
TOWARD SIGNAL PROCESSING THEORY FOR GRAPHS AND NON-EUCLIDEAN DATA

Benjamin A. Miller and Nadya T. Bliss

Lincoln Laboratory
Massachusetts Institute of Technology

Lexington, Massachusetts 02420
Email: {bamiller, nt}@ll.mit.edu

Patrick J. Wolfe

Statistics and Information Sciences Laboratory
Harvard University

Cambridge, Massachusetts 02138
Email: wolfe@stat.harvard.edu

ABSTRACT

Graphs are canonical examples of high-dimensional non-Euclidean
data sets, and are emerging as a common data structure in many
fields. While there are many algorithms to analyze such data, a signal
processing theory for evaluating these techniques akin to detection
and estimation in the classical Euclidean setting remains to be de-
veloped. In this paper we show the conceptual advantages gained by
formulating graph analysis problems in a signal processing frame-
work by way of a practical example: detection of a subgraph em-
bedded in a background graph. We describe an approach based on
detection theory and provide empirical results indicating that the test
statistic proposed has reasonable power to detect dense subgraphs in
large random graphs.

Index Terms— Chi-squared test, community detection, graph
algorithms, high-dimensional data, signal detection theory

1. INTRODUCTION

A graph G = (V, E) is defined as a set of vertices V and a
set of edges E, where each edge connects two vertices. In essence,
there is a number of entities (the vertices) with relationships defined
between them. Due to their ubiquitous structure, graphs are used
in a wide variety of application domains, including the natural sci-
ences, medicine and social network analysis. In biology, graphs have
been used to represent interactions between proteins [1, 2] and re-
production within a population in an evolutionary model [3]. Social
network analysis, where the data of interest are people and the rela-
tionships among them, is another very natural setting for graph pro-
cessing. Significant work has been done on the detection of commu-
nities [4, 5] and influential figures [6] in social networks, frequently
using a graph as the primary data structure.

The graph has been an important data structure for the signal
processing community. Analysis of graphs derived from radio fre-
quency or image data is common [7,8], as a graph structure can help
discriminate and classify interesting entities. In this context, how-
ever, the graphs are typically derived from Euclidean data.

In general graphs are non-Euclidean, which complicates the ap-
plication of standard signal processing to graph problems. Still, it is
natural to seek a framework in which graph processing algorithms
can be studied and evaluated in much the same way as classical sig-
nal processing methods. Some effort has been made to define signal

This work is sponsored by the Department of the Air Force under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and rec-
ommendations are those of the author and are not necessarily endorsed by the
United States Government.

processing techniques for graphs [9], but this has focused primar-
ily on smoothing (i.e., low-pass filtering) of geometric meshes rep-
resented by graphs, and no general theory exists. At a high level,
many graph problems can be cast in a signal processing context.
For example, the problem of finding a specific subgraph in a larger
graph [10] seems naturally coupled with matched filtering for signal
detection, and other problems such as detecting a very dense sub-
graph [11], a frequently-occurring subgraph [12] or a certain behav-
ioral pattern [13] all have a strong signal processing flavor to them.

As an example, there has been a substantial amount of work in
the area of anomaly detection in graphs. An algorithm is presented
in [14] for finding anomalies that bridge highly connected subgraphs.
In [15], the authors use measures of entropy on a graph to determine
whether a given subgraph is anomolous. The authors of [16] pro-
pose and evaluate several algorithms for detecting anomolous occur-
rences in graph-based data, using metrics that are common in signal
processing. Since graphs are often used for detection of anomolous
occurrences or behavior, such problems could be presented in the
context of classical detection theory. Indeed, [16–18] present de-
tection problems using graphical data and evaluate their techniques
with metrics common in signal processing, such as receiver operat-
ing characteristic (ROC) analysis.

These problems all have a similar underlying structure: Given a
graph G, we want to find GS ⊂ G such that GS is anomolous, dense
or equal to some template. Each problem resembles a classical de-
tection problem, but due to the non-Euclidean nature of graphical
data (e.g., the lack of well-defined vector operations), the same the-
oretical frameworks no longer exist. In most domains, there is some
natural ordering of the data, such as a time series or a frequency
spectrum. A matched filter, for example, assumes a certain temporal
ordering of the data and thus operates in geometric, rather than expo-
nential, time. While the non-Euclidean nature of graphs may prevent
anything quite so simple from being applied (since in general sub-
graph detection is an NP-hard problem), an important eventual goal
is to provide analogous theoretical structure.

