tionarized.” In practice, this is achieved by destroying the or-
ganized phase structure controlling the nonstationarity, if any.
To this end, the signal is first Fourier transformed, and the mag-
nitude of the spectrum is then kept unchanged while its phase
is replaced by a random sequence, uniformly distributed over

. This modified spectrum is then inverse Fourier trans-
formed, leading to as many stationary surrogate signals as phase
randomizations are operated.

To be more precise, let us assume that the observed signal is
known in discrete-time and has a discrete
Fourier transform such that

Expressing in terms of its magnitude and phase
such that , a surrogate is con-

structed from by replacing with an i.i.d. phase se-
quence drawn from a uniform distribution over :

from which it follows that

Making explicit the contributions in the above double sum as

and evaluating expectations regarding random quantities, we
end up for the first term with

(4)

and, for the second one, with

Given that the ’s are i.i.d. and uniformly distributed over
, their difference has the triangular distribution

over and, therefore

It follows that the covariance function of the surrogate
reduces to (4) and, as a function of only, it is therefore
stationary. In the practical case where is taken as the mag-
nitude of the Fourier transform of the observed signal (i.e., of
one specific realization of the process ) and kept strictly un-
changed for all phase randomizations, the stationary covariance
of the surrogates identifies furthermore with the Fourier trans-
form of the (global) empirical spectrum of this observation.

The effect of the surrogate procedure is illustrated in Fig. 1,
displaying both signal and surrogate spectrograms, together
with their marginals in time and frequency. It clearly appears
from this figure that, while the original signal undergoes a
structured evolution in time, the recourse to phase random-
ization in the Fourier domain ends up with stationarized (i.e.,
time unstructured) surrogate data with identical spectrum. As
compared to more standard uses of surrogate data, we underline
that we are primarily interested here in second-order properties
in a transformed domain. In this respect, the fact that phase
randomization not only destroys nonstationarity features (as ex-
pected) but also other properties in the signal by a well-known
Gaussianization effect does not play the same dramatic role as,
e.g., in testing nonlinearity in some reconstructed phase-space.

III. A DISTANCE-BASED TEST

Once a collection of stationarized surrogate data has been
synthesized, different possibilities are offered. The first one is
to extract from them some features such as distances between
local and global spectra, and to characterize the null hypothesis
of stationarity by the statistical distribution of their variation in
time. This first approach is the purpose of this section.

A. Principle

Given an observed signal and its (multitaper) spectro-
gram , it is proposed to compare local and global
frequency features according to

(5)
where stands for some dissimilarity measure (or “dis-
tance”) in frequency.

If we now label the surrogate signals
obtained as described previously and analyze them the same



3462 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

Fig. 1. Surrogates. This figure compares the TF structure of a nonstationary
FM signal (first column), of one of its surrogates (second column) and of an
ensemble average over surrogates (third column). The spectrogram is
represented in each case on the second line, with the corresponding marginal in
time on the third line. The marginal in frequency, which is the same for the three
spectrograms, is displayed on the far right of the second line.

way, we end up with a new collection of distances which are
a function of both time indexes and randomizations, namely

(6)
with .

As far as the intrinsic variability of surrogate data is con-
cerned, the dispersion of distances under the null hypothesis of
stationarity can be measured by the distribution of the empir-
ical variances

(7)

This distribution allows for the determination of a threshold
above which the null hypothesis is rejected. The effective test

is therefore based on the statistics

(8)

and takes on the form of the one-sided test:

if “nonstationarity”
if “stationarity.”

(9)

The choice of the threshold will be discussed in Section III-E
from the distribution of obtained with a collection of surro-
gates.

Assuming that the null hypothesis of stationarity is rejected,
an index of nonstationarity can furthermore be introduced as a
function of the ratio between the test statistics (8) and the mean
value (or the median) of its stationarized counterparts (7):

(10)

If the signal happens to be stationary, INS is expected to take a
value close to unity whereas, the more nonstationary the signal,
the larger the index.

Finally, it has to be remarked that, whereas the tested station-
arity is globally relative to the time interval over which the
signal is chosen to be observed, the analysis still depends on the
window length of the spectrogram. Given , the index INS
will therefore be a function of and, repeating the test with
different window lengths, we can end up with a typical scale of
nonstationarity SNS defined as

(11)

with in the range of window lengths such that the prescribed
threshold is exceeded in (9).

The principle of the test having been outlined, its actual im-
plementation depends on a number of choices that have to be
made and justified, regarding distances, surrogates, thresholds,
etc. Many options are offered, however, that are moreover in-
tertwined. A complete investigation of all possibilities and their
combinations will not be envisioned here but, nevertheless, key
features that are important for the test to be used in practice will
be highlighted in the following.

B. Test Signals

Setting specific parameters in the implementation is likely to
end up with performance depending on the type of nonstation-
arity of the signal under test. Whereas no general framework
can be given for encompassing all possible situations, two main
classes of nonstationarities can be distinguished, which both
give rise to a clear picture in the time-frequency plane: ampli-
tude modulation (AM) and frequency modulation (FM). We will
base the following discussions on such classes. In the first case
(AM), a basic, stochastic representative of the class can be mod-
eled as

(12)

with and where is white Gaussian noise, is the
period of the AM and the observation duration. In the second
case (FM), a deterministic model can be defined as

(13)

with and where is the central frequency of the FM,
its period and the observation duration. To this FM model,

a white Gaussian noise can be added if one wants to obtain dif-
ferent realizations of the signal.

C. Distances

Within the chosen time-frequency perspective, the proposed
test (9) amounts to compare local spectra with their average over
time thanks to some “distance” (5), and to decide that station-
arity is to be rejected if the fluctuation of such descriptors (as
given by (8)) is significantly larger than what would be obtained
in a stationary case with a similar global spectrum. The choice
of a distance (or dissimilarity) measure is therefore instrumental
for contrasting local versus global features.
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Many approaches are available in the literature [18] that,
without entering into too much details, can be broadly classified
in two groups. In the first one, the underlying interpretation is
that of a probability density function, one of the most efficient
candidate being the well-known Kullback–Leibler (KL) diver-
gence defined as

(14)

where, by assumption, the two distributions and to be
compared are positive and normalized to unity over the domain

. In our context, such a measure can be envisioned for (always
positive) spectrograms thanks to the probabilistic interpretation
that can be attached to distributions of time and frequency [14].

A second group of approaches, which is more of a spectral
nature, is aimed at comparing distributions in both shape and
level. One of the simplest examples in this respect is the log-
spectral deviation (LSD) defined as

(15)

Intuitively, the KL measure (14) should perform poorer than
the LSD (15) in the AM case (12), because of normalization. It
should however behave better in the FM case (13), because of its
recognized ability at discriminating distribution shapes. In order
to take advantage of both measures, it is therefore proposed to
combine them in some ad hoc way as

(16)

with and the normalized versions of and , and where
is a tradeoff parameter to be adjusted. In practice, the choice

ends up with a good performance, as justified in Fig. 2
[the performance measure used in this figure is the inverse of the
maximum value (over ) of the index of nonstationarity INS
defined in (10), i.e., an inverse measure of contrast].

D. Distribution of Surrogates

The basic ingredient (and originality) of the approach is the
use of surrogate data for creating signals whose spectrum is
identical to that of the original one while being stationarized by
getting rid of a well-defined structuration in time. Since those
surrogates can be viewed as distinct, independent realizations
of the stationary counterpart of the analyzed signal, the central
part of the test is based on the statistical distribution of the
variances given in (7).

When using the combined distance suggested above in
Section III-C, an empirical study (on both AM and FM signals)
has shown that such a distribution can be fairly well approx-
imated by a Gamma distribution. This makes sense since,
according to (7), the test statistics basically sums up squared,
possibly dependent quantities which themselves result from a
strong mixing likely to act as a Gaussianizer. An illustration of
the relevance of this modeling is given in Fig. 3, where Gamma
fits are superimposed to actual histograms in the asymptotic
regime ( 5000 surrogates). Assuming the Gamma model
to hold, it is possible to estimate its two parameters directly