In this paper we demonstrate the practical and conceptual ad-
vantages to be gained by formulating graph analysis problems in a
signal processing framework with a concrete example: the detection
of a subgraph embedded in a large background graph. In our prob-
lem formulation and empirical results, we demonstrate that present-
ing such problems in the framework of classical signal processing
not only provides a basis for algorithm comparison, but also enables
mature ideas in signal processing to be directly applied to the new
and growing field of graph analysis. The remainder of the paper is
organized as follows. Section 2 presents a subgraph detection algo-
rithm including a definition of a test statistic, the noise and signal
models, and ROC analysis. In Section 3 we analyze the performance
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of the detection algorithm using different background models and
signal models of varying density. Section 4 summarizes the results
and highlights future directions.

2. DETECING ANOMOLOUS SUBGRAPHS

As an example of developing and applying signal processing
theory for graph data, we focus in the sequel on the problem of de-
tecting an anomalous subgraph in a random graph. To formulate
the problem of subgraph detectability in the framework of classical
detection, we consider the background “noise” graph GB to be ran-
dom, and the “signal” graph GS to be fixed. Akin to a classical
hypothesis testing scenario in a vector space, we may then define a
set of null and alternate hypotheses as follows:

(
H0 : The observed graph is “noise” GB

H1 : The observed graph is “signal+noise” GB ∪ GS .
(1)

We present the algorithm for detecting the presence of a subgraph,
define noise and signal models, and analyze its performance.

2.1. Test Statistic

To formulate our detection problem, we consider the spectral
decomposition of the modularity matrix described in [4]. The mod-
ularity matrix B of an unweighted, undirected graph G is defined
as

B = A − kkT /2 |E| ,
where A is the adjacency matrix of G and k is a column vector whose
ith row contains the degree of vertex i. Essentially, it is a matrix of
the difference between the actual and expected number of edges be-
tween pairs of vertices. Since G is undirected, B will be symmetric
and thus will have a spectral decomposition

B = UΛUT

that has orthogonal eigenvectors corresponding to distinct eigenval-
ues, all of which will be real. We will consider B in the space of its
two principal eigenvectors—u1 and u2, both unit vectors—to exam-
ine the statistics of these background models in a low-dimensional
space.

Our Chi-squared test statistic is calcuated using a 2 × 2 contin-
gency table. Considering the two principal eigenvectors as points in
a plane, we determine how many of these two-dimensional points
(i.e., those defined by the rows of [u1 u2]) fall into each quadrant.
This yields a 2 × 2 observation matrix O = {oij}, which is then
used to compute the expected number of points in each quadrant,
resulting in the matrix M = {mij}, where

mij = (oi1 + oi2)(o1j + o2j)/ |V | .

We then compute the deviation X = {xij} from the expected value
as

xij =
(oij − mij)

2

mij
.

The resulting test statistic χ2([u1 u2]
T ) =

P
i

P
j xij is then max-

imized with respect to rotation in the plane, i.e., for each graph we
compute

χ2
max = max

θ
χ2

„»
cos θ − sin θ
sin θ cos θ

–
[u1 u2]

T

«
. (2)

We determine the presence of a “signal” graph by comparing χ2
max

to a threshold.

2.2. Distribution of the Test Statistic: Noise Model

In signal processing, noise is typically modeled as a stochas-
tic process where the distribution may or may not be i.i.d. For our
“background” graph models, i.e., the noise in the system, we con-
sider two random graph models. In addition to the random graphs
defined by Erdös and Rényi [19], which are reminiscent of an i.i.d.
process since each edge occurs with equal independent probability,
recent work has focused on alternative models that exhibit phenom-
ena frequently seen in real-world graphs, such as power-law degree
distributions. As an example of the latter type, we consider here
the R-MAT graph model [20], which uses a recursion on Kronecker
products to formulate edge probabilities that can yield heavy-tailed
degree distributions. We will thus use both Erdös-Rényi (E-R) and
R-MAT as canonical models for our background graph, GB .

The distribution of test statistics for 10000 1024-vertex graphs
generated using the R-MAT method is shown in Fig. 1(a). A Gamma
probability density function with shape parameter 2, which appears
to be a good fit for the distribution, has been fit to the test statistics
and overlayed on the histogram. The distribution of test statistics
for 10000 E-R graphs is shown in Fig. 1(b). Again, the distribution
resembles the overlayed Gamma process.