Fig. 2. Choosing a distance. The inverse of the maximum value (over ) of the
index of nonstationarity INS defined in (10) is used as a performance measure.
Comparing the Kullback–Leibler (KL) divergence with the log-spectral devia-
tion (LSD), a better result (i.e., a lower value) is obtained with KL (full line)
in the FM case (left, with ), and with LSD (dashed line) in the AM
case (right, with ). A better balanced performance is obtained when
using the combined distance (dots) defined in (16): in the FM case, this mea-
sure performs best, and in the AM case it achieves a good contrast when .
In the AM case, the boxplots resulting from ten realizations of the process are
displayed.

from the surrogates, e.g., in a maximum likelihood sense. In
this respect, Fig. 3 also supports the claim that the “theoretical”
probability density function (more precisely, its estimate in the
asymptotic regime) can be reasonably well approached with
a reduced number of surrogates (typically, ). Finally,
the value of the test (8), computed on the actual signals under
study, is also plotted and shown to stand in the middle of the
distribution in the stationary case while clearly appearing as an
outlier in the considered nonstationary situation.

As a general remark, let us emphasize that modeling the dis-
tribution is important in two (related) respects. First, based on
the results of Fig. 3, this allows for using much less surrogates
than a crude histogram. Second, given the estimated parame-
ters of the model, it becomes much easier to precisely define
the chosen threshold for the test (see Section III-E). One could
have think of other models for the distribution, such as, e.g.,
the simpler situation of a . Experimental attempts in this di-
rection proved however unsatisfactory, and the specific choice
of a Gamma model was therefore guided by the fact that, with
two degrees of freedom, it is obviously more flexible than a ,
while keeping the idea of resulting from summations of squared
Gaussian-like quantities.

E. Threshold and Reproduction of the Null Hypothesis

Given the Gamma model for the distribution of based
on surrogates, it becomes straightforward to derive a threshold
above which the null hypothesis of stationarity is rejected with a
given statistical significance. The effectiveness of the procedure
at reproducing the null hypothesis of stationarity has been con-
sidered elsewhere [19], and it will not be reproduced here. Based
on Monte Carlo simulations with stationary AR processes, the
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Fig. 3. Distribution based on surrogates. The top row superimposes empirical
histograms of the variances (7) based on 5000 surrogates (grey) and their
Gamma fits (full line), in the case of a white Gaussian noise without (left) and
with (right) a sinusoidal AM (with ). The bottom row compares the
corresponding probability density functions, as parameterized by using 50
(full line) and 5000 (dashed line) surrogates. The values of the test statistics (8)
computed on the analyzed signal are pictured in both cases as the vertical lines.

main finding of the results reported in [19] is that an actual
number of false positives of about 6.5% is observed for a pre-
scribed false alarm rate of 5%. The test appears therefore as
slightly pessimistic, yet in a reasonable agreement with what
expected.

F. Illustration

In order to illustrate the proposed approach and to support
its effectiveness, a simple example is given in Fig. 4. The ana-
lyzed signal consists of one realization of an AM process of the
form (12). Depending on the relative values of and , three
regimes can be intuitively distinguished:

1) if (macroscale of observation), many oscillations
are present in the observation, creating a sustained, well-
established quasi-periodicity that corresponds to a form of
operational stationarity;

2) if (mesoscale), emphasis is put on the local evo-
lutions due to the AM, suggesting to rather consider the
signal as nonstationary, with some typical scale;

3) if (microscale), no significant difference in am-
plitude is perceived, turning back to stationarity.

What is shown in Fig. 4 is that such interpretations of op-
erational and relative stationarity are precisely evidenced by
the proposed test. One difference between theoretical (second-
order) stationarity of random processes and operational station-
arity that we study, and that aims at being consistent with the
physical and time-frequency interpretation of what stationarity
means, is that both situations where there is no change in time
of second-order statistics (here at microscale), and situations
where there is a regular repetition if the same feature (here at
macroscale of observation) are considered as being stationary in
its operational acceptance. They are moreover quantified in the
sense that, when the null hypothesis of stationarity is rejected
(middle diagram), both an index and a scale of nonstationarity

Fig. 4. AM example . In the case of the same signal (12) ob-
served over different time intervals (left column), the indexes of nonstationarity
INS (right column, full line) are consistent with the physical interpretation ac-
cording to which the observation can be considered as stationary at macroscale
(top row), nonstationary at mesoscale (middle row) and stationary again at mi-
croscale (bottom row). The threshold (dotted line) of the stationarity test (9) is
calculated with a confidence level of 95% and represented in term of INS as

, with . In the nonstationary case, the position of the
maximum of INS also gives an indication of a typical scale of nonstationarity.

can be defined according to (10) and (11). In the present case,
the maximum value of INS is obtained for ,
in qualitative accordance with the four AM periods entering the
observation window.

At this point, it is worth stressing the fact that allowing the
window length to vary is an extra degree of freedom that is part
of the methodology, since it permits to give sense to a notion of
stationarity relatively to an observation scale. There is therefore
no prior “proper” window length for a given signal, but varying
it allows for the determination of a scale of stationarity (if any).

In this specific example, the data could have been referred
to as cyclostationary and analyzed by tools dedicated to such
processes [20]. However, it has to be stressed that no such a
priori modeling is assumed in the proposed methodology, and
that the existence of a typical scale of stationarity (related to the
periodic correlation) naturally emerges from the analysis.

A second example, given in Fig. 5, reports the same analysis
done on a realization of the FM signal of the form (13). The same
dependence on the relative values of and is evident and
the same three possible behaviors (observation at macroscale,
mesoscale or microscale of the signal) are obtained. Also, let us
further comment about a specificity of operational stationarity
as tested here. For the microscale , the model turns out
to be almost a pure sine function (with some added noise). The
time-frequency spectrum of this signal being constant (a spec-
tral line at frequency ), this signal is considered as stationary
from an operational point of view, and relatively to an obser-
vation scale that is much larger than the period of this sine

and much lower than period of the frequency modulation
. Finally, let us remark that the INS in this last case is very

small as compared to the threshold: this is due to the very small
variability of a sine as compared to its surrogates. This feature
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Fig. 5. FM example ( , ). The same signal (13) is ob-
served over different time intervals (left column). As in Fig. 4 the indexes of
nonstationarity INS (right column, full line) leads to physical interpretation ac-
cording to which the observation can be considered as stationary at macroscale
(top row), nonstationary at mesoscale (middle row) and stationary again at mi-
croscale (bottom row). The threshold (dotted line) of the stationarity test (9) is
calculated with a confidence level of 95% and represented in term of INS as

, with . In the nonstationary case, the position of the
maximum of INS also gives an indication of a typical scale of nonstationarity.

will be further commented when turning to the nonparametric
test of the next section.

G. Comparison to Other Approaches

Using surrogate data to provide users with some statistical
characterization of the null hypothesis of stationarity raises the
question of simply testing if the phase of the Fourier transform
of is an i.i.d. sequence, as is the case with surrogates. This
can be performed with classical i.i.d. Portmanteau tests such as
Ljung and Box, and McLeod and Li (see, e.g., in [21]). The
basic property on which these tests are based is that, for large

, the sample autocorrelation of an i.i.d. -length sequence is
i.i.d. with Gaussian distribution . Experiments have
been conducted using a Ljung and Box statistical test with sig-
nificance level of 5%, and applied to 1000 realizations of the
AM and FM test signals described in Section III-B. The hypoth-
esis of i.i.d. phase sequence was accepted/rejected as reported in
Table I, with respective acceptance/rejection rates that were ob-
served over the 1000 realizations. Except in the FM case where
the period is equal to the observation duration, the i.i.d. hypoth-
esis is always accepted. It clearly appears that little information
is revealed by this kind of tests, which does not involve global
versus local time-frequency features, compared with the pro-
posed framework based on second-order time-varying spectra.
Nevertheless, we can mention some interesting ongoing work
[22] based on a Portmanteau type test for stationarity: com-
paring it to the present work is beyond the scope of this paper
but this would certainly deserve consideration in further studies.