2.3. Distribution of the Test Statistic: Signal Model

The “foreground” (or signal) model in our graph signal process-
ing problem is our subgraph of interest, GS . In signal processing,
the weaker the signal is, or the more it resembles the background,
the more difficult it is to process, i.e., when the signal-to-noise ratio
(SNR) is low, signals are harder to detect, estimate, and classify. Our
intuition tells us that a similar property exists in a graphical setting,
and our initial investigation has confirmed this.

Given a foreground GS , we create a “signal + noise” model us-
ing the union operation on the two edge sets, i.e., G = GS ∪ GB

with G = (V, E), E = EB ∪ ES . We are interested in detecting
subgraphs that are highly interconnected, where detectability seems
intuitively apparent given the foreground’s anomolous structure in a
sparse, random background. In a 1024-vertex graph, we choose 12
vertices at random to comprise VS and and select a substantial frac-
tion of the

`
12
2

´
= 66 possible edges to use as ES . After creating G,

we perform the same statistical analysis on its modularity matrix as
we did with GB . Fig. 1(c) demonstrates the markedly different dis-
tribution in the test statistics (again for 10000 randomly-generated
graphs) when there is a highly-connected embedding, in this case
containing all possible edges. Using an E-R background, where
such a dense subgraph is much more unlikely since the model is less
structured, we observe even greater separation of the test statistics
between GB and G, as shown in Fig. 1(d).

3. DETECTION PERFORMANCE

A Monte Carlo simulation was run in which we evaluated the
performance of the detection algorithm. For each case, the back-
ground graph GB has 1024 vertices and an average degree of ap-
proximately 12. The signal graph GS , as mentioned in Section 2.3,
has 12 vertices and we evaluated detection performance as the sub-
graph density was increased from 70% to 100% in increments of 5%.
We used both E-R and R-MAT backgrounds in this experiment. For
each combination of background model and signal density, we gen-
erated 10000 different background graphs, each time choosing 12
different vertices at random to comprise the signal graph. Based on
the desired subgraph density, we then randomly selected the edges
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Fig. 1. Distribution of the test statistic χ2
max of equation (2) shown under the null and alternate models (top and bottom rows, respectively),

for cases of E-R and R-MAT background graphs (left and right columns, respectively). Note that the horizontal axes are scaled differently for
the null and alternate models.

for the signal model, ES , such that |ES | is the subgraph density
times

`
12
2

´
.

After creating the 10000 background and signal models, we
computed the test statistic from Section 2.1 for each case. This
resulted in distributions similar to those in Fig. 1, with clearer
separation between the null and alternate hypotheses as the signal
graphs get more dense. Considering a range of thresholds to declare
a detection, we demonstrate with ROC curves the detectability of
subgraphs with varying density using this algorithm.

As demonstrated in Fig. 2(a), when the 12-vertex subgraph has
only 70% of all possible edges, it is undetectable. By increasing the
number of edges in the subgraph, detection performance increases
until our subgraph becomes a 12-vertex clique, where we achieve
near-perfect detection performance. The distributions of test statis-
tics for both the “noise” and “signal+noise” for the case of a com-
plete subgraph are displayed on the same plot in Fig. 2(b). The two
distributions are highly seperable, with an equal-error rate of 2.12%
achieved by setting the threshold to 24.716. When using an E-R
background with average degree of 12, perfect detection is achieved
for false alarm probabilities greater than zero for all subgraph densi-
ties of 70% and higher. While we used backgrounds with the same
average degree, the more structured R-MAT model creates a back-

ground in which clustering is less anomolous, and detection is more
difficult.

4. SUMMARY

In this article we have demonstrated some of the practical and
conceptual advantages to be gained by formulating the graph pro-
cessing problem of subgraph detection in a classical signal process-
ing framework. This formulation provides not only a basis for the
performance comparison of various algorithms, by way of compara-
tive ROC curve analysis, but also a means of relating new data types
and problem domains to the more mature setting of signal processing
in linear vector spaces.

In the case at hand, we provided empirical results indicating that
the test statistic we propose has reasonable power to detect dense
subgraphs in large random graphs. More broadly, this problem sce-
nario can be viewed as a proxy for more general tasks involving
high-dimensional data sets that patently do not conform to the clas-
sical Euclidean setting. We are encouraged by the initial successes
documented in this article, and hope they will similarly encourage
others to join in the challenge of developing a more general signal
processing theory for graphs and other non-Euclidean data.
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Fig. 2. Operating characteristics of the subgraph detection test, shown for various subgraph densities (left), with empirical sampling distribu-
tions of the test statistic shown for the case of a 12-vertex clique (right).
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