Existing works on statistics of evolutionary spectra [13] raise
the question of constructing test statistics to compare time-fre-
quency characteristics of the signal under study with what is ex-
pected under the null hypothesis. This kind of strategy has been

TABLE I
RESULT OF A PORTMANTEAU TEST ON THE PHASE OF THE FOURIER

TRANSFORM OF , FOR THE AM AND FM PROCESSES OF SECTION III-B. THE
PARAMETERS ARE , 10 dB, 0.5 (AM) AND 0.02

(FM). THE RESULTS REPORTED ARE THE AVERAGE OF 1000 REALIZATIONS

adopted in many situations, e.g., to detect time-frequency fea-
tures of interest [23]. In [11] and [12], the authors proposed a
global test of stationarity from approximate statistics. It consists
of a two-step analysis of variance induced by the chi-squared
distribution. As most of works in the area, the assumption of in-
dependence of time-frequency bins that are used is necessary to
derive closed-form tests. This leads to poorly informative statis-
tics and, in the present case, to stationary decision errors. Our re-
sampling method does not rely on this hypothesis, but considers
the spectrograms of surrogate data globally to provide more in-
formative tests.

IV. A NONSUPERVISED CLASSIFICATION APPROACH

Besides the distance-based approach described above, we
can adopt an alternative viewpoint rooted in statistical learning
theory by considering the collection of surrogates as a learning
set and using it to estimate the support of the distribution of
stationarized data.

A. An Overview on One-Class Classification

In the context considered here, the classification task is
fundamentally a one-class classification problem and differs
from conventional two-class pattern recognition problems
in the way how the classifier is trained. The latter uses only
target data to perform outlier detection. This is often ac-
complished by estimating the probability density function
of the target data, e.g., using a Parzen density estimator
[24]. Density estimation methods however require huge
amounts of data, especially in high dimensional spaces,
which makes their use impractical. Boundary-based ap-
proaches attempt to estimate the quantile function defined
by with

, where denotes a subset of the signal space that
is measurable with respect to the probability measure , and

its volume. Estimators that reach this infinimum, in
the case where is the empirical distribution, are called min-
imum volume estimators. The first boundary-based approach
was probably introduced in [25], where the authors consider a
class of closed convex boundaries in . More sophisticated
methods were described in [26] and [27]. Nevertheless, they
are based upon neural networks training and therefore suffer
from the same drawbacks such as slow convergence and local
minima. Inspired by support vector machines, the support
vector data description algorithm proposed in [28] encloses
target data in a minimum volume hypersphere. More flexible
boundaries can be obtained by using kernel functions that map
the data into a high-dimensional feature space. In the case of
normalized kernel functions, this approach is equivalent to the
one-class support vector machines introduced in [29], which
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Fig. 6. Support vector data description algorithm.

use a maximum margin hyperplane to separate data from the
origin. The generalization performance of these algorithms
were investigated in [29]–[31] via the derivation of bounds.
In what follows, we shall focus on the support vector data
description algorithm.

B. Support Vector Data Description

Let us assume that we are given a training set
(this may correspond either to the surrogates themselves
or to some features derived from them). The center of the
smallest enclosing hypersphere is the point that mini-
mizes the distance from the furthest training data, namely,

. We observe that the
solution of this problem is highly sensitive to the location of
just one point, which may result in a pattern analysis system
that is not robust. This suggests us to consider hyperspheres that
balance the loss incurred by missing a small fraction of target
data with the reduction in radius that results. The following
optimization problem implements this strategy:

(17)

with a parameter in to control the tradeoff between min-
imizing the radius and controlling the slack variables defined as

; see Fig. 6. The exact role of will be
discussed next.

We can solve this constrained optimization problem by
defining a Lagrangian involving one Lagrange multiplier for
each constraint:

(18)

with , . Setting to zero its derivatives with respect to
the primal variables , and gives

(19)

where is the solution of the optimization problem

(20)

Depending on whether a training data lies inside the hyper-
sphere, on or outside, it can be shown that its Lagrange multi-
plier in (19) satisfies one of the three conditions:
(inside), (on), and (outside). With
condition in (20), we know that there can be at
most training points lying outside the hypersphere. Further-
more, with the upper bound on , we observe that at least

training data do not lie inside the hypersphere.
After discussing the role of the parameter , which allows the

user some control over the fraction of points that are excluded
from the hypersphere, we shall now derive the decision rule for
novelty detection. The distance of any point from the center

of the hypersphere can be shown to be

(21)
Equation (21) can be used to calculate the radius of the op-
timal hypersphere, that is, with the index of
any training data such that . This allows us to
compute the resulting slack values , see the definition below
(17). Consider now the test statistics
such that the decision function

if “nonstationarity”
if “stationarity”

(22)

outputs 1 if the test point lies outside the hypersphere of
squared radius and so is considered novel, and 0 other-
wise. The threshold parameter has a direct influence upon the
performance of the novelty detector. With probability greater
than , we can bound the probability that function outputs
1 on a test point drawn according to the original distribution
by [30]

(23)

where is the radius of a ball in feature space centered at the
origin containing the support of the distribution. Such examples
are false positives in the sense that they are normal data identi-
fied as novel by the decision function . Obviously, we cannot
bound the rate of true negatives since we have no way of guar-
anteeing what output returns for data drawn from a different
distribution. The strategy underlying this approach is, however,
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the smaller the hypersphere, the more likely novel data will fall
outside and be identified as outlier.

When a more sophisticated model than the hypersphere is re-
quired to accurately fit the quantile functions, a possible strategy
is to replace each inner product in (20)–(22) by a kernel
function . An ideal kernel would im-
plicitly map the data via into a bounded spherically-shaped
area of a new feature space. Kernel functions can usually be
computed more efficiently as a direct function of the input data,
without explicitly evaluating the mapping . Classic exam-
ples of kernels are the radially Gaussian kernel

, and the Laplacian kernel
, with the kernel bandwidth. An-

other example which deserves attention in signal processing is
the th degree polynomial kernel defined as

, with . In [32], we have extended the frame-
work of the so-called kernel-based methods to time-frequency
analysis, showing that some specific reproducing kernels allow
these algorithms to operate in the time-frequency domain. This
link offers new perspectives in the field of nonstationary signal
analysis, which can benefit from the developments of pattern
recognition and statistical learning theory.

C. Testing Stationarity

We shall now use support vector data description to estimate
the support of probability density functions of stationary surro-
gate signals. The resulting decision rule will allow us to distin-
guish between stationary and nonstationary processes.

Let us assume that we are given a training set
of surrogate signals generated from the

signal under investigation. In all the experiments reported
above, time-frequency features were extracted from the
normalized multitaper spectrogram of each signal, defined at
time by

(24)

for and . More precisely, the local
power of each signal and its local frequency content sum-
marized below were considered:

(25)

Finally, for a sake of clarity, only the following two features
comparing local time-frequency behavior to global one were
retained

(26)

where denotes the standard deviation. The first one is a
measure of the fluctuations over time of the local power of the
signal, whereas the second one operates the same way with re-
spect to the local mean frequency. For each experiment reported
in Fig. 7, a training set consisting of 200 surrogate signals was

generated from the AM or FM signal to be tested. Fea-
tures and were extracted from each signal. Next, data were
mean-centered and normalized so that the variance of both fea-
tures was one. Finally, the support vector data description algo-
rithm was run using the basic linear kernel
and . The results are displayed for , and
20 T, allowing to consider stationarity relatively to the ratio be-
tween the observation time and the modulation period . In
each figure, the surrogate signals are shown with dots and the
signal to be tested with a black triangle. The optimum circle
having center at and radius is shown in dashed line. The
training data lying on or outside this circle, and thus associated
with nonzero Lagrange multipliers in (19)–(21), are indicated
by the circled dots. The thin circles represent the decision func-
tion (22) tuned to different false positive probabilities, fixed by
via the relation (23). To calculate , note that we have neglected
the contribution of the last two terms of (23) since they decay to
zero as tends to infinity. Fig. 7(b) and (e) shows that the test
signals can be considered as nonstationary with a false positive
probability lower than 0.05. In the other figures, they are clearly
identified as stationary signals.

The findings reported in this learning-theory-based study are
clearly consistent with what had been obtained previously with
the distance-based approach. For a small modulation period or
a large observation time, i.e., when , the situation can
be considered as stationary due to the observation of many sim-
ilar oscillations over the observed time scale. This is reflected by
the test signal which lies inside the region defined by the support
vector data description algorithm for the stationary surrogates.
For a medium observation time, i.e., , the local evolu-
tion due to the modulation is prominent and the black triangle
for the modulated signal is well outside the stationary region,
in accordance with a situation that can be referred to as nonsta-
tionary. Finally, if , the result turns back to stationarity
in the AM case because no significative change in the ampli-
tude is observed over the considered time scale. In the FM case,
the situation is slightly different, with the black triangle lying
at the border of the surrogates domain. For the FM case, espe-
cially Fig. 7(e) and (f), is negative and lower than the values
of taken by the surrogates: this is characteristic of some reg-
ularity and constancy in the amplitude, which has less fluctu-
ations than any corresponding stationary random process. In-
deed, the way stationarity is tested cannot end up with a better
configuration in this case since, by construction, surrogates of fi-
nite length pure tones undergo necessarily some amplitude fluc-
tuations leading to a negative, nonzero index for the (non-
fluctuating) test signal. This can be viewed as a limitation of the
method but it should rather be interpreted as a known bias when
the test signal lies at the border of the surrogates domain and
comes along with a value close to 0. It could be used as an in-
dication to discriminate random processes from more determin-
istic ones. Interestingly, one can also remark that the location
of the test signal in the plane turns out to provide some
information about the type of nonstationarity, if any:
is characteristic of some FM structure, indicates some
AM, is associated to a constant (maybe deterministic)
behavior for the amplitude (see [33] for preliminary results in
this direction).
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Fig. 7. Time-frequency features in AM (left) and FM (right) situations. From top to bottom, , and 20 T, with . In each case,
the black triangle corresponds to the pair of one test signal used to derive the surrogates. The latter are plotted as dots which, with support vector data
description, define the minimum-volume domain of stationarity represented here by the dashed curve. The training data lying on or outside this area are indicated
by the circled dots. The thin curves represent the decision functions with false positive probabilities 0.05, 0.1 and 0.15. Other parameters are as follows—number
of tapers: , length of tapers: , modulation indices: (AM) and (FM) , central frequency , signal-to-noise ratio:

10 dB.

V. CONCLUSION

A new approach has been proposed for testing stationarity
from a time-frequency viewpoint, relatively to a given obser-
vation scale. A key point of the method is that the null hy-

pothesis of stationarity (which corresponds to time-invariance
in the time-frequency spectrum) is statistically characterized on
the basis of a set of surrogates which all share the same av-
erage spectrum as the analyzed signal while being stationarized.
Two possible ways of making use of surrogates have been dis-
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cussed, based either on a distance-based approach or on a ma-
chine learning technique (one class-SVM). Both ways are com-
plementary since the first one is parametric whereas the second
one is not. As is usual, a parametric approach based on a spe-
cific model for the distribution is naturally more efficient in
terms of required data size, but it is based on the assumption
that the underlying model is correct, something which has to be
either known a priori or assessed. On the contrary, a nonpara-
metric approach such as SVM does not require such assump-
tions, but it is more demanding in terms of data size and compu-
tation. Moreover, for the distance-based approach, some analyt-
ical studies can be conducted (possibly in asymptotic situations,
see [34]), whereas the SVM approach allows for more versatile
characterization of types of nonstationarity. As for comparing
to early works using asymptotic analysis of evolutionary spectra
[11], [12] to formulate a global test of stationarity, the assump-
tion of independence between the time-frequency bins requires
that many data in the time-frequency representations have to be
discarded for the test. Our resampling method with surrogates
allow for lightening this limitation and using all the bins, hence
providing a method that uses all available information.

The basic principles of the method have been outlined, with
a number of considerations related to its implementation, but it
is clear that the proposed framework still leaves room for more
thorough investigations as well as variations and/or extensions.
In terms of time-frequency distributions for instance, one could
imagine to go beyond spectrograms and take advantage of more
recent advances [35]. Two-dimensional extensions can also be
envisioned for testing stationarity in the sense of homogeneity
of random fields, e.g., for texture analysis. Preliminary results
in this direction are given in [36].
